Bits, Bytes and Integers

CPSC 235 - Computer Organization

References

m Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html

Outline

m Representing information as bits
m Bit-level manipulations

m Integers
m Representation: unsigned and signed

m Conversion, casting

Expanding, truncating
m Addition, negation, multiplication, shifting
m Summary

m Representations in memory, pointers, strings

Everything is bits

m Each bitisOor1
m By encoding/interpreting sets of bits in various ways

m Computers determine what to do (instructions)

m ... and represent and manipulate numbers, sets, strings, etc.
m Why bits? Electronic implementation

m Easy to store with bitstable elements

m Reliably transmitted on noisy and inaccurate wires

Example: Counting in Binary

m Base 2 number representation
m Represent 1521377 as 11101101101101,
m Represent 1.201¢ as 1.0011001100110011[0011].. .,
m Represent 1.5213 x 10* as 1.1101101101101, x 2%3

Encoding Byte Values

m Byte = 8 bits
m Binary: 00000000, to 11111111,
m Decimal: 019 to 25519
m Hexadecimal: 0014 to FFig
m Base 16 number representation
m Use characters ‘0’ to ‘9" and ‘A’ to 'F’

m Typically written in most programming languages with the
prefix 0x

Encoding Byte Values

Hex Decimal Binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111

Encoding Byte Values

Hex Decimal Binary

8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Example Data Representations

C Data Typical 32-bit Typical-64 x86-64

char 1 1 1
short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Boolean Algebra

m Algebraic representation of logic
m Encode “true” as 1 and “false” as 0
m Developed by George Boole in the 19th Century
m Operations
mand (&): a & b = 1 whenbotha = 1andb = 1
mor(l):a | b= 1wheneithera=1andb =1

mnot (~): ~a = 1whena =0

mxor ("): a =~ b = 1when eithera = 1orb = 1, but not both

General Boolean Algebras

m Operate on Bit Vectors

m operations applied bitwise

m Example:

01101001

& 01010101
01000001

m All of the properties of Boolean algebra apply

Example: Representing and Manipulating
Sets

m Representation
m Width w bit vector represents subsets of {0,...,w — 1}
ma=1ifjcA
m Operations
m &: intersection
m |: union
m " symmetric difference

m ~: complement

Example: Representing and Manipulating
Sets

m Examples with w = 8
m x = 01101001 = {0,3,5,6}
m y = 01010101 = {0,2,4,6}
m x & y = 01000001 = {0,6}
m x | y=01111101 = {0,2,3,4,5,6}

Bit-Level Operations in C

m The operations &, |, ~, and ~ are available in C

m apply to any “integral” data type: long, int, short, char,
unsigned

m arguments are viewed as bit vectors
m arguments are applied bitwise
m Examples with char type
m ~0x41 — OxBE
m ~0x00 — OxFF

m 0x69 & 0x55 — 0x41

Contrast: Logical Operations in C

m The logical operations in C are &&, ||, and !
m zero is viewed as “false”
m any non-zero value is viewed as “true”
m always return 0 or 1
m short-circuit evaluation
m Examples with char data type
m !0x41 — 0x00
m !0x00 — 0x01
m 0x42 && 0x55 — 0x01

Shift Operations

m Left shift: x << y
m shift bit vector x left y positions
m fill with zeros on the right
m Right shift: x >> y
m shift bit vector x right y positions
m logical shift: fill with zeros on the left
m arithmetic shift: replicate most significant bit on the left

m Undefined behavior: shift amount less than zero or greater than
bit vector length

Shift Examples

01100010

x << 3 = 00010000

logical: x >> 2 = 00011000
arithmetic: x >> 2 = 00011000
10100010

x << 3 = 00010000

logical: x >> 2 = 00101000

arithmetic: x >> 2 = 11101000

Encoding Integers

m Unsigned

w—1
B2U(x) = Z x;- 2!
i=0

where x is the bit vector and w is the length of the bit vector

m Signed: two's complement

w—2
B2T(x) = —xw—1-2""") x; -2’
i=0

where x is the bit vector, w is the length of the bit vector, and
—Xx—_1 is the sign bit

Example 3 Bit Integer Encodings

value unsigned two's complement

000 (0+0+0) = 0O (0+0+0) = 0
001 (0+0+1) =1 (0+0+1) = 1
010 (0+2+0) = 2 (0+2+0) = 2
011 (0+2+1) = 3 (0+2+1) = 3
100 (4+0+0) = 4 (-4+0+0) = -4
101 (4+0+1) =5 (-4+0+1) = -3
110 (4+2+0) = 6 (-4+2+0)
111 (4+2+1) =7 (-4+2+1)

o
| |
= N

Numeric Ranges

m Unsigned values
m min=20
m max =2% —1

m Two's complement values
m min = —2%~1

mmax=2""1_-1

Example Numeric Ranges

m Values where w = 16

decimal hex binary
unsigned max 65535 FFFF 11111111 11111111
signed max 32767 7F FF 01111111 11111111
signed min -32768 80 00 10000000 00000000
-1 -1 FFFF 11111111 11111111
0 0 0000 00000000 00000000

Unsigned and Signed Numeric Values

m Equivalence

m Same encodings for non-negative values
m Uniqueness

m Every bit pattern represents a unique integer value

m Each representable integer has a unique bit encoding
m Can invert mappings

m unsigned bit pattern = U2B(x) = B2U}(x)

m two's complement bit pattern = T2B(x) = B2T ~}(x)

Mapping Between Signed and Unsigned

m Mappings between unsigned and two's complement numbers:
keep the bit representation and reinterpret.

m Two's complement to unsigned: T2B o B2U

m Unsigned to two's complement: U2B o B2T

Signed to Unsigned

2w
w1 2w-1 Unsigned
Two's
complement 0 0

_2w—l

Unsigned to Signed

2w
2w—l +2w—1
Unsigned

0

Two's
complement

-2 w—1

Signed vs. Unsigned in C

m Constants
m By default are considered to be signed integers
m Unsigned if the suffix is "U", for example 42U
m Casting

m Explicit casting between signed and unsigned same as U2T and
T2U

m Implicit casting also occurs via assignments and procedure calls

Casting Surprises

m Expression evaluation

m If there is a mix of unsigned and signed integers in a single
expression, then signed values are implicilty cast to unsigned
values.

m Including comparison operations: <, >, ==, <=, >=

m Examples

Operand 1 Operand 2 Relation Evaluation

0 ou == unsigned
-1 0 < signed
-1 ou > unsigned

-1 -2 > signed

Unsigned vs. Signed in C

m Easy to make mistakes
m Example 1

unsigned 1i;
for (i = cnt-2; i >= 0; i--)
ali] += ali+1]

m Example 2

#define DELTA sizeof (int)
int 1i;
for (i = CNT; i-DELTA >= 0; i —-= DELTA)

Summary: Casting Rules

m Bit pattern is maintained, but reinterpreted
m Can have unexpected effects: adding or subtracting 2"

m An expression containing signed and unsigned ints implicitly
casts the signed ints to unsigned ints

Sign Extension

m Task

m Given w-bit signed integer x

m Convert it to w + k bit integer x’ with the same value
m Rule

m Make k copies of the sign bit:

B X = X1y ooy XLy X1y X2+« - 5 X0

m C automatically performs sign extension

Sign Extension Example

m Example of sign extensions from w =3 to w =4
(| -20=-8
—
oy
=2 P
?—l'

—8—7—65—4—3—210 12 345 678

Truncation

m Task:
m Given k + w-bit signed or unsigned integer x

m Convert it to w-bit integer x” with the same value for “small
enough” x

m Rule:
m Drop top k bits:

I _
B X = Xw-1,Xw—2,-.-,X0

Summary: Expanding and Truncating Rules

m Expanding (e.g. short to int)
m Unsigned: zeros added
m Signed: sign extension
m Both yield expected result
m Truncating (e.g. int to short)
m Unsigned/signed: bits are truncated
m Result is reinterpreted
m Unsigned: modulus operation
m Signed: similar to modulus

m For small (in magnitude) numbers yields expected behavior

Unsigned Addition

m UAdd,,(u,v)
m Operands: w bits
m True sum: w + 1 bits

m Discard carry: w bits
m Standard addition function ignores carry output

m Implements modular arithmetic

s = UAdd,,(u,v) = u+ v mod 2"

UAdd Overflow

m Implements modular arithmetic
s = UAdd,,(u,v) = u+ v mod 2%

xty
2wtl = Overflow

x4y

0 1 Normal

Visualizing Mathematical Integer Addition

m Adda(u,v)

Integer addition

Visualizing Unsigned Integer Addition

m UAdds(u,v)

Unsigned addition (4-bit word)

Two's Complement Addition

m TAdd,(u,v)
m Operands: w bits
m True sum: w + 1 bits

m Discard carry: w bits

m TAdd and Uadd have identical bit level behavior

TAdd Overflow

m True add requires w + 1 bits; drop off the most significant bit
and interpret as 2's complement integer

x+y

w
+2 Positive overflow

Case 4 X+

+2w-1 +2w-1
Case 3

0 <+ Normal 0
Case 2

_w ~1 J _2w—1
Case 1

Negative overflow

Visualizing Two's Complement Addition

m TAdds(u,v)

omplement addition (4-bit word)

Two's ¢

Integer Multiplication

m Problem: the exact product of w-bit numbers u, v might have
a result that exceeds w bits.

m Unsigned: up to 2w bits
m Two's complement min (negative): up to 2w — 1 bits
m Two's complement max (positive): up to 2w bits

m Maintaining exact results

m would need to keep expanding word size with each product
computed

m is done in software if needed

Unsigned Multiplication in C

m UMuly(u,v)
m Operands: w bits
m True product: 2w bits

m Discard w bits: w bits

m Implements modular arithmetic

s = UMuly(u,v) = u+ v mod 2

Signed Multiplication in C

m TMul,(u,v)
m Operands: w bits
m True product: 2w bits

m Discard w bits: w bits

m Ignores high order w bits, some of which are different for
signed vs. unsigned multiplication

Power-of-2 Multiply with Shift

m Operation u << k
m Gives u - 2% for both signed and unsigned
m Operands: w bits
m True product w + k bits

m Discard k bits: w bits

Unsigned Power-of-2 Divide with Shift

m Operationu >> k

m Gives

m Uses logical shift

Signed Power-of-2 Divide with Shift

m Operation u >> k

m Gives

m Uses arithmetic shift

m Rounds wrong direction when u < 0

Correct Signed Power-of-2 Divide with
Shift

m Quotient of negative number power of 2

m Want

m Compute as

u+2k—1
2k
mInC (u+ (1<<k) - 1) > k

m Biases dividend toward 0

Negation: Complement and Increment

m Negate through complement and increment
~x +1=-x

m Examples

Value X ~X ~x+1 Result
15213 3B6D (€492 (€493 -15213
0 0000 FFFF 0000 0

TMin 8000 7FFF 8000 TMin

Arithmetic: Basic Rules

m Addition
m Unsigned/signed: normal addition followed by truncate
m Unsigned: addition mod 2%
m Signed: modified addition mod 2" (result in proper range)
m Multiplication
m Unsigned/signed: normal multiplication followed by truncate
m Unsigned: multiplication mod 2%

m Signed: modified multiplication mod 2% (result in proper range)

Byte-Oriented Memory Organization

m Programs refer to data by address
m Conceptually envision it as a very large array of bytes

m An address is like an index into that array, and a pointer
variable stores an address

m Note: system provides private address space to each “process”
m Think of a process as a program being executed

m So, a program can clobber its own data, but not that of others

Machine Words

m Any given computer has a “word size"

m Nominal size of integer-valued data

m Until recently, most machines used 32 bits (4 bytes) as a word
size

m Increasingly, machines have 64 bit word size

m Machines still support multiple data formats
m Fractions or multiples of word size

m Always integral number of bytes

Word-Oriented Memory Organization

m Addresses specify byte locations
m Address of first byte in word
m Addresses of successive words differ by 4 (32 bit) or 8 (64 bit)

Byte Ordering

m How are the bytes within a multi-byte word ordered in memory?
m Conventions

m Big endian: least significant byte has highest address

m Little endian: least significant byte has lowest address
m Example: 4-byte value of 0x1234567

m Big endian: 01 23 45 67

m Little endian: 67 45 23 01

Examining Data Representations

m Code to print byte representation of data

typedef unsigned char *pointer;
void show_bytes(pointer start, size_t len) {
size_t 1i;
for (i = 0; i < len; i++) {
printf ("%p\t0x%.2x\n", start+i, start([i]);
}
printf ("\n");

Representing Strings

m Strings in C

m Represented by an array of characters

m Each character is encoded in ASCII format

m Strings should be null terminated (final character = 0)
m Compatibility

m Byte ordering is not an issue

Reading Byte-Reversed Listings

m Disassembly

m Text representation of binary machine code

m Generated by program that reads the machine code

m Example Fragment

Address

8048365
8048366
804836¢:

Instruction code

5b

81 c3 ab 12 00 00

83 bb 28 00 00 00 00

Assembly Rendition

pop

add $0x12ab, %ebx
cmpl $0x0,0x28 (%ebx)

Summary

m Representing information as bits
m Bit-level manipulations

m Integers
m Representation: unsigned and signed

m Conversion, casting

Expanding, truncating
m Addition, negation, multiplication, shifting
m Summary

m Representations in memory, pointers, strings

