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One of the most difficult concepts for statistics students is the stan-
dard error of the mean. To improve understanding of this concept,
1 group of students used a hands-on procedure to sample from
small populations representing either a true or false null hypothesis.
The distribution of 120 sample means (n = 3) from each popula-
tion had standard errors that closely approximated those of the the-
oretical sampling distributions, thereby illustrating how the Central
Limit Theorem provides a standard error to use for hypothesis test-
ing. Performance on an exam about the standard error of the mean
was significantly better for the students who had completed this ex-
ercise than for students in a control group.

Psychology students generally consider inferential statis-
tics to be one of the most challenging subjects in their curric-
ulum. The logic of statistical inference depends on
understanding the standard error and the related concepts of
hypothetical sampling distributions under either a true or a
false null hypothesis. Several studies have described hands-
on exercises designed to facilitate learning about sampling
distributions (e.g., Dyck & Gee, 1998; Gourgey, 2000; John-
son, 1986; Rossman & Chance, 2000). However, these stud-
ies did not address whether understanding the standard
error, in particular, can be improved specifically by hands-on
experience with constructing both a null-true and a null-false
sampling distribution.

The Dyck and Gee (1998) and Johnson (1986) articles pre-
sented exercises similar to the one in this study, but with some
important differences. In both studies, the participants them-
selves did not randomly draw members from a population to
form samples. In Dyck and Gee’s study, each participant deter-
mined the value for one member of a population by counting
the number of blue M&Ms® in a package, and the instructor
selected members from that population to form the samples. In
Johnson’s study, the instructor presented each student with
three or four equal-sized samples that he told them had been
randomlyselected fromapopulation. Inaddition, inbothstud-
ies participants did not draw samples from a population that
could have had either a mean specified by a null hypothesis
that was true or some other mean. In Johnson’s study, the par-
ticipants knew the population mean in advance. In Dyck and

Gee’s study, the participants knew that all of the samples came
from a population with the same mean, which they calculated
after the sampling process.

Theseproceduresareappropriate forexercises that focuson
improving understanding of the shape of the sampling distri-
bution and the relation between its mean and the population
mean. However, a critical idea for understanding the standard
error is the distinction between the variability of members of a
sample versus the variability of the sample means. An exercise
in which participants draw the members of the samples them-
selves, as well as place the means of the samples in a distribu-
tion, would provide a way for them to experience the critical
distinction directly. Furthermore, drawing such samples with-
out knowing from which of two populations they came would
enable the participants to notice that it is specifically the vari-
ability of sample means around the mean of all the sample
means that is most directly relevant to deciding whether to ac-
cept or reject the null hypothesis. Therefore, this article pres-
ents a hands-on exercise in which students directly
experiencedthehands-onconstructionofbothanull-trueand
a null-false sampling distribution.

The reason for the usefulness of such an exercise stems
from a common problem that often interferes with students’
understanding of the standard error, namely that they do
not clearly distinguish between distributions of scores and a
distribution of sample means. Most texts on statistics for
the behavioral sciences describe a sampling distribution of
the mean as consisting of the means of all possible samples
of some size taken from the same population (e.g.,
Christensen & Stoup, 1991; Gravetter & Wallnau, 2000;
Grimm, 1993; Hurlburt, 2003; Witte & Witte, 2004).
Therefore, understanding the idea of a sampling distribu-
tion requires that students understand that they must now
consider one of the measures that they formerly calculated
for a set of scores (i.e., the mean) to be one of many single
scores in yet another distribution (i.e., the sampling distri-
bution). At the same time students are trying to learn this
distinction, however, they are already trying to deal with a
great deal of abstractness. For example, the characteristics
of a sampling distribution, such as its central tendency and
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variability, are abstract ideas that students measure using
mathematical tools, which are also abstract. Furthermore,
the measurements apply not to something concrete (e.g.,
measuring the area of a room), but to a distribution of
scores, which is itself an abstract concept. Therefore, stu-
dents may focus on the idea of “every possible sample” as
the most salient concept in the definition of a sampling dis-
tribution. As a result, they may believe that the sampling
distribution is simply an amalgamation of a large number of
samples, which would lead to the misconception that the
standard error measures the variability of individual scores
rather than the variability of sample means.

Misconceptions are often difficult to overcome specifically
because people disregard correct information about the mis-
conception (Eaton, Anderson, & Smith, 1984). However, in-
formation that students generate for themselves is harder to
disregard (Slamecka & Graf, 1978). In fact, Chi, deLeeuw,
Chiu, and LaVancher (1994) found that self-generated infor-
mation was specifically beneficial for the especially difficult
task of overcoming misconceptions.

Overcoming students’ common misconception about the
standard error rests at least in part on distinguishing between
a distribution of scores and a sampling distribution. There-
fore, this exercise maximizes the likelihood that students
would notice that the distribution (of which the standard er-
ror measures the variability) consists of sample means, not in-
dividual scores.

A new aspect of the exercise that was not present in pre-
vious hands-on constructions of sampling distributions
highlighted this distinction. Specifically, students con-
structed sampling distributions by drawing samples both
from a null-hypothesis-true and a null-hypothesis-false pop-
ulation. This innovation focused students’ attention on
how a researcher is able to draw an inference about a popu-
lation mean from a sample mean, even without knowing
from what population the sample actually came, specifically
because the sample mean is one of many sample means in a
hypothetical distribution.

Method

Participants

The participants in the control group were 17 graduate
students in an inferential statistics course in a counseling psy-
chology master’s program at Kutztown University in the fall
of 2001. The participants in the experimental group were 29
graduate students in the same course in the fall of 2002.

Materials

Populations for the exercise. I used two sets of bags to
hold slips of papers showing the values in the populations rep-

resenting the true null hypothesis and the alternative hypoth-
esis. Figure 1 shows the values that I used and how many of
each value were in the bags. Both populations consisted of the
same values but were skewed to produce different means. As a
result, the participants could select samples from populations
with different means, but could not tell from which popula-
tion they were selecting by looking at the values.

Theoretical sampling distributions. As shown in Table
1, the difference between the population means, and therefore
between the theoretical sampling distribution means, was 2.4.
Both sampling distributions consisted of the means of all 125
possible samples (n = 3) using sampling with replacement.

Exam. Both groups took an exam on sampling distribu-
tions. A subset of 15 items that were identical for the two
groups assessed the effectiveness of the exercise. Where there
were multiple items on the same type of question,
intercorrelations assessed reliability.

Evaluation survey. The students evaluated the hands-
on exercise by taking a short survey. It consisted of one gen-
eral open-ended question and five more specific questions.
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Figure 1. The populations.



Procedure

I introduced the exercise with an example to remind the
students that researchers take a random sample to make an
inference about a population mean. I told the students that
there were six bags that had a population in which the null
hypothesis that µ ≤1.8 was true and another six that had
populations in which the alternate hypothesis that µ > 1.8
was true. I instructed the students to randomly select sam-
ples of n = 3 using sampling with replacement.

After the students selected each sample, I told them to
calculate its mean. If the sample mean was 4 or greater, the
students rejected the null hypothesis. Otherwise, they failed
to reject. Although this criterion resulted in the unusual sig-
nificance level of .128, it facilitated calculating the empirical
Type I error rate because every sample mean would fall
clearly above or below the criterion. Finally, they recorded
the value for each member of the sample, the sample mean,
and the decision. Twelve small groups of students selected 10
samples, guessed which population their samples came from
(in all cases the guesses were correct), and then traded bags
with a group that had the opposite population and selected
10 more. I used the groups’ recorded results to form empirical
sampling distributions that the students compared to the the-
oretical sampling distributions in the next class. The entire
exercise took about 30 min.

In the next meeting of this class, I illustrated the Central
Limit Theorem by presenting the empirical sampling distri-
butions formed from the 120 randomly selected samples from
each population. Table 1 shows that the means, standard er-
rors, Type I error rate, and power of the empirical sampling
distributions were very close to those for the theoretical sam-
pling distributions. I taught the concepts of sampling, sam-
pling distributions, the Central Limit Theorem, errors of
inference, and power to both groups in the same way except
that I referred the hands-on group to the sampling distribu-
tions they had constructed, whereas I referred the control
group to an example that I constructed at the blackboard and
to textbook material. Due to the greater length of time re-

quired for explaining and conducting the exercise, the hands-
on group spent two classes accomplishing the same lessons
that the control group accomplished in one class. Both
groups took their exam on sampling distributions at the be-
ginning of the class that immediately followed the class (or
classes) on sampling distributions.

Results

Exam Results

As predicted, the hands-on group achieved higher exam
scores (M = 94.7, SD = 6.5, N = 29) than the control group
(M = 90.2, SD = 10.2, N = 17). The scores of the hands-on
group ranged from 80% to 100% correct, whereas the scores
of the control group ranged from 63.3% to 100% correct. Be-
cause the sample sizes for the exam scores were different and
the variances were unequal, F(16, 28) = 2.47, p = .018, I first
analyzed the data with an unequal variance t test. Although
this test did not reveal a significant difference, t(23.7) =
1.64, p = .058 (one tailed), I also conducted a more sensitive
test and one that used equal sample sizes. This test used the
percentage of students who were correct on each exam item
as the unit of analysis. In this analysis, the test items formed
matched pairs of percentage correct for the two groups. Be-
cause this paired t test took into account the differences in
performance due to the different test items, it showed that
the hands-on group performed significantly better than the
control group, t(14) = 3.14, p = .004 (one tailed). In contrast
to the exam on sampling distributions, even when all the
items were identical, the hands-on group did not perform sig-
nificantly better than the control group on any other exam
(all ps > .05).

The reliability intercorrelations of four items that tested
the application of knowledge of the sampling distribution of
the mean were all significant at the .0001 alpha level. They
ranged from r(46) = .56 to r(46) = .99 with an average of
r(46) = .81.

Survey Results

Seventeen students (81%) reported that they believed
they understood sampling distributions better as a result of
doing the exercise and that the exercise was either enjoyable,
fun, or both. Nine students reported other specific ideas that
they understood better as a result of the exercise, including
six concepts that students also have difficulty understanding
(e.g., the implication of repeated sampling, the normal curve,
the null hypothesis). The students rated the educational
value of the exercise on a 7-point scale, ranging from 1 (not
valuable at all) to 7 (very valuable). The mean rating was 5.29
(SD = 1.52). However, because there was a positive correla-
tion between judgment of educational value and the extent
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Table 1. Characteristics of the Two Types
of Sampling Distributions of the Mean Under

Different Hypotheses

Sampling Distribution

Null Hypothesis Theoretical Empirical

True
M 1.80 1.98
Standard error 1.39 1.35
Type I error rate 0.13 0.18

False
M 4.20 4.13
Standard error 1.39 1.72
Power 0.72 0.70



to which the exercise was fun, r(21) = .75, p < .005, these
opinions may have simply reflected how much the students
enjoyed the exercise.

Discussion

The students who participated in the hands-on sampling
exercise performed better on an exam about the sampling dis-
tribution of the mean than the students who had not partici-
pated, even though they performed no better on other exams.
The hands-on students’ evaluations of the exercise suggested
that they enjoyed it and believed that it was educationally
valuable. However, given that the exercise for the hands-on
group was spread over two classes, the possibility exists that
their superior performance was due either to having more time
to learn the material or to having spaced learning sessions.

The results for individual exam questions provided some
insights, as well as some questions, about the exact nature
of the benefits of the exercise. One of the exam questions
asked what the standard error measures. The correct alter-
native stated, “How much the sample means differ from the
population mean.” Selecting that alternative suggests un-
derstanding that the sampling distribution consists of sam-
ple means and that their grand mean equals the population
mean. However, students often selected the incorrect alter-
native, “The variability of the scores in the sample around
the sample mean.” Selecting that alternative shows confu-
sion between the standard error and the standard deviation
of the sample. In this study, the single greatest improve-
ment was on that question, with only 53% of the control
participants but 69% of the hands-on participants answer-
ing it correctly. This difference suggests that selecting sam-
ples and calculating their means called attention to the fact
that not only is there variability among the scores in the
sample, but also that the means of each of the samples dif-
fer from one another.

The other exam questions on which the hands-on group
outperformed the control group, although not significantly,
were those that asked how population variability and sample
size affect the size of the standard error. Because it is so im-
portant for students to understand these relations, it might be
worth speculating that the failure of this result to reach sig-
nificance may have been due to Type II error, even though it
could also have been due to chance alone. Perhaps the reason
students typically fail to understand how population variabil-
ity and sample size affect the size of the standard error when
they hear about these effects in a lecture is because they lack
the prerequisite knowledge. If so, then perhaps the hands-on
exercise provided at least some of that knowledge, although
not enough so that its effect was detected at a significant level
in the data reported here. Therefore, future research might
profitably examine ways of modifying the exercise to
strengthen its ability to improve this particular aspect of stu-
dents’ understanding.

The overall exam improvement was only 4.5%, but it was
an improvement over the already respectable 90.2% obtained
by the control group. Furthermore, the hands-on group’s
score of 94.7% was the highest score for either group on any
of the exams. Because graduate students generally have more
background knowledge, more motivation, or both, than un-
dergraduate students, undergraduates may benefit even more
from this exercise. Future research should address this issue.
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