C Programming
CPSC 235 - Computer Organization

C Basics

m Summary:
m pointers / arrays / structs / casting

m Memory management

Function pointers / generic types

Strings

Miscellaneous

Pointers

m A pointer stores the address of a value in memory

m For example, int*, char*, int**, etc.

m Access the value by dereferencing (*a); can be used to read
value or write value to given address

m Dereferencing NULL causes a runtime error

m A pointer to type a references a block of sizeof (a) bytes
m Get the address of a value in memory with the & operator.

m Can alias pointers to the same address.

Call-by-Value versus Call-by-Reference

m Call-by-value: changes made to arguments passed to a function
are not reflected in the calling function.

m Call-by-reference: changes made to arguments passed to a
function are reflected in the calling function

m Cis a call-by-value language

m To cause changes to values outside the function, use pointers.

Example

void swap(int* a, int* b) {
int temp = *a;

*a = *Db;
*b = temp;
}
int main() {
int x = 42;
int y = 54;

swap (&x, &y);
printf ("%d\n", x);
printf ("%d\n", y);

Pointer Arithmetic

m Can add/subtract from an address to get a new address
m Only perform when absolutely necessary (that is, malloc)
m Results depends on the pointer type

m Examples:
m int* a; ati - a = &a + sizeof(int) * i
m char*x a; a+i — a = &a + sizeof(char) * i
m int** a; a+i — a = &a + sizeof(int*) * i

m Rule of thumb: cast pointer explicitly to avoid confustion
m prefer (char*)(a) + iversusa + i
m absolutely do this in macros

Structs

m Collection of values placed under one name in a single block of
memory

m Given a struct instance, access the fields using the . (dot)
operator

m Given a stuct pointer, access the fields using the —> operator

Struct Example

struct foo_s {
int a;
char b;

struct bar_s {
char arr[10];
foo_s baz;

bar_s biz;
biz.arr[0] = 'a';
biz.baz.a = 42;
bar_s* boz &biz;
boz->baz.b 'd';

Arrays/Strings

m Arrays: fixed-size collection of elements of the same type
m Can allocate on the stack or on the heap
m int a[10]; // array of 10 ints on the stack
m int* a = calloc(10, sizeof(int)); // array of 10
ints on the heap
m Strings: null-terminated character arrays
m null-character (\0) tells us where the string ends
m all standard C library functions on strings assume
null-termination

Casting

m Can cast a variable to a different type

m Integer type casting:

signed <> unsigned: change interpretation of the most
significant bit

smaller signed — larger signed: sign-extend (duplicate the sign
bit)

m smaller unsigned — larger unsigned: zero-extend (duplicate 0)
m Cautions:
m cast explicitly; C will cast operations involving different types

implicitly, often leading to errors

never cast to a smaller type; will truncate (lose) data

never cast a pointer to a larger type and dereference it; this
accesses memory with undefined contents

malloc, free, calloc

Handle dynamic (heap) memory
void* malloc (size_t size)

m allocate block of memory of size bytes
m does not initialize memory

void* calloc (size_t num, size t size)

m allocate block of memory for array of num elements, each size
bytes long
m initializes memory to zero values

void free(void* ptr)

m frees a previously allocated block pointed to by ptr
m use exactly once for each pointer you allocate

Note: the size argument should be computed with the
sizeof operator

Memory Management Rules

m malloc what you free, free what you malloc
m client should free memory allocated by client code
m library should free memory allocated by library code
m number of mallocs = number of frees
m number of mallocs > number of frees: definitely a memory
leak
m number of mallocs < number of frees: definitely a double
free
m Free a malloced block exactly once
m should not dereference a freed memory block

Stack versus Heap Allocation

Local variables and function arguments are placed on the stack

m deallocated after the variable leaves scope
m do not return a pointer to a stack-allocated variable
m do not reference the address of a variable outside its scope

Memory blocks allocated by calls to malloc/calloc are
placed on the heap

Globals, constants are placed elsewhere

Example:

m int* a = malloc(sizeof(int))
m // a is a pointer on the stack to a memory block
on the heap

typedetf

m Creates an alias type name for a different type
m Useful to simply the names of complex data types

struct list_node {
int x;

typedef int pixel;
typedef struct list_node* node;
typedef int (kcmp) (int el, int e2);

pixel x; // int type
node foo; // struct list_nod type
cmp int_cmp; // int (*cmp) (int el, int e2);

Macros

m Fragment of code given a name; replace occurrence of name
with contents of macro

m Uses:

m defining constants
m defining simple operations

m Warnings:

m use parentheses around arguments/expressions to avoid
problems after substitution
m do not pass expressions with side effects as arguments to macros

#define INT_MAX Ox7FFFFFFF
#define MAX(A, B) ((A) > (B) 7 (A) : (B))

Generic Types

m voidx* type is C's provision for generic types
m raw pointer to some memory location (unknown type)
m cannot dereference a void*
m must cast void* to another type in order to dereference it
m Can cast back and forth between void* and other pointer
types

Generic Types Example

// stack implementation
typedef void* elem;

stack stack_new();
void push(stack S, elem e);
elem pop(stack 8);

// stack usage

int x = 42; int y = 54;
stack S = stack_new();
push(S, &x);

push(S, &y);

int a = *(int*)pop(8);
int b = *(int*)pop(S);

Header Files

m Includes C declarations and macro definitions to be shared
across multiple files

only include function prototypes/macros; no implementation
code

m Usage: #include <header.h>

#include <1ib> for standard libraries (for example, #include
<string.h>

#include "file" for your source files (for example, #include
"header.h"

never include .c files (bad practice)

Header Guards

m Double-inclusion problem: include the same header file twice
m Solution: header guard ensures single inclusion
m Syntax Example:

#ifndef FILENAME_H
#define FILENAME_H

#endif

Odds and Ends

m Prefix versus postfix increment/decrement
m a++: use a in the expression, then increment a
m ++a: increment a, then use a in the expression
m Switch Statements:
m remember break statements after every case, unless you want
fall through
m should probably use a default case
m Variable/function modifiers
m global variables: defined outside functions, seen by all files
m static variables/functions: seen only in the file it is declared in

string.h

m One of the most useful libraries

m Important usage details regarding arguments:

prefixes: str — strings, mem — arbitrary
ensure that all strings are null-terminated
ensure that dest is large enough to store src
ensure that src actually contains n bytes
ensure that src/dest do not overlap

string.h Common String/Array
Functions

m Copy
m void* memcopy (void* dest, void* src, size_t n):
copy n bytes of src into dest
m char* strcopy (char* dest, char* src): copy src
string into dest, return dest
m Concatenation
m char* strcat (char* dest, char* src): append copy of
src to end of dest, return dest
m Comparison
m int strcmp (char* strl, charx str2): compare strl to
str by character (based on ASCII value), return comparison
result

string.h Common String/Array
Functions

m Searching
m char* strstr (char* strl, char* str2): return pointer
to first occurrence of str2 in strl, else NULL
m char* strtok (char* str, char*x delimiters); tokenize
str according to delimiter characters provided in delimiters,
return next token per successive strtok call, using str =
NULL
m Other
m size_t strlen (const char* str): returns length of the
string
m void* memset (voide* ptr, int val, size_t n): set
first n bytes of memory block addressed by ptr to val

stdlib.h: General Purpose Functions

m Dynamic memory allocation:
m malloc, free, calloc
String conversion:
m int atoi (char* str): parse string into integral value
(return O if not parsed)
System calls:
m void exit (int status): terminate calling process, return
status to parent process
m void abort(): aborts process abnormally
Searching/Sorting:
m provide array, array size, element size, comparator (function
pointer)
m bsearch: returns pointer to matching element in the array
m gsort: sorts the array destructively
Integer arithmetic:
m int abs (int n): returns absolute value of n
m Types:
m size_t: unsigned integral type

stdio.h

m Used for:
m argument parsing
m file handling
m input/output

Note about Library Functions

m These functions can return error codes
m malloc could fail
m a file could not be opened
m a string may be incorrectly parsed
m Remember to check for the error cases and handle the errors
accordingly
m may have to terminate the program
m may be able to recover

Tools

m GCC: compiler
m GDB: stepping debugger

m Valgrind: find memory errors, detect memory leaks

m Common errors:
m illegal read/write
m use of uninitialized values
m illegal frees
m overlapping source/destination addresses
m --leak-check=full details each definitely/possibly lost
memory block

GCC

m Used to compile C projects
m list the files that will be compiled to form an executable
m specify options via flags
m Important flags:
m —g: produce debug information
m -Werror: treat all warnings as errors
m -Wall/-Wextra: enable all construction warnings
m -pedantic: indicate all mandatory diagnostics listed in C
standard
-00/-01/-02: optimization levels
m -0 <filename>: name of output binary filename

