
Cache Memories
CPSC 235 - Computer Organization



References

Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html


Outline

Cache memory organization and operation
Performance impact of caches

The memory mountain
Rearranging loops to improve spatial locality
Using blocking to improve temporal locality



Recall: Locality

Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they have
used recently

Temporal locality:
Recently referenced items are likely to be referenced again in
the near future

Spatial locality:
Items with nearby addresses tend to be referenced close
together in time



Recall: Memory Hierarchy



Recall: General Cache Concepts



Recall: General Cache Concepts

A cache hit is when the data in block b is needed and is in the
cache

A cache miss is when the data in block b is needed and is in
not the cache

Types of cache misses:
Cold (compulsory) miss: occur because the cache starts empty
and this is the first reference to the block
Capacity miss: occur when the set of active cache blocks
(working set) is larger than the cache
Conflict miss: occur when the level k cache is large enough, but
multiple data objects all map to the same level k block where a
block is a small subset of the block positions at level k − 1



Cache Memories

Cache memories are small, fast SRAM-based memories
managed automatically in hardware

Hold frequently accessed blocks of main memory

CPU looks first for data in cache

Typical system structure:



General Cache Organization (S, E, B)



Cache Read

Locate set

Check if any line in set has matching tag

Yes and the line is valid: hit

Locate data starting at offset



Example: Direct-Mapped Cache

Direct mapped: one line per set (E = 1)



Example: Direct-Mapped Cache

Note: the middle bits are used for indexing due to better
locality



Example: Direct-Mapped Cache

Note: if tag does not match, then old line is evicted and
replaced



Direct-Mapped Cache Simulation

Parameters: 4-bit addresses (address space size M = 16 bytes),
S = 4 sets, E = 1 Block per set, B = 2 bytes per block

Address trace (reads, one byte per read)

Address t s b Type

0 0 00 0 miss (cold)
1 0 00 1 hit
7 0 11 1 miss (cold)
8 1 00 0 miss (cold)
0 0 00 0 miss (conflict)



Direct-Mapped Cache Simulation

Cache after trace

Set Valid Tag Block

0 1 0 M[0-1]
1 0
2 0
3 1 0 M[6-7]



Example: E-way Set Associative Cache

There are E lines per set

Procedure
Find the set with the s-bits
Compare the tag for all E lines to the t-bits
If any of the tags match, then there is a hit
Otherwise, select a line for eviction and replacement from
within the set

There are many ways to select a replacement: random, least
recently used (LRU), etc.



2-way Set Associative Cache Simulation

Parameters: 4-bit addresses (address space size M = 16 bytes),
S = 2 sets, E = 2 blocks per set, B = 2 bytes per block

Address trace (reads, one byte per read)

Address t s b Type

0 00 0 0 miss
1 00 0 1 hit
7 01 1 1 miss
8 10 0 0 miss
0 00 0 0 hit



2-way Set Associative Cache Simulation

Cache after trace

Set Line Valid Tag Block

0 1 1 00 M[0-1]
0 2 1 10 M[8-9]
1 1 1 01 M[6-7]
1 2 0



Cache Writes

Multiple copies of data exist:
L1, L2, L3, Main Memory, Disk

What to do on a write-hit?
Write-through (write immediately to memory)
Write-back (defer write to memory until replacement of line)

Each cache line needs a dirty bit (set if data differs from
memory)

What to do on a write-miss?
Write-allocate (load into cache, update line in cache)

Good if more writes to the location will follow
No-write-allocate (writes straight to memory, does not load into
cache)

Typical combinations
Write-through and No-write allocate
Write-back and Write-allocate



Intel Core i7 Cache Hierarchy



Intel Core i7 Cache Hierarchy

L1 i-cache and d-cache:
32 KB, 8-way
Access: 4 cycles

L2 unified cache:
256 KB, 8-way
Access: 10 cycles

L3 unified cache:
8 MB, 16-way
Access: 40 - 75 cycles

Block size: 64 bytes for all caches



Cache Performance Metrics

Miss Rate
Fraction of memory accesses not found in cache (misses /
access)
Typical numbers:

3-10% for L1
can be quite small for L2, depending on size, etc.

Hit Time
Time to deliver a cached block to the processor

includes time to determine whether line is in cache
Typical numbers:

4 clock cycles for L1
10 clock cycles for L2

Miss Penalty
Additional time required because of a miss

typically 50-200 cycles for main memory (trend: increasing)



How Bad Can a Few Cache Misses Be?

Huge difference between a hit and a miss
Could be 100x if just L1 and main memory

Would you believe 99% hits is twice as good as 97%?
Consider this simplified example:

cache hit time of 1 cycle
cache miss penalty of 100 cycles

Average access time:
97% hits: 1 cycle + 0.03 × 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 × 100 cycles = 2 cycles

This is why “miss rate” is used instead of “hit rate”



Writing Cache Friendly Code

Make the common case go fast
Focus on the inner loops of the core functions

Minimize the misses in the inner loops
Repeated references to variables are good (temporal locality)
Stride-1 reference patterns are good (spatial locality)

Key idea: our qualitative notion of locality is quantified
through our understanding of cache memories



The Memory Mountain

Read throughput (read bandwidth)
Number of bytes read from memory per second (MB/s)

Memory mountain: measured read throughput as a function of
spatial and temporal locality

Compact way to characterize memory system performance



Memory Mountain Test Function
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of
* array "data" with stride of "stride“,
* using 4x4 loop unrolling.
*/

int test(int elems, int stride) {
long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i++) {

acc0 = acc0 + data[i];
}
return ((acc0 + acc1) + (acc2 + acc3));

}



The Memory Mountain



Matrix Multiplication Example

Description:
Multiply N × N matrices
Matrix elements are doubles (8 bytes)
O(n3) total operations
N reads per source element
N values summed per destination

but may be able to hold in register



Matrix Multiplication Example

C = A× B

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}



Miss Rate Analysis for Matrix Multiply

Assume:
Block size = 32 B (big enough for doubles)
Matrix dimension N is very large

Approximate 1/N as 0.0
Cache is not even big enough to hold multiple rows

Analysis Method:
Look at access pattern of inner loop



Layout of C Arrays in Memory (review)
C arrays allocated in row-major order

each row in contiguous memory

Stepping through columns in one row:
Code

for (i = 0; i < N; i++)
sum += a[0][i]

accesses successive elements
if block size B > sizeof (aij) bytes, then exploit spatial locality

miss rate = sizeof (aij)/B

Stepping through rows in one column:
Code

for (i = 0; i < N; i++)
sum += a[i][0]

accesses distant elements
no spatial locality

miss rate = 1 (that is, 100%)



Matrix Multiplication (ijk)

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

Miss rate for inner loop iterations
A = 0.25 (row-wise)
B = 1.0 (column-wise)
C = 0.0 (fixed)



Matrix Multiplication (kij)

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)

c[i][j] += r * b[k][j];
}

}

Miss rate for inner loop iterations
A = 0.0 (fixed)
B = 0.25 (row-wise)
C = 0.25 (row-wise)



Matrix Multiplication (jki)

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;
}

}

Miss rate for inner loop iterations
A = 1.0 (column-wise)
B = 0.0 (fixed)
C = 1.0 (column-wise)



Summary of Matrix Multiplication

ijk (and jik)
2 loads, 0 stores
average misses per iteration = 1.25

kij (and ikj)
2 loads, 1 store
average misses per iteration = 0.5

jki (and kji)
2 loads, 1 store
average misses per iteration = 2.0



Core i7 Matrix Multiply Performance



Matrix Multiplication (Again)

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];
}



Cache Miss Analysis

Assume:
Matrix elements are doubles
Cache line = 8 doubles
Cache size is strictly smaller than N

First iteration:
N/8 + N = 9N/8 misses

Second iteration:
N/8 + N = 9N/8 misses

Total misses:
9N/8N2 = (9/8)N3



Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i+=L)
for (j = 0; j < n; j+=L)

for (k = 0; k < n; k+=L)
/* L x L mini matrix multiplications */
for (i1 = i; i1 < i+L; i1++)
for (j1 = j; j1 < j+L; j1++)

for (k1 = k; k1 < k+L; k1++)
c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}



Cache Miss Analysis

Assume:
Cache line = 8 doubles, Blocking size L ≥ 8
Cache size is strictly smaller than N
Three blocks fit into cache: 3L2 < C

First (block) iteration:
Misses per block: L2/8
Blocks per iteration: 2N/L (omitting matrix c)
Misses per iteration: 2N/L× L2/8 = NL/4
Afterwards in cache

Second (block) iteration:
Same misses as first iteration: NL/4

Total misses:
NL/4 misses per iteration × (N/L)2 iterations = N3/(4L)
misses



Blocking Summary

No blocking: (9/8)N3 misses

Blocking: (1/(4L))N3 misses

Use largest block size L, such that L satisfies 3L2 < C
Fit three blocks in cache: two input, one output

Reason for dramatic difference
Matrix multiplication has inherent temporal locality:

Input data: 3N2, computation 2N3

Every array element used O(n) times
But, the program needs to be written properly



Cache Summary

Cache memories can have significant performance impact

You can write your programs to exploit this
Focus on the inner loops, where the bulk of computations and
memory accesses occur
Try to maximize spatial locality by reading data objects
sequentially with stride 1
Try to maximize temporal locality by using a data object as
often as possible once it is read from memory


