Data types

CSC 256, SQL Programming

Data Types

- A type is a set of values
- Types give us additional constraints
- Each type supports different operations

Main ANSI SQL Data Types

- Character data types
 - CHARACTER
 - CHARACTER VARYING (or VARCHAR)
 - CHARACTER LARGE OBJECT
 - NCHAR
 - NCHAR VARYING
- Binary data types (for example, storing images)
 - BINARY
 - BINARY VARYING
 - BINARY LARGE OBJECT

Main ANSI SQL Data Types (continued)

- Number data types
 - NUMERIC
 - DECIMAL
 - SMALLINT
 - BIGINT
 - FLOAT
 - RFAI
 - DOUBLE PRECISION
- Boolean data type (recall three-valued logic)
 - BOOLEAN
- Date/time data types
 - DATE
 - TIME
 - TIMESTAMP
 - INTERVAL

Note About Data Types

- Data types are the most common part of the ANSI standard that vendors do not adhere to.
- The general data types listed above are typically available
- These lecture notes will be about common Postgres data types (character, number, and date)
- Note: when designing a database we have the opportunity to choose types, for example, choosing between int types can save a lot of space if millions of rows

Character Data Types

- Types (n specifies max limit)
 - char(n): pads unused space
 - varchar(n): stores the exact characters without padding
 - text: near unlimited text
- Note: in PostgeSQL, varchar is implemented as text with a constraint

Locale

- Locale refers to preferences regarding alphabets, sorting, number formatting, etc.
- Different vendors handle locale differently
- PostgeSQL finds the locale from the system when installing

String Concatenation

■ There are two main ways to do string concatenation: the || operator and the concat function.

■ Example:

```
select 'a' || 'b';
select concat('a', 'b');
```

■ Note: concatenating with a null value makes the whole result null

```
select 'a' || 'b' || null;
select concat('a', 'b', null);
```

The COALESCE Function

- The COALESCE function finds the first non-null value in a set of values.
- Example

```
select 'a' || 'b' || coalesce(null, 'unkown');
```

■ This is sometimes useful to provide default values for null values depending on the operation.

Implicit Type Coercion

- The string concatenation operator will attempt to convert non-string values to string values.
- Example

```
select 'a' || 1 || 4.2 as string;
string
-----
a14.2
(1 row)
```

- This is called implicit type coercion.
- This happens with some other operations as well.

Integer Data Types

■ Integers are numbers without a fractional component

smallint: 2bytesinteger: 4bytesbigint: 8bytes

■ Sometimes the integer types are aliased as int2, int4, int8

■ During database design, you typically want to choose an integer type that is small but also can hold enough values.

Integer Operations

- Integers support the standard arithmetic operators.
 - addition (+)
 - subtraction (-)
 - multiplication (*)
 - integer division (/)
 - modulo (%)
- Integer division example:

Checking Types (PostgreSQL)

■ PostgreSQL has function pg_typeof to get the data type of any value.

Type Coercion

■ Recall that sometimes one type will be converted into another type depending on the operation.

■ Example:

■ Here the integer value 2 was coerced into a numeric type (type promotion)

Explicit Type Coercion

■ PostgreSQL has three ways to explicitly coerce a value

```
select
  int '33',
  '33'::int,
  cast('33' as int)
```

■ The third form is the ANSI SQL standard form

Fractional Number Types

- Exact fractional types fixed point
 - numeric(precision, scale)
 - scale is the number of digits after the decimal point
 - precision is the total number of digits
 - Example: numeric(5, 2) has the values 000.00 to 999.99
- Approximate fractional types floating point
 - real and double precision
 - floating point types can save space but, there are various issues, for example round-off errors.

Exact versus Approximate Example

Date and Time Types

- Main data types
 - date
 - time
 - timestamp: combination of date and time (and timezone: timestamp with zone)
 - interval
- In general, working with dates and times are tricky (especially with respect to time zones)

Date Type

A date literal should use the ISO standard form: 'YYYY-MM-DD' select date '2022-01-01';

■ The date type does validation

```
select date '2022-02-30';
ERROR: date/time field value out of range: "2022-02-30'
LINE 1: select date '2022-02-30';
```

Date Arithmetic

- Date types support arithmetic operators
- Example: subtracting dates returns an integer representing the number of days

```
select date '2022-01-01' - date '2021-01-01';
?column?
-----
365
(1 row)
```

Note the we need to be careful of the data types of the operands on each side of the operation as well as the data type returned; check the documentation for a full list of supported operations.

Time Type

■ A time literal should use the ISO standard form: 'HH:MM:SS' select time '12:30:22';

■ The time type does validation

```
select time '12:30:99';
ERROR: date/time field value out of range: "12:30:99"
LINE 1: select time '12:30:99';
```

Timestamp Type

- The date and time types are not commonly used in practice; instead the timestamp is typically used
- The timestamp type combine the date and time into a single value
- Example:

```
select
  timestamp '2022-01-01 12:00 America/New_York';
  timestamp '2022-01-01 12:00 +5';
  timestamp '2022-01-01 12:00 EST';
```

■ Note: the output is shown relative to local time zone.

Interval Type

- The interval type represents a span of time or a duration.
- Example: differences in timestamps result in an interval:

Interval Type (continued)

Example: add an interval to a timestamp

(1 row)

■ interval values can be specified with "natural language"; check the documentation for interval phrases.

Additional PostgreSQL Data Types

- PostgeSQL supports various other data types:
 - monetary
 - enumerated
 - geometric
 - network address
 - bit string
 - text search
 - UUID
 - XML
 - JSON
 - arrays
 - composite
 - range
- Check the documentation for details.