Query Fundamentals 1
CSC 256, SQL Programming

Example Relation

m We will use the following "student" table as a running
example

first_name last_name location gpa

Spike Spiegel Mars 2.0
Jet Black Ganymede 3.0
Faye Valentine Earth 2.5

Edward Wong Earth 4.0

SELECT FROM

m SELECT retrieves information from a database; this is a
read-only operation

m Basic Syntax:

SELECT column_namel, column_name2,
FROM table_name;

m Syntax to select all columns from a table:

SELECT * FROM table_name;

SELECT Example

select * from student;

first_name | last_name | location |
———————————— T B
Spike | Spiegel | Mars |
Jet | Black | Ganymede |
Faye | Valentine | Earth |
Edward | Wong | Earth |
(4 rows)

m Note: SQL keywords are case insensitive

SELECT Example

select first_name, last_name
from student;

first_name | last_name
____________ e
Spike | Spiegel
Jet | Black
Faye | Valentine
Edward | Wong

(4 rows)

Aliasing (AS)

The AS keyword can rename a column in the result.
Basic syntax

SELECT column_name AS new_name
FROM table_name;

Note: if the new column name has one or more spaces, the it
must be surrounded by double quotes.

In general, double quotes for column/table names, single
quotes for strings

Derived Columns
m A derived (or computed column) column that is the result of
an expression
m Example

select first_name, last_name, gpa + 10
from student;

first_name | last_name | 7column?

____________ o e
Spike | Spiegel | 12

Jet | Black | 13

Faye | Valentine | 12.5

Edward | Wong | 14

(4 rows)

m By default a derived column is given a arbitrary name; a
specific name can be given with the AS keyword

Derived Columns (continued)

m We can use arbitrary expressions and use parentheses to
enforce order of operations

m Example:

select first_name, last_name, gpa + (10 * 0.25) as num
from student;

first_name | last_name | num
____________ e
Spike | Spiegel | 4.5
Jet | Black | 5.5
Faye | Valentine | 5
Edward | Wong | 6.5

(4 rows)

Expressions

m We don't necessarily need columns; we can use SQL as a
calculator

select
3 * 3 as "multiplication",
6 + 6 as "addition",
1 - 1 as "subtraction",
10 / 2 as "division";

multiplication | addition | subtraction | division

Text Concatenation

m The || operator is used to concatenate text
m Example:

select first_name || ' ' || last_name as "Full Name"
from student;

Spike Spiegel
Jet Black

Faye Valentine
Edward Wong

(4 rows)

Filtering and WHERE

m The WHERE clause filters rows that satisfy some criteria
m Basic Syntax:

SELECT column_namel, column_name?2,
FROM table_name
WHERE column_namel operator value;

WHERE Example

select first_name, last_name, location
from student
where location = 'Mars’';

first_name | last_name | location

____________ +___________+__________
Spike | Spiegel | Mars

m Note: text comparisons are case sensitive

Basic WHERE Clause Operators

=: equal

<>: not equal

>: greater than

<: less than

>=: greater than or equal to

<=: less than or equal to

AND: logical and

OR: logical or

BETWEEN: between an inclusive range
LIKE: search for a pattern

IN: specify multiple possible values for a column

AND, OR, and NOT

The AND operator retrieves a record if both the first condition
and the second condition are true

The OR operator retrieves a record if either the first condition
or the second condition are true

The NOT operator retrieves a record if the condition is false

Note that precedence can be confusing; we should use
parentheses to be clear

AND Example

select *
from student
where (gpa > 2.0) and (gpa < 4.0);

first_name | last_name | location | gpa
———————————— e s At
Jet | Black | Ganymede | 3
Faye | Valentine | Earth | 2.5

(2 rows)

OR Example

select *
from student
where (gpa = 2.0) or (gpa = 4.0);

first_name | last_name | location | gpa
———————————— e s At
Spike | Spiegel | Mars | 2
Edward | Wong | Earth | 4

(2 rows)

NOT Example

select *

from student

where not (location = 'Earth');
first_name | last_name | location | gpa
———————————— e s At
Spike | Spiegel | Mars | 2
Jet | Black | Ganymede | 3

(2 rows)

NULL handling

m NULL represents the absence of data

m This could mean:

m There is no value, or
m There is a value but it is unknown

m We cannot check for a NULL value with the equality (=)
operator, we must use IS NULL (or IS NOT NULL).

NULL Example

m First, let us add a record with a NULL value

first_name last_name location gpa

Spike Spiegel Mars 2.0
Jet Black Ganymede 3.0
Faye Valentine Earth 25
Edward Wong Earth 4.0

Ein NULL Mars 3.9

NULL Example

select *
from student
where last_name is null;

NULL and Logical Operators

With respect to logical operators and NULL, we get a three-valued
logic

p q p AND q p OR q NOT p
true true true true false
true false false true false
true unknown unknown true false
false true false true true
false false false false true
false unknown false unknown true
unknown true unknown true unknown
unknown false false unknown unknown

unknown unknown unknown unknown unknown

BETWEEN

m The BETWEEN operator selects values within a range
m Syntax:

SELECT column_name, column_name,
FROM table_name
WHERE column_name BETWEEN valuel AND value?2;

The LIKE Operator

m The LIKE operator is used to search a column for a pattern
m Syntax:

SELECT column_namel,
FROM table_name
WHERE column_namel LIKE pattern;

m Wilcard characters:

m % matches zero or more characters
m _ match 1 character

The IN Operator

m The IN operator specifies multiple values in a WHERE clause
m Syntax:

SELECT column_namel,
FROM table_name
WHERE column_name IN (valuel, value2, ...);

