
page 1

CSC 343 – Operating Systems, Spring 2024, Assignment 3, due Thursday April 11

This assignment is due by 11:59 PM on Thursday April 11 via make turnitin as explained below.

To get the starting code for the project please follow these steps after logging into acad:

cd # This goes to your login directory.

mkdir ./OpSys # should already be there; no error if it says so

cd ./OpSys
cp ~parson/OpSys/stm3CPUschedSP2024.problem.zip stm3CPUschedSP2024.problem.zip

unzip stm3CPUschedSP2024.problem.zip

cd ./stm3CPUschedSP2024

ssh –l YOURLOGIN mcgonagall # -l is the lower-case letter ell

cd ./ OpSys/stm3CPUschedSP2024

This is a completely redesigned project modeling scheduling of threads onto hardware processing units

(contexts). All of your programming and testing must occur on multiprocessor mcgonagall.

In this assignment I am supplying a round robin preemptive scheduler in file rr.stm per slides 20-23 in

the textbook slides for Chapter 6. You can run make testrr to test it. It passes this test as handed out. Figure

1 is the state diagram for rr.stm. and srtf.stm discussed below. Both are preemptive context schedulers.

Figure 1: Preemptive context scheduling model for round robin and shortest remaining time first

STUDENT PART 1 (5% of assignment): Filling out initial comments in rr.stm.

https://faculty.kutztown.edu/parson/secure/osconcepts9th/ch6.ppt

page 2

Fill in the blanks in the comment block at the top of rr.stm. Read through and understand transitions tagged with

STUDENT comments. You have no changes to make to rr.stm beyond the comment block at the top.

Run make testrr one more time to make sure it still works after editing.

As before, if you get a run-time error that refers to the codeTable like this:

 File "rr.py", line 378, in run

 exec(__codeTable__[15],globals,locals)

Use the supplied decode.py utility to find the line of offending source code:

$./decode.py rr.py 15

__codeTable__[15] = compile('invalid1 = invalid2','nofile','exec'),

STUDENT PART 2 (20% of assignment): First-come first-served.

FCFS is outlined in slides 10 and 11 in the textbook slides for Chapter 6.

2a. Enter this command:

cp rr.stm fcfs.stm

2b. FCFS is non-preemptive. Here are the changes to make to fcfs.stm after the above copy:

2b1: Find every assignment into tickstorun and set it equal to cpuTicksB4IO. Since FCFS is non-preemptive, each

CPU burst runs to completion without interruption. As a testing step you can set tickstodefer to the value 0 (none

deferred) and then run make testfcfs which should pass.

2b2: Since tickstodefer is now 0, remove variable tickstodefer and any reference to it, including its presence in

transition guard conditions. Keep other tests found in those guard conditions, but remove tests on tickstodefer.

There is one transition that tests for tickstodefer > 0 in its guard condition. Since tickstodefer is no longer used in

this non-preemptive FCFS model, remove that transition entirely. Run make testfcfs which should pass. Figure 2

shows the state diagram after this change with the transition removed.

https://faculty.kutztown.edu/parson/secure/osconcepts9th/ch6.ppt

page 3

Figure 2: Non-preemptive context scheduling for FCFS, and SJF, and SJFEST in the next steps

2b3. Update comments at the top to reflect the FCFS algorithm and update comments for every transition that you

changed or that is tagged with a STUDENT comment. Run make testfcfs which should pass.

STUDENT PART 3 (20% of assignment): Shortest job first.

SJF is outlined in slides 12 and 13 in the textbook slides for Chapter 6. It is non-preemptive, matching

Figure 2.

3a. Enter this command:

cp fcfs.stm sjf.stm

3b. SJF is also non-preemptive. Here are the changes to make to sjf.stm after the above copy:

3b1. Find the constructor call for the processor.readyQ in the processor state machine and change the argument to

the Queue constructor from False to True. SJF uses a priority min-queue sorted on cpuTicksB4IO to schedule

threads with minimal CPU burst times at the front of processor.readyQ. It “magically” knows each CPU burst time

before the bursting thread runs, which is useful as a theoretical, optimal queuing algorithm. Save this change, try

running make testsjf, and note the ValueError message line.

3b2. Find the processor.readyQ.enq(thread) call in sjf.stm for enqueuing a ready thread and add a second

argument of cpuTicksB4IO to that enq call. This argument sorts threads with smaller CPU burst times to the front

of the processor.readyQ. Running make testsjf now works.

3b3. Update comments at the top to reflect the SJF algorithm and update comments for every transition that you

changed or that is tagged with a STUDENT comment. Run make testsjf which should pass.

STUDENT PART 4 (20% of assignment): Shortest job first with quantum estimation of CPU burst time.

https://faculty.kutztown.edu/parson/secure/osconcepts9th/ch6.ppt

page 4

SJFEST is outlined in slides 14-16 in the textbook slides for Chapter 6. It is non-preemptive, matching

Figure 2.

4a. Enter this command:

cp sjf.stm sjfEst.stm

4b. SJF is also non-preemptive. Here are the changes to make to sjfEst.stm after the above copy:

4b1. This model starts off with the quantum of 125 in the variable declarations of the thread state machine. It now

uses quantum as the scheduling priority of the processor.readyQ.enq call, replacing cpuTicksB4IO. If you run

make testsjfEst you will see this diff error:

WARNING, MEAN_ready = 419.953125 in sjfEst_crunch.py, = 317.1449275362319 in sjfEst_crunch.ref at 15.0%

tolerance.

Using the quantum estimate should reduce average time in the readyQ down from ~420 ticks to ~317 ticks, but first

there is another set of code changes to make.

4b2. In the variable initializations of the thread state machine, initialize variable alpha to the value 0.5. Alpha is the

weight applied to the most recent CPU burst, and (1.0 - alpha) to the previous estimate, summed to provide the next

estimate for readyQ.enq priority scheduling. Next, in the bottom waiting -> scheduling transition, update the value

in estimate variable quantum BEFORE assigning a new value into cpuTicksB4IO, using this statement:

 quantum = round((alpha * cpuTicksB4IO) + ((1.0 - alpha) * quantum));

Running make testsjfEst should now pass with this corrected error:

OK: MEAN_ready at 15.0% tolerance = 317.14

Rounding the result of the quantum estimation update is necessary for scheduling an integer number of ticks.

4b3. Update comments at the top to reflect the SJFEST algorithm and update comments for every transition that you

changed or that is tagged with a STUDENT comment. Run make testsjfEst which should pass.

Figures 3 and 4 shows estimated CPU burst times using an alpha of 0.5, 0.25, and 0.75 for this model. Note that the

higher the alpha value, the closer the estimate tracks actual CPU burst volatility. Lower alpha values smooth the

estimate curves. We will go over this in class. You do not need to code alpha values other than 0.5.

https://faculty.kutztown.edu/parson/secure/osconcepts9th/ch6.ppt

page 5

Figure 3: Actual and estimated CPU burst times for CPU bound process 0 in sjfEst.stm

Figure 4: Actual and estimated CPU burst times for IO bound process 1 in sjfEst.stm

Compare these curves to slide 15 in the textbook slides for Chapter 6.

https://faculty.kutztown.edu/parson/secure/osconcepts9th/ch6.ppt

page 6

STUDENT PART 5 (20% of assignment): Shortest remaining time first with estimation of CPU burst time.

SRTF is outlined in slides 17-19 in the textbook slides for Chapter 6. It is preemptive, matching Figure 1.

5a. Enter this command:

cp rr.stm srtf.stm

We are starting with RR because, like RR, SRTF is preemptive, matching Figure 1. However, SRTF must add the

priority Queue and quantum estimation of SJFEST with the alpha value of 0.5, and it must use the quantum

estimate not only for readyQ.enq thread scheduling, but also for preemption by assigning into variable tickstodefer;

rr.stm supplies the correct assignments into variables tickstorun and tickstodefer for modeling preemption.

5b. Perform the following steps already taken for SJF and SJFEST into srtf.stm as copied from rr.stm.

5b1. Find the constructor call for the processor.readyQ in the processor state machine and change the argument to

the Queue constructor from False to True as in step 3b1. SRTF uses a min priority readyQ.

5b2. Find the processor.readyQ.enq(thread) call in srtf.stm for enqueuing a ready thread and add a second

argument of quantum to that enq call as in sjfEst.stm.

5b3. In the variable initializations of the thread state machine, initialize variable alpha to the value 0.5 as in step

4b2. Next, in the bottom waiting -> scheduling transition, update the value in estimate variable quantum BEFORE

assigning a new value into cpuTicksB4IO, using this statement:

 quantum = round((alpha * cpuTicksB4IO) + ((1.0 - alpha) * quantum));

After these changes to srtf.stm, make testsrtf should pass.

5b4. Update comments at the top to reflect the SRTF algorithm and update comments for every transition that you

changed or that is tagged with a STUDENT comment. Run make testsrtf which should pass. The full make test

should pass at this point.

STUDENT PART 6 (15% of assignment): Answer the questions in README.txt.

Once you have answered these questions, run make test one last time, then make turnitin by the project deadline.

There is the usual 10% per day late penalty, with a grade of 0% once I go over the solution in the following noon

class.

https://faculty.kutztown.edu/parson/secure/osconcepts9th/ch6.ppt

