Bits, Bytes and Integers

CPSC 235 - Computer Organization

References

■ Slides adapted from CMU

Outline

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc.
- Why bits? Electronic implementation
 - Easy to store with bitstable elements
 - Reliably transmitted on noisy and inaccurate wires

Example: Counting in Binary

- Base 2 number representation
 - Represent 15213₁₀ as 111011011011₂
 - Represent 1.20_{10} as $1.0011001100110011[0011]..._2$
 - Represent 1.5213×10^4 as $1.1101101101101_2 \times 2^{13}$

Encoding Byte Values

- Byte = 8 bits
 - Binary: 00000000₂ to 11111111₂
 - Decimal: 0_{10} to 255_{10}
 - Hexadecimal: 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Typically written in most programming languages with the prefix 0x

Encoding Byte Values

Hex	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111

Encoding Byte Values

Hex	Decimal	Binary
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
C	12	1100
D	13	1101
Е	14	1110
F	15	1111

Example Data Representations

C Data	Typical 32-bit	Typical-64	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
pointer	4	8	8

Boolean Algebra

- Algebraic representation of logic
 - Encode "true" as 1 and "false" as 0
 - Developed by George Boole in the 19th Century
- Operations
 - and (&): a & b = 1 when both a = 1 and b = 1
 - or (|): a | b = 1 when either a = 1 and b = 1
 - not (~): a = 1 when a = 0
 - \blacksquare xor (^): a ^ b = 1 when either a = 1 or b = 1, but not both

General Boolean Algebras

- Operate on Bit Vectors
 - operations applied bitwise
- Example:

01101001 & 01010101 01000001

■ All of the properties of Boolean algebra apply

Example: Representing and Manipulating Sets

- Representation
 - Width w bit vector represents subsets of $\{0, ..., w-1\}$
 - \bullet $a_j = 1$ if $j \in A$
- Operations
 - &: intersection
 - |: union
 - ^: symmetric difference
 - ~: complement

Example: Representing and Manipulating Sets

- Examples with w = 8
 - $x = 01101001 = \{0, 3, 5, 6\}$

 - $x & y = 01000001 = \{0, 6\}$
 - $x \mid y = 011111101 = \{0, 2, 3, 4, 5, 6\}$

Bit-Level Operations in C

- The operations &, |, ~, and ^ are available in C
 - apply to any "integral" data type: long, int, short, char, unsigned
 - arguments are viewed as bit vectors
 - arguments are applied bitwise
- Examples with char type
 - $\sim 0x41 \rightarrow 0xBE$
 - \blacksquare ~0x00 \rightarrow 0xFF
 - \blacksquare 0x69 & 0x55 \rightarrow 0x41

Contrast: Logical Operations in C

- The logical operations in C are &&, ||, and !
 - zero is viewed as "false"
 - any non-zero value is viewed as "true"
 - always return 0 or 1
 - short-circuit evaluation
- Examples with char data type
 - $!0x41 \rightarrow 0x00$
 - \blacksquare !0x00 \rightarrow 0x01
 - \blacksquare 0x42 && 0x55 \rightarrow 0x01

Shift Operations

- Left shift: x << y
 - shift bit vector x left y positions
 - fill with zeros on the right
- Right shift: x >> y
 - shift bit vector x right y positions
 - logical shift: fill with zeros on the left
 - arithmetic shift: replicate most significant bit on the left
- Undefined behavior: shift amount less than zero or greater than bit vector length

Shift Examples

- $\mathbf{x} = 01100010$
 - $\mathbf{x} << 3 = 00010000$
 - \blacksquare logical: x >> 2 = 00011000
 - arithmetic: x >> 2 = 00011000
- $\mathbf{x} = 10100010$
 - $\mathbf{x} << 3 = 00010000$
 - \blacksquare logical: x >> 2 = 00101000
 - arithmetic: x >> 2 = 11101000

Encoding Integers

Unsigned

$$B2U(x) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

where x is the bit vector and w is the length of the bit vector

■ Signed: two's complement

$$B2T(x) = -x_{w-1} \cdot 2^{w-1} \sum_{i=0}^{w-2} x_i \cdot 2^i$$

where x is the bit vector, w is the length of the bit vector, and $-x_{x-1}$ is the sign bit

Example 3 Bit Integer Encodings

value	unsigned	two's complement
000	(0+0+0) = 0	(0+0+0) = 0
001	(0+0+1) = 1	(0+0+1) = 1
010	(0+2+0) = 2	(0+2+0) = 2
011	(0+2+1) = 3	(0+2+1) = 3
100	(4+0+0) = 4	(-4+0+0) = -4
101	(4+0+1) = 5	(-4+0+1) = -3
110	(4+2+0) = 6	(-4+2+0) = -2
111	(4+2+1) = 7	(-4+2+1) = -1

Numeric Ranges

- Unsigned values
 - \blacksquare min = 0
 - $max = 2^w 1$
- Two's complement values
 - $min = -2^{w-1}$
 - $max = 2^{w-1} 1$

Example Numeric Ranges

■ Values where w = 16

	decimal	hex	binary
unsigned max	65535	FF FF	11111111 11111111
signed max	32767	7F FF	01111111 11111111
signed min	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Unsigned and Signed Numeric Values

- Equivalence
 - Same encodings for non-negative values
- Uniqueness
 - Every bit pattern represents a unique integer value
 - Each representable integer has a unique bit encoding
- Can invert mappings
 - unsigned bit pattern = $U2B(x) = B2U^{-1}(x)$
 - two's complement bit pattern = $T2B(x) = B2T^{-1}(x)$

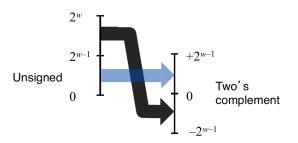
Mapping Between Signed and Unsigned

- Mappings between unsigned and two's complement numbers: keep the bit representation and reinterpret.
- Two's complement to unsigned: $T2B \circ B2U$
- Unsigned to two's complement: U2B ∘ B2T

Signed to Unsigned



Unsigned to Signed



Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if the suffix is "U", for example 42U

Casting

- \blacksquare Explicit casting between signed and unsigned same as U2T and T2U
- Implicit casting also occurs via assignments and procedure calls

Casting Surprises

■ Expression evaluation

- If there is a mix of unsigned and signed integers in a single expression, then signed values are implicilty cast to unsigned values.
- Including comparison operations: <, >, ==, <=, >=

Examples

Operand 1	Operand 2	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
-1	-2	>	signed

Unsigned vs. Signed in C

- Easy to make mistakes
- Example 1

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1]
```

■ Example 2

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i -= DELTA)
...
```

Summary: Casting Rules

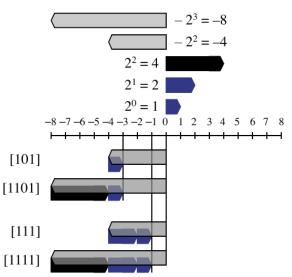
- Bit pattern is maintained, but reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- An expression containing signed and unsigned ints implicitly casts the signed ints to unsigned ints

Sign Extension

- Task
 - Given w-bit signed integer x
 - Convert it to w + k bit integer x' with the same value
- Rule
 - Make k copies of the sign bit:
 - $x' = x_{w-1}, \dots, x_{w-1}, x_{w-1}, x_{w-2}, \dots, x_0$
- C automatically performs sign extension

Sign Extension Example

■ Example of sign extensions from w = 3 to w = 4



Truncation

- Task:
 - Given k + w-bit signed or unsigned integer x
 - Convert it to w-bit integer x' with the same value for "small enough" x
- Rule:
 - Drop top k bits:
 - $x' = x_{w-1}, x_{w-2}, \dots, x_0$

Summary: Expanding and Truncating Rules

- Expanding (e.g. short to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g. int to short)
 - Unsigned/signed: bits are truncated
 - Result is reinterpreted
 - Unsigned: modulus operation
 - Signed: similar to modulus
 - For small (in magnitude) numbers yields expected behavior

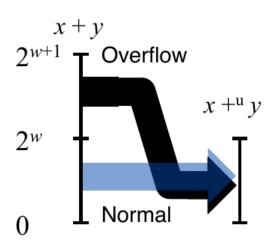
Unsigned Addition

- \blacksquare $UAdd_w(u, v)$
 - Operands: w bits
 - True sum: w + 1 bits
 - Discard carry: w bits
- Standard addition function ignores carry output
- Implements modular arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

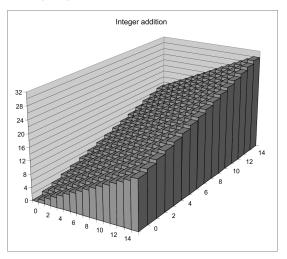
UAdd Overflow

■ Implements modular arithmetic $s = UAdd_w(u, v) = u + v \mod 2^w$



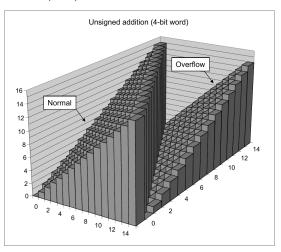
Visualizing Mathematical Integer Addition

 \blacksquare $Add_4(u, v)$



Visualizing Unsigned Integer Addition

 \blacksquare $UAdd_4(u, v)$

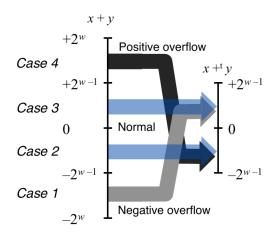


Two's Complement Addition

- \blacksquare $TAdd_w(u, v)$
 - Operands: w bits
 - True sum: w + 1 bits
 - Discard carry: w bits
- TAdd and Uadd have identical bit level behavior

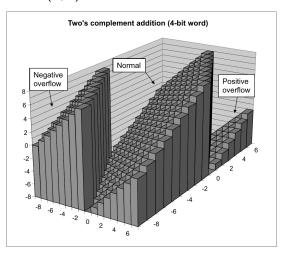
TAdd Overflow

■ True add requires w + 1 bits; drop off the most significant bit and interpret as 2's complement integer



Visualizing Two's Complement Addition

 \blacksquare $TAdd_4(u, v)$



Integer Multiplication

- Problem: the exact product of w-bit numbers u, v might have a result that exceeds w bits.
 - Unsigned: up to 2w bits
 - Two's complement min (negative): up to 2w 1 bits
 - Two's complement max (positive): up to 2w bits
- Maintaining exact results
 - would need to keep expanding word size with each product computed
 - is done in software if needed

Unsigned Multiplication in C

- $\blacksquare UMul_w(u,v)$
 - Operands: w bits
 - True product: 2w bits
 - Discard w bits: w bits
- Implements modular arithmetic

$$s = UMuI_w(u, v) = u + v \mod 2^w$$

Signed Multiplication in C

- \blacksquare $TMul_w(u, v)$
 - Operands: w bits
 - True product: 2w bits
 - Discard w bits: w bits
- Ignores high order w bits, some of which are different for signed vs. unsigned multiplication

Power-of-2 Multiply with Shift

- Operation u << k
 - Gives $u \cdot 2^k$ for both signed and unsigned
 - Operands: w bits
 - True product w + k bits
 - Discard *k* bits: *w* bits

Unsigned Power-of-2 Divide with Shift

- Operation u >> k
 - Gives

$$\left| \frac{u}{2^k} \right|$$

■ Uses logical shift

Signed Power-of-2 Divide with Shift

- Operation u >> k
 - Gives

$$\left| \frac{u}{2^k} \right|$$

- Uses arithmetic shift
- Rounds wrong direction when u < 0

Correct Signed Power-of-2 Divide with Shift

- Quotient of negative number power of 2
 - Want

$$\left\lceil \frac{u}{2^k} \right\rceil$$

■ Compute as

$$\left| \frac{u+2^k-1}{2^k} \right|$$

- In C: (u + (1<<k) 1) >> k
- Biases dividend toward 0

Negation: Complement and Increment

■ Negate through complement and increment

$$-x + 1 = -x$$

■ Examples

Value	х	~x	~x+1	Result
15213	3B6D	C492	C493	-15213
0	0000	FFFF	0000	0
TMin	8000	7FFF	8000	TMin

Arithmetic: Basic Rules

Addition

- Unsigned/signed: normal addition followed by truncate
- Unsigned: addition mod 2^w
- Signed: modified addition mod 2^w (result in proper range)

■ Multiplication

- Unsigned/signed: normal multiplication followed by truncate
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually envision it as a very large array of bytes
 - An address is like an index into that array, and a pointer variable stores an address
- Note: system provides private address space to each "process"
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "word size"
 - Nominal size of integer-valued data
- Until recently, most machines used 32 bits (4 bytes) as a word size
- Increasingly, machines have 64 bit word size
- Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses specify byte locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32 bit) or 8 (64 bit)

Byte Ordering

- How are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big endian: least significant byte has highest address
 - Little endian: least significant byte has lowest address
- Example: 4-byte value of 0x1234567
 - Big endian: 01 23 45 67
 - Little endian: 67 45 23 01

Examining Data Representations

■ Code to print byte representation of data

```
typedef unsigned char *pointer;
void show_bytes(pointer start, size_t len) {
    size_t i;
    for (i = 0; i < len; i++) {
        printf("%p\t0x%.2x\n", start+i, start[i]);
    }
    printf("\n");
}</pre>
```

Representing Strings

- Strings in C
 - Represented by an array of characters
 - Each character is encoded in ASCII format
 - Strings should be null terminated (final character = 0)
- Compatibility
 - Byte ordering is not an issue

Reading Byte-Reversed Listings

- Disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code
- Example Fragment

Address	Instruction code	Assembly Rendition	
8048365:	5b	pop	
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx	
804836c:	83 bb 28 00 00 00 00	cmpl $$0x0.0x28(\%ebx)$	

Summary

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings