Aggregate Functions
CSC 256, SQL Programming



Aggregate Functions

m Aggregate functions operation on a set of values and return a
single value.

m Aggregate functions ignore NULL values.
m Aggregate functions return NULL when no rows are selected.

m Common aggregate functions

COUNT
SUM
MIN
MAX
AVG



COUNT

The COUNT function returns the number of items in a set.
Example, count the number of rows in a table:

select count (*)
from "Genre";

m Note: * is wildcard to count number of rows
Example, count with an expression:

select count("Company")
from "Customer";



Aggregates and DISTINCT

m The DISTINCT keyword can be used in an aggregate function.
m Example:

select count(distinct "GenreId")
from "Track";



SUM

m The SUM function returns the sum of all the values in a set.
m Example:

select sum("UnitPrice")
from "Track";



MIN, MAX, and AVG

m The remaining common aggregate functions work similarly:

m The MIN function returns the minimum value in a set.
m The MIN function returns the maximum value in a set.
m The MIN function returns the average value in a set.

m Example:

select
min("UnitPrice"),
max ("UnitPrice"),
avg("UnitPrice")
from "Track";

m There are many more aggregate functions; refer to the
documentation.



GROUP BY

The GROUP BY clause groups rows based on values of one or
more columns; it returns one row for each group.

Basic syntax:

SELECT
columni,
column?2,
aggregate_function(column3)
FROM
table_name
GROUP BY
columni,
column?

Note: with group by the aggregates work on groups instead of
rows; each group gets a unique row in the output



GROUP BY Examples

m Example, average length of track in minutes per Composer:

select "Composer", avg("Milliseconds" / 60000.0)
from "Track"
group by "Composer";

m Common mistake: not using an aggregate function per group:

select "Composer", "UnitPrice"
from film
group by "Composer"

m We did not specify how to convert a set of prices to a single
value.



GROUP BY Example

Example, grouping by two columns:

select

"Composer",

"AlbumId",

avg("Milliseconds" / 60000.0)
from "Track"
group by "Composer", "AlbumId"
order by "Composer", "AlbumId";



HAVING

m The HAVING clause filters on groups before the aggregate
function is applied

m Basic syntax:

SELECT
columni,
column2,
aggregate_function(column3)

FROM
table_name

GROUP BY
columni,
column?2

HAVING
condition;



HAVING Example

m Example, average track length greater than 8 minutes grouped
by composer:

select

"Composer",

avg("Milliseconds" / 60000.0) as length
from "Track"
group by "Composer"
having avg("Milliseconds" / 60000.0) > 8
order by length desc;



CASE Expressions and Aggregates

m CASE expressions allow us to define our own groups based on

conditional logic
m Example:

select
case
when "Milliseconds"
when "Milliseconds"
else 'long'
end,
count (*)
from "Track"
group by
case
when "Milliseconds"
when "Milliseconds"
else 'long'

< 60000 then 'short'
between 60000 and 300000 then

< 60000 then 'short'
between 60000 and 300000 then



GROUP BY Shorthand

m We can refer to the columns of the result set by position. That
is, 1 corresponds to the first field (regardless of name), 2 the
second and so on. This works for GROUP BY and ORDER BY.

m This is generally ill-advised for various reasons.
m Example:

select
case
when "Milliseconds" < 60000 then 'short'
when "Milliseconds" between 60000 and 300000 then
else 'long'
end,
count (*)
from "Track"
group by 1;



CASE Expressions and Counting

m We can use COUNT and CASE to count arbitrary things
m Example:

select
count (
case when "GenreId" in (1, 8) then 1 else null end
) as "Rock & Reggae",
count (
case when "GenreId" not in (1, 8) then 1 else null
) as "Everything Else",
count (*) as total
from "Track";



CASE Expressions and Counting
(continued)

m A common alternative is to use SUM and CASE to count
arbitrary things

m Example:

select
sum (
case when "GenreId" in (1, 8) then 1 else 0 end
) as "Rock & Reggae",
sum (
case when "GenreId" not in (1, 8) then 1 else 0 enc
) as "Everything Else",
count (*) as total
from "Track";



