
Subqueries
CSC 256, SQL Programming

Subqueries

A subquery is a query nested in another query

General types of subqueries:
Uncorrelated
Correlated

Syntactically, subqueries must be in parentheses

Note that for many cases we can write the same query using
joins or subqueries

Uncorrelated Subqueries

An uncorrelated subquery has no dependence on the main
query

Example: tracks longer than average length

select "Name", "Milliseconds"
from "Track"
where "Milliseconds" >

(select avg("Milliseconds") from "Track")
order by "Milliseconds";

Example

Payments from each customer with percentage of total

select
"CustomerId",
sum("Total") as "Total",
1000 * sum("Total") /

(select sum("Total") from "Invoice") as "Percent"
from "Invoice"
group by "CustomerId"
order by "Percent" desc;

Example

Artists that have no ‘Rock’ songs

select *
from "Artist"
where "ArtistId" not in

(select "ArtistId"
from "Album"

inner join "Artist" using("ArtistId")
inner join "Track" using("AlbumId")
inner join "Genre" using("GenreId")

where "Genre"."Name" = 'Rock');

Correlated subqueries

A correlated subquery depends on main query

Example: for each customer, the date of most recent invoice

select
c."CustomerId",
c."FirstName",
c."LastName",
(select max(i."InvoiceDate")
from "Invoice" as i
where i."CustomerId" = c."CustomerId") as "Recent Invoice"

from "Customer" as c;

In this query, for every row in the outer query, the inner query
is run. This is a correlated query because of the reference to
c."CustomerId" in the inner query.

Example

Return all customers that spent more than $40

select
c."CustomerId",
c."FirstName",
c."LastName"

from "Customer" as c
where

(select sum("Total")
from "Invoice" as i
where i."CustomerId" = c."CustomerId") > 40;

Table Subqueries

A table subquery returns a table

Table subqueries are useful for:
multiple passes over the same data
generating a table with values you define (the join for example)

Example

Example: show the average number of tracks per album

select avg(count)
from (select "AlbumId", count(*)

from "Track"
group by "AlbumId") as t;

We can redefine the column names in the returned table:

select avg(total)
from (select "AlbumId", count(*)

from "Track"
group by "AlbumId") as t(album, total);

VALUES

We can create virtual table with VALUES

Example

select *
from

(values
('short', 0, 60000),
('medium', 60000, 300000),
('long', 300000, 10000000))

as c("desc", "low", "high");

Example

Return track length descriptions

select t."Name", t."Milliseconds", c.desc
from "Track" as t

inner join
(values

('short', 0, 60000),
('medium', 60000, 300000),
('long', 300000, 10000000))

as c("desc", "low", "high")
on t."Milliseconds" >= c.low and

t."Milliseconds" < c.high;

Lateral Subqueries

A lateral subquery joins the output of the outer query with the
output of the subquery. The output rows returned by the inner
subquery are added to the result of the join with the outer
query.

Syntax:

SELECT <column names>
FROM <table name>
LATERAL <inner subquery>

Example

Return the three most recent invoices for each customer

select c.customer_id, d.rental_id, d.rental_date
from customer as c

inner join
(select
from rental as r
where r.customer_id = c.customer_id
order by r.rental_date desc
limit 3

) as d
on c.customer_id = d.customer_id;

Common Table Expressions (CTE)

A common table expression (CTE) is a temporary named result
set.

Basic syntax:

WITH <cte name> AS (
SELECT <attributes>
FROM <table>

)
SELECT <attributes>
FROM <cte name>
...

