
PHP Data Objects
CSC 242, Web Programming

PHP Data Objects (PDO)

PHP Data Objects (PDO) is a PHP extension that defines an
interface for accessing databases.

Benefits of PDO:
Security (prepared statements)

Reusability (access different DBMS)

Connecting to a DBMS

A connection to a database is created by constructing an
instance of a PDO object.

The PDO object has functions to access the database.

Syntax to create a connection:
$db = new PDO($dsn, $user, $password)

$dsn the data source name

$user optional user name

$password optional password

Example: Connect to a SQLite Database

// connect to the SQLite database
// named example.db
$dsn = "sqlite:example.db";
$db = new PDO($dsn);

// do some stuff with the database

// close the database connection
$db = null;

The PDO::query Function

The PDO::query function can be used to query the database.

The PDO::query function is used for SQL SELECT
statements.

The PDO::query function returns a PDOStatement object.

The PDOStatement object has functions to access the result of
executing the query.

PDO::query Example

// connect to example.db
$db = new PDO("sqlite:example.db");

// make a query
$sql = "SELECT * FROM table_name";

// execute the query with PDO::query
$stmt = $db->query($sql);

Retrieve Data from a PDOStatement

Using a foreach:

foreach($stmt as $row) {
// do something with the row

}

Using PDOStatement::fetch

while ($row = $stmt->fetch()) {
// do something with the row

}

Using PDOStatement::fetchAll

$all_rows = $stmt->fetchall();

Options for PDOStatement::fetch

The form of the return value from PDOStatement::fetch and
PDOStatement::fetchall can be changed by a parameter:

PDO::FETCH_NUM return a numeric array

PDO::FETCH_ASSOC return an associative array with the
column names as keys.

PDO::FETCH_BOTH returns both of the above

Example

// return all records as associative arrays
$records = $stmt->fetchall(PDO::FETCH_ASSOC);

The PDO::exec Function

The PDO::exec function exectues an SQL statement.

The PDO::exec function returns the number of rows affected
by the SQL statment

The PDO::exec function should be used for the SQL
statements: INSERT, UPDATE, and DELETE.

PDO Prepared Statements

Prepared statments provide protection against SQL injections.

A prepared statement is the only proper way to run a query.

Prepared statements use placeholders for variables.

PDO prepared statments make use of the functions
PDO::prepare and PDOStatement::execute

The PDO::prepare Function

The PDO::prepare function takes a SQL statement string
with placeholders where the real values will be substituted
when the statment is executed.

There are two kinds of placeholders:
Positional: use the question mark (?) for placeholders

Named: use named (:name) placeholders

The PDO::prepare function returns a PDOStatement object.

The PDOStatement::execute Function

The PDOStatement::execute function takes the result of the
PDO::prepare function substitutes the placeholders with real
values and executes the statement.

The argument depends on the kind of placeholders:
Positional: the argument is a numeric array with the elements in
positional order.

Named: the argument is an associative array with the
placeholder names as keys.

PDO Prepared Statement Examples
Positional placeholders

$sql =
"SELECT * FROM users
WHERE name = ? and email = ?";

$stmt = $db->prepare($sql);
$stmt->execute(['Bob', 'bob@axample.com']);

Named placeholders

$sql =
"SELECT * FROM users
WHERE name = :name and email = :email";

$stmt = $db->prepare($sql);
$stmt->execute(

array('name' => 'Bob',
'email' => bob@axample.com')

);

