
Joins
CSC 256, SQL Programming

Joins

The basis of the join operation is to link a foreign key in one
table to the primary key in another table, that is, the operands
to the join operation are tables.

Types of joins:
Cross join
Inner join
Outer join

Cross Joins

The cross join is the Cartesian product of the rows in both
tables.

Basic syntax:

select *
from table1

cross join table2;

The resulting number of rows is equal to the number of rows in
the first table multiplied by the number of rows in the second
table

Conceptually, the cross join is the base for the other joins

Cartesian Product

Mathematical Definition: The Cartesian Product of two sets A
and B, denoted by A× B is the set of ordered pairs (a, b)
where a ∈ A and b ∈ B}

Example: Let A = {a, b} and B = {1, 2, 3}, then
A× B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}}

Cross Join Example

T1

a1 a2

1 A
2 B

T2

b1 b2

5 C
7 D

Cross Join Example (continued)

T1 × T2

a1 a2 b1 b2

1 A 5 C
1 A 7 D
2 B 5 C
2 B 7 D

4 rows = 2 rows × 2 rows

Cross Join Examples (Chinook)

select "EmployeeId", "CustomerId"
from "Employee"

cross join "Customer";

EmployeeId | CustomerId
------------+------------

1 | 1
2 | 1
3 | 1

...
(472 rows)

Cross Join Examples (Chinook)

select "FirstName"
from "Employee"

cross join "Customer";

ERROR: column reference "FirstName" is ambiguous
LINE 1: select "FirstName" from "Employee" cross join "Customer";

Qualifying Column Names

When we start using joins, we often need to qualify column
names to avoid ambiguity when both tables have a column
with the same name

The syntax to qualify a column name is table.column

Example:

select "Employee"."FirstName"
from "Employee"

cross join "Customer";

When using joins it is considered a good practice to always
qualify column names

Qualifying Column Names (continued)

When qualifying column names, we can alias the table names
in the FROM clause with the AS keyword

Example:

select e."FirstName"
from "Employee" as e

cross join "Customer";

When selecting columns we can use the * per qualified table
name

Example:

select e.*
from "Employee" as e

cross join "Customer";

Old Cross Join Syntax

There is an older syntax for cross joins where a comma is used
as the cross join operator in the FROM clause:

select t1.*, t2.*
from t1, t2;

We should use the modern cross join syntax to avoid potential
confusion.

Inner Joins
Basic syntax:

select *
from table1

inner join table 2
on <condition>

Conceptually, an inner join is a cross join followed by a step to
remove rows that do not satisfy some property

The inner join is useful because we typically have inter-table
relationships with primary and foreign keys

Example

select "TrackId", "Name", "Title"
from "Track"

inner join "Album"
on "Track"."AlbumId" = "Album"."AlbumId";

Inner Joins (continued)

Sometimes we might need data from multiple tables so we
might need more than one join operation

Example

select
"TrackId",
t."Name" as "Track",
al."Title" as "Album",
ar."Name" as "Artist"

from "Track" as t
inner join "Album" as al

on t."AlbumId" = al."AlbumId"
inner join "Artist" as ar

on al."ArtistId" = ar."ArtistId";

Inner Joins (continued)

The keyword join implicitly means inner join

Equality joins can be expressed with the using syntax if the
column has the same name in both tables

Example

select
"TrackId",
t."Name" as "Track",
al."Title" as "Album",
ar."Name" as "Artist"

from "Track" as t
join "Album" as al using ("AlbumId")
join "Artist" as ar using ("ArtistId");

Old Inner Join Syntax

There is an older inner join syntax that follows the older cross
join syntax where the inner join condition is specified as a
WHERE clause

select *
from t1, t2
where t1.a_id = t2.a_id;

We should use the modern cross join syntax to avoid potential
confusion.

Outer Joins

Joins (conceptually)
cross join: Cartesian product
inner join: cross join plus filtering step
outer join: cross join plus filtering step plus add in missing rows

Outer join types:
left
right
full

Outer Join Syntax

Basic outer join syntax:

select *
from t1

(left|right|full) [outer] join t2
on condition

Note the outer keyword is implicit, so you can leave it out

Outer Join Example

Some artists do not have any albums

select
"Artist"."ArtistId",
"AlbumId"

from "Artist"
left outer join "Album"

on "Artist"."ArtistId" = "Album"."ArtistId"
where "AlbumId" is null;

Outer Join Example (continued)

Conceptual steps of the previous example
Cartesian product of both tables
filter out rows where the “ArtistId” values are not equal
add in missing rows from the “Artist” table

the rows that are added in have NULL values for the missing
columns
the rows are added from the left table because we used a left
outer join

Note the right outer join would add in missing rows from the
right table and the full outer join would add in missing rows
from both tables

Another Outer Join Example

How many composers are on each album?

First attempt:

select
al."AlbumId",
al."Title",
count(*) as "Number of Artists"

from "Artist" as ar
left outer join "Album" as al

on ar."ArtistId" = al."ArtistId"
group by al."AlbumId", al."Title"
order by al."AlbumId";

Another Outer Join Example

How many composers are on each album?

We need to consider that aggregate functions disregard nulls
and the left outer join adds in null values:

select
a."AlbumId",
a."Title",
count("Composer") as "Number of Composers"

from "Track" as t
left outer join "Album" as a

on t."AlbumId" = a."AlbumId"
group by a."AlbumId", a."Title"
order by a."AlbumId";

Additional Join Topics

Self joins: join a table with itself

Non equi joins: using a non-equality condition

e.g. all different ways to pair up customers

self join

Self Join Example

Get all the different ways to pair up customers

select
c1."FirstName" || ' ' || c1."LastName" as "customer_1"
c2."FirstName" || ' ' || c2."LastName" as "customer_2"

from "Customer" as c1
cross join "Customer" as c2;

almost there (customers paired with themselves for example)

Self Join Example (continued)

We do not want customers paired with themselves (non equi
join)

select
c1."FirstName" || ' ' || c1."LastName" as "customer_1"
c2."FirstName" || ' ' || c2."LastName" as "customer_2"

from "Customer" as c1
inner join "Customer" as c2

on c1."CustomerId" <> c2."CustomerId";

ˆ can use other comparisons in the “on”

this is a non-equi-join

check for duplicates (in the commutative sense)

Self Join Example (continued)

We also do not want duplicates in the commutative sense

select
c1."FirstName" || ' ' || c1."LastName" as "customer_1"
c2."FirstName" || ' ' || c2."LastName" as "customer_2"

from "Customer" as c1
inner join "Customer" as c2

on c1."CustomerId" < c2."CustomerId";

