
Aggregate Functions
CSC 256, SQL Programming



Aggregate Functions

Aggregate functions operation on a set of values and return a
single value.

Aggregate functions ignore NULL values.

Aggregate functions return NULL when no rows are selected.

Common aggregate functions
COUNT
SUM
MIN
MAX
AVG



COUNT

The COUNT function returns the number of items in a set.

Example, count the number of rows in a table:

select count(*)
from "Genre";

Note: * is wildcard to count number of rows

Example, count with an expression:

select count("Company")
from "Customer";



Aggregates and DISTINCT

The DISTINCT keyword can be used in an aggregate function.

Example:

select count(distinct "GenreId")
from "Track";



SUM

The SUM function returns the sum of all the values in a set.

Example:

select sum("UnitPrice")
from "Track";



MIN, MAX, and AVG

The remaining common aggregate functions work similarly:
The MIN function returns the minimum value in a set.
The MIN function returns the maximum value in a set.
The MIN function returns the average value in a set.

Example:

select
min("UnitPrice"),
max("UnitPrice"),
avg("UnitPrice")

from "Track";

There are many more aggregate functions; refer to the
documentation.



GROUP BY
The GROUP BY clause groups rows based on values of one or
more columns; it returns one row for each group.

Basic syntax:

SELECT
column1,
column2,
aggregate_function(column3)

FROM
table_name

GROUP BY
column1,
column2

Note: with group by the aggregates work on groups instead of
rows; each group gets a unique row in the output



GROUP BY Examples

Example, average length of track in minutes per Composer:

select "Composer", avg("Milliseconds" / 60000.0)
from "Track"
group by "Composer";

Common mistake: not using an aggregate function per group:

select "Composer", "UnitPrice"
from film
group by "Composer"

We did not specify how to convert a set of prices to a single
value.



GROUP BY Example

Example, grouping by two columns:

select
"Composer",
"AlbumId",
avg("Milliseconds" / 60000.0)

from "Track"
group by "Composer", "AlbumId"
order by "Composer", "AlbumId";



HAVING
The HAVING clause filters on groups before the aggregate
function is applied

Basic syntax:

SELECT
column1,
column2,
aggregate_function(column3)

FROM
table_name

GROUP BY
column1,
column2

HAVING
condition;



HAVING Example

Example, average track length greater than 8 minutes grouped
by composer:

select
"Composer",
avg("Milliseconds" / 60000.0) as length

from "Track"
group by "Composer"
having avg("Milliseconds" / 60000.0) > 8
order by length desc;



CASE Expressions and Aggregates
CASE expressions allow us to define our own groups based on
conditional logic

Example:

select
case

when "Milliseconds" < 60000 then 'short'
when "Milliseconds" between 60000 and 300000 then 'medium'
else 'long'

end,
count(*)

from "Track"
group by

case
when "Milliseconds" < 60000 then 'short'
when "Milliseconds" between 60000 and 300000 then 'medium'
else 'long'

end;



GROUP BY Shorthand
We can refer to the columns of the result set by position. That
is, 1 corresponds to the first field (regardless of name), 2 the
second and so on. This works for GROUP BY and ORDER BY.

This is generally ill-advised for various reasons.

Example:

select
case

when "Milliseconds" < 60000 then 'short'
when "Milliseconds" between 60000 and 300000 then 'medium'
else 'long'

end,
count(*)

from "Track"
group by 1;



CASE Expressions and Counting

We can use COUNT and CASE to count arbitrary things

Example:

select
count(

case when "GenreId" in (1, 8) then 1 else null end
) as "Rock & Reggae",
count(

case when "GenreId" not in (1, 8) then 1 else null end
) as "Everything Else",
count(*) as total

from "Track";



CASE Expressions and Counting
(continued)

A common alternative is to use SUM and CASE to count
arbitrary things

Example:

select
sum(

case when "GenreId" in (1, 8) then 1 else 0 end
) as "Rock & Reggae",
sum(

case when "GenreId" not in (1, 8) then 1 else 0 end
) as "Everything Else",
count(*) as total

from "Track";


