
JavaScript Review
CSC 242, Web Programming

JavaScript

JavaScript is a client-side scripting language – the code is
executed by the web browser

JavaScript is an embedded language – it relies on its host
environment for IO

JavaScript IO options:
console.log: writes output to the browser console

alert: writes output to pop-up window

document.write: writes output to the HTML document

The script Element

JavaScript source code is placed in an HTML document within
the script element

An external JavaScript source file can be imported with the
src attribute:

<script type="text/javascript"
src="url/file.js">

</script>

The <noscript> tag defines alternate content when
JavaScript is disabled or not available

Basic Syntax

A statement does not need to be terminated by a semicolon
when it is the only statement on a line

Line comments are denoted by //

Block comments are denoted by /* ... */

Simple Example
<!DOCTYPE html>
<html>
<head>

<title>Hello World</title>
</head>
<body>
<script>
document.write("Hello World");

</script>
<noscript>
Your browser does not support or has
disabled JavaScript

</noscript>
<body>
</html>

JavaScript Variable Naming Rules

A variable may include only the characters a-z,A-Z,0-9, the
$ symbol, and the underscore (_)

No other characters are allowed in a variable name

The first character in a variable name must be a letter, $, or _

Variable names are case sensitive

JavaScript Types
JavaScript data types:

Object

Function

Number: (Integer and Float)

String

Boolean

Null

Undefined

JavaScript is dynamically typed – types of variables do not
need to be declared

JavaScript is weakly typed – some type conversions are
automatic

The String Type

The string type represents a sequence of characters

The string type must be enclosed by single or double quotes

The escape character is the backslash (\)

The plus (+) operator performs string concatenation

Multi-line strings

A string can be defined over multiple lines by escaping the
newline character

name = "first_name \
last name";

Arithmetic Operators

Operator Description Example

+ Addition a + 3
- Subtraction a - 3
* Multiplication a * 3
/ Division a / 3
% Modulus a % 3
++ Increment ++a
– Decrement –a

Assignment Operators

Operator Example Equivalent to

= a = 3 a = 3
+= a += 3 a = a + 3
+= a += 3 a = a + ’text’
-= a -= 3 a = a - 3
*= a *= 3 a = a * 3
/= a /= 3 a = a / 3
%= a %= 3 a = a % 3

JavaScript Implicit Type Coercion

The type of a variable is implicitly converted based on the
context in which the variable is used

<script>
x = "10"; // string
y = 3.14; // number
z = x * y; // number

</script>

The typeof function returns a string representation of a
variable’s type

Explicit Type Casting Functions

parseInt() cast to Int, Integer

Boolean() cast to boolean

parseFloat() cast to Float, Double, Real

String() cast to string

split() cast to array

Equality & Comparison Operators

Operator Description Example

== equal to a == 3
=== identical to a === 3
!= not equal to a != 3
!== not identical to a !== 3
> greater than a > 3
< less than a < 3
>= greater than or equal to a >= 3
<= less than or equal to a <= 3

Logical Operators

Operator Description Example

&& and a == 3 && b == 0
|| or a == 3 || b == 0
! not !(a == b)

Selection
if, else, and else if

if (a > 100) {document.write(">")}
else if (a < 100) {document.write("<")}
else {document.write("=")}

switch

switch (page) {
case ("Home"):

document.write("Home");
break;

case ("About"):
document.write("About");
break;

default:
break;

Iteration

while loops

do while loops

for loops

Example:

for (var count = 1; count <= 10; ++count) {
document.write("Count:" + count + "
");

}

break and continue

Defining a JavaScript Function
function function_name([parameter [, ...]])
{

// Statements

[return]
}

A definition starts with the word function

Next is the name of the function, which must start with a
letter or underscore, followed by any number of letters,
numbers, or underscores

Function names are case sensitive

The parentheses are required

Zero or more parameters, separated by commas

A value can be returned from a function with the return
keyword

Variable Scope
Local variables are accessible in context in which they are
defined

Global variables are accessible from all parts of the code

Function parameters have local scope

The var keyword defines a local variable with a scope of the
current function

Example:

function test() {
a = 123 // global
var b = 456 // local
if (a == 123) {

var c = 789 // local
}

}

JavaScript Objects

A JavaScript object groups data with functions that
manipulate it

The data members of an object are referred to as properties

The functions of an object are referred to as methods

JavaScript Object Literal Syntax

object_name = {
property1: value1,
property2: value2,
method1: function (parameters) {

function_body
}

};

Accessing Object Properties and Methods

Syntax to access properties

object_name.property_name;
// or
object_name["property_name"];

Syntax to access methods

object_name.method_name(parameters);

JavaScript Numeric Arrays

JavaScript numeric arrays are special objects with numeric
indices

Array creation syntax:

array_name = [item1, item2, ...];

Array access syntax:

array_name[index];

The length property of an array stores the number of
elements in an array:

Some JavaScript Array Methods

toString: converts an array to a string

join: converts an array to a string with specified separator

pop: removes the last element of the array

push: adds a new element to the end of an array

sort: sorts an array in place

JavaScript Associative Arrays

JavaScript associative arrays are objects

The use of named indices converts an array to an object

The array methods and properties are incompatible with the
object type

