
Query Fundamentals 2
CSC 256, SQL Programming

Example Relation (from previous lecture)

We will use the following "student" table as a running
example

first_name last_name location gpa

Spike Spiegel Mars 2.0
Jet Black Ganymede 3.0
Faye Valentine Earth 2.5
Edward Wong Earth 4.0
Ein NULL Mars 3.9

ORDER BY

ORDER BY sorts the records in ascending or descending order;
note that there is no guaranteed sort order in SQL

Syntax:

SELECT column_name1, column_name2, ...
FROM table_name
ORDER BY column1 [ASC|DESC] , column2 [ASC|DESC], ... ;

Note that in ASC|DESC the vertical bar (|) means or, so you
can choose ascending or descending order, but not both.

The square brackets ([]) means optional; default sorting
order is ascending.

ORDER BY Example Default

select *
from student
order by first_name;

first_name | last_name | location | gpa
------------+-----------+----------+-----
Edward | Wong | Earth | 4
Ein | | Mars | 3.9
Faye | Valentine | Earth | 2.5
Jet | Black | Ganymede | 3
Spike | Spiegel | Mars | 2

(5 rows)

ORDER BY Example Explicit ASC

select *
from student
order by first_name asc;

first_name | last_name | location | gpa
------------+-----------+----------+-----
Edward | Wong | Earth | 4
Ein | | Mars | 3.9
Faye | Valentine | Earth | 2.5
Jet | Black | Ganymede | 3
Spike | Spiegel | Mars | 2

(5 rows)

ORDER BY Example Explicit DESC

select *
from student
order by first_name desc;

first_name | last_name | location | gpa
------------+-----------+----------+-----
Spike | Spiegel | Mars | 2
Jet | Black | Ganymede | 3
Faye | Valentine | Earth | 2.5
Ein | | Mars | 3.9
Edward | Wong | Earth | 4

(5 rows)

ORDER BY Example Multiple Columns

select *
from student
order by location asc, first_name desc;

first_name | last_name | location | gpa
------------+-----------+----------+-----
Faye | Valentine | Earth | 2.5
Edward | Wong | Earth | 4
Jet | Black | Ganymede | 3
Spike | Spiegel | Mars | 2
Ein | | Mars | 3.9

(5 rows)

ORDER BY (continued)
We can use expressions in ORDER BY

We can order by aliases

Example:

select first_name, last_name, ceil(gpa) as gpa_rounded_up
from student
order by gpa_rounded_up;

first_name | last_name | gpa_rounded_up
------------+-----------+----------------
Spike | Spiegel | 2
Jet | Black | 3
Faye | Valentine | 3
Edward | Wong | 4
Ein | | 4

(5 rows)

Aliases and WHERE

Let us try the previous example and refer to an alias in the
WHERE clause:

select first_name, last_name, ceil(gpa) as gpa_rounded_up
from student
where gpa_rounded_up = 4
order by gpa_rounded_up;

ERROR: column "gpa_rounded_up" does not exist
LINE 1: ...e, ceil(gpa) as gpa_rounded_up from student where gpa_rounde...

SELECT Order of Writing

The clauses of a SELECT statement are written in the order:
1 SELECT: select the columns to appear in the output
2 FROM: pick tables to be queried
3 WHERE: filter the rows
4 GROUP BY: aggregate rows (next lecture)
5 HAVING: filter the aggregates (next lecture)
6 ORDER BY: sort the rows
7 LIMIT: limit the number of rows returned (later in this lecture)

Note: there are a few clauses not listed here that we will cover
in the future

SELECT Order of Execution

SELECT order of execution is different from how written
lexically:

1 FROM: pick tables to be queried
2 WHERE: filter the rows
3 GROUP BY: aggregate rows (next lecture)
4 HAVING: filter the aggregates (next lecture)
5 SELECT: select the columns to appear in the output
6 ORDER BY: sort the rows
7 LIMIT: limit the number of rows returned (later in this lecture)

NOTE: memorize this order; it will help you

Aliases and WHERE Fixed

Simple fix: repeat the expression. (we will see a way to
eliminate the duplication in a future lecture)

select first_name, last_name, ceil(gpa) as gpa_rounded_up
from student where ceil(gpa) = 4
order by gpa_rounded_up;

first_name | last_name | gpa_rounded_up
------------+-----------+----------------
Edward | Wong | 4
Ein | | 4

(2 rows)

LIMIT
The LIMIT keyword limits the number of rows returned; if the
number of rows returned is less than the LIMIT specified, then
LIMIT does nothing

Example:

select *
from student
limit 2;

first_name | last_name | location | gpa
------------+-----------+----------+-----
Spike | Spiegel | Mars | 2
Jet | Black | Ganymede | 3

(2 rows)

Note: because there is no guaranteed order for the result of a
select, we should always use an ORDER BY with LIMIT.

OFFSET

OFFSET skips a certain number of rows

Example:

select *
from student
order by first_name
offset 2 rows fetch next 3 rows only;

first_name | last_name | location | gpa
------------+-----------+----------+-----
Faye | Valentine | Earth | 2.5
Jet | Black | Ganymede | 3
Spike | Spiegel | Mars | 2

(3 rows)

FETCH

The FETCH without an OFFSET acts like a LIMIT

Example

select *
from student
order by first_name
fetch next 3 rows only;

first_name | last_name | location | gpa
------------+-----------+----------+-----
Edward | Wong | Earth | 4
Ein | | Mars | 3.9
Faye | Valentine | Earth | 2.5

(3 rows)

LIMIT OFFSET (PostgreSQL Extension)

PostgreSQL has a shorter syntax for LIMIT with an OFFSET

Example:

select *
from student
order by first_name
limit 3 offset 2;

first_name | last_name | location | gpa
------------+-----------+----------+-----
Faye | Valentine | Earth | 2.5
Jet | Black | Ganymede | 3
Spike | Spiegel | Mars | 2

(3 rows)

DISTINCT

DISTINCT returns values with duplicates removed

Syntax:

SELECT DISTINCT column_name, column_name, ...
FROM table_name;

DISTINCT is executed as part of the select clause

DISTINCT is executed after any expressions

DISTINCT Example

select distinct location
from student;

location

Ganymede
Mars
Earth

(3 rows)

DISTINCT Example (with expression)

select distinct ceil(gpa)
from student;

ceil

3
4
2

(3 rows)

CASE Expressions
A CASE expression is inline conditional logic (similar to ternary
operator)

CASE has two forms: simple and searched

Simple syntax:

CASE input_expr
WHEN expr1 THEN result1
WHEN expr2 THEN result2
...
[ELSE resultn]

END

The equality conditions are checked in the order of definition.
The first condition that evaluates to true is chosen. In the case
of no match (when the optional else is not specified), NULL is
returned.

CASE Example (simple syntax)
select

first_name,
case ceil(gpa)

when 4 then 'great'
when 3 then 'good'
else 'poor' end as score

from student;

first_name | score
------------+-------
Spike | poor
Jet | good
Faye | good
Edward | great
Ein | great

(5 rows)

CASE Expressions (continued)

CASE searched form syntax:

CASE
WHEN condition1 THEN result1
WHEN condition2 THEN result2
...
[ELSE resultn]

END

The arbitrary conditions are checked in the order of definition.
The first condition that evaluates to true is chosen. In the case
of no match (when the optional else is not specified), NULL is
returned.

CASE Example (searched form syntax)
select

first_name,
case

when gpa >= 4 then 'great'
when gpa between 2 and 3
then 'good'
else 'poor' end as score

from student;

first_name | score
------------+-------
Spike | good
Jet | good
Faye | good
Edward | great
Ein | poor

(5 rows)

CASE Expressions (continued)

CASE is an expression, so it can be used anywhere an
expression can be used:

SELECT
ORDER BY
WHERE
and a few other places

Note: we need to be careful with null values. The simple case
form implicitly does an equality comparison, so we can not use
that form when handling null values.

NULL Values and ORDER BY Example
NULL values last

select *
from student
order by

case when last_name is null then 1 else 0 end,
last_name;

first_name | last_name | location | gpa
------------+-----------+----------+-----
Jet | Black | Ganymede | 3
Spike | Spiegel | Mars | 2
Faye | Valentine | Earth | 2.5
Edward | Wong | Earth | 4
Ein | | Mars | 3.9

(5 rows)

NULL Values and ORDER BY Example

NULL values first

select *
from student
order by

case when last_name is null then 0 else 1 end,
last_name;

first_name | last_name | location | gpa
------------+-----------+----------+-----
Ein | | Mars | 3.9
Jet | Black | Ganymede | 3
Spike | Spiegel | Mars | 2
Faye | Valentine | Earth | 2.5
Edward | Wong | Earth | 4

NULL Values and ORDER BY (PostreSQL
Extension)

PostgreSQL has an alternative syntax for sorting null values
which is specified as NULLS FIRST or NULLS LAST

Example:

select *
from student
order by last_name nulls last;

first_name | last_name | location | gpa
------------+-----------+----------+-----
Jet | Black | Ganymede | 3
Spike | Spiegel | Mars | 2
Faye | Valentine | Earth | 2.5
Edward | Wong | Earth | 4
Ein | | Mars | 3.9

(5 rows)

