

page 1

CSC 343 Operating Systems, Spring 2024

Dr. Dale E. Parson, Assignment 1, Implementing and testing a first state machine simulation.

This assignment is due via make turnitin from the prisonerd2024 directory by 11:59 PM on Thursday

February 22. There is a 10% penalty for each day it is late, and I will not accept solutions after I go over

my solution in class. Points values are documented with STUDENT comments in state machine definition

file prisonerd2024.stm. Each bug I need to fix costs the point value of that transition.

The goal of this assignment is to learn how to write an introductory state machine in this semester’s STM

language. We will be simulated the Iterated Prisoner’s Dilemma, for reference see:

https://en.wikipedia.org/wiki/Prisoner%27s_dilemma

Perform the following steps to get my handout. You will need to test on machine mcgonagall as

previously explained (ssh mcgonagall from acad). I usually edit in one window on acad and test I another

on mcgonagall, so I can run make graphs on acad after my program compiles on mcgonagall to generate

one or more graphical image files for the project state machine(s).

cd $HOME # or start out in your login directory

mkdir OpSys # All of this semester’s work goes under here, skip if you did it before.

cd ./OpSys

 cp ~parson/OpSys/prisonerd2024.problem.zip prisonerd2024.problem.zip

 unzip prisonerd2024.problem.zip

 cd ./prisonerd2024

 make clean test

Testing fails with the handout directory as follows. Look at both the first and last lines of any error

message to decode the error.

ERROR, Invalid transition from state sendMyAction -> awaitOtherAction, awaitOtherAction not in

machine thread.

ERROR, Invalid transition from state awaitOtherAction -> timeInJail, awaitOtherAction not in machine

thread.

ERROR, Invalid transition from state awaitOtherAction -> timeInJail, timeInJail not in machine thread.

It fails because you need to write state declarations, initialize some variables, and write transitions that are

missing from file prisonerd2024.stm. All of your work goes into that file. Look for the STUDENT

comments in the file.

We will go over the Iterated Prisoner’s Dilemma in class. You can go over the above linked page for

more detail. Essentially, in each game of the Iterated Prisoner’s Dilemma there are two partners, a process

thread ID (tid) of 0, and a tid of 1. At each turn, each player makes a move of “defect” or “cooperate”

without knowing what the other player will do. Then the player computes the penalty for its move in

relation to the move made by its partner, according to this scoring table.

My player’s move (tid) Other player’s move (othertid) My penalty for this move

“defect” “defect” 2

“defect” “cooperate” 0

“cooperate” “defect” 3

“cooperate” “cooperate” 1

https://en.wikipedia.org/wiki/Prisoner%27s_dilemma

page 2

See tables processor.action, processor.penalty, and processor.processorSampling in the handout

prisonerd2024.stm for implementation details. The processor variable is a built-in variable that points to

the current processor object. The thread variable points to the current thread object, and the pcb (Process

Control Block) variable points to an object shared by the two threads in a single process. This simulation

fork()s 10 processes, and thread 0 spawn()s an additional thread 1 for its partner in its process.

This is the diagram of the final prisonerd2024.stm showing all states and transitions. The goal of any

player (thread within a process) is to minimize its time spent in the timeInJail state. Our simulation

records that time for us to analyze. There are four strategies enumerated in processor.action, which my

handout code places into each thread’s mystrategy variable. Here are the strategies.

Strategy Resulting action (how to find action to send to partner)

“defect” Always send a “defect” message.

“cooperate” Always send a “cooperate” message.

“halfsy” Use sample(0,1,”uniform”) to get a 0 or 1; send “defect” on a 0 and

“cooperate” on a 1. This is a pseudo-random strategy with a 50% probability of

defecting and a 50% probability of cooperating on each move.

“reciprocate” Send “cooperate” on the first move, and on every move thereafter, simply echo

the partner’s previous move. (You don’t know what its current move will be.)

The game must be coded to make exactly 100 moves, and then go into the terminated state, using

variables loopCount, loopLimit, and a guard condition on the transition into the terminated state that we

will discuss in class.

I have written the processor state machine (do not change it), the state declarations and the several

transitions of the thread state machine, and the variable initializations in that state machine. I have given

detailed comments in the code for completing your documentation comments at the top and your four

transitions.

The transition from init to initThread initializes variables machineID, pid, tid, and mystrategy. It

schedules the cpu event that will take it out of initThread in a final action call to cpu(0). Any cpu

scheduling that you perform as a transition’s final action must be cpu(0), with one exception. The only

exception is the cpu(N) call into state timeInJail, which must compute a penalty between 0 and 3,

inclusive, based on the table at the bottom of the previous page. The N in cpu(N) is that per-move penalty

for transiting into timeInJail.

You must code 2 transitions from sendMyAction to await otherAction. Python uses keywords “and” and

page 3

“or” instead of “&&” and “||” for combining multiple Boolean conditions. The transitions correspond to

the 4 strategies in the above table. Compute a value for variable SendRecvAction, based on the

appropriate strategy for this thread, and then invoke SendRecvSync@ as the final action. We will

discuss macro SendRecvSync and its variable SendRecvAction in class. SendRecvSync sends the value

in SendRecvAction to the partner, and then waits for the partner to send its own receiveOtherAction

event. That receiveOtherAction(action) event carries the partner’s action (“defect” or “cooperate”) as its

event argument; this event triggers the transition into state timeInJail.

On the transition into timeInJail, my code performs the following statement as the first action.

 pcb.incomingMessage[tid] = None;

Macro SendRecvSync uses a combination of the receiveOtherAction(action) event and message buffer

pcb.incomingMessage[tid] to solve a synchronization problem that we will discuss in class. The above

assignment statement clears the buffer after this player has consumed its message in preparation for a later

move interaction. None is Python’s equivalent of the NULL pointer.

The transition into timeInJail computes the penalty based on the above information for a call to

cpu(penalty), with the thus-generated cpu() event getting the machine out of timeInJail. This simulation

is profiling the cpu time spent in timeInJail.

The transition guard expressions out of timeInJail compare variable loopCount to loopLimit, going to

the terminated state when loopCount >= loopLimit.

When you are ready, run make clean test on mcgonagall to run tests. We will see successful and failed

make test runs in class. If you get a run-time error referring to an entry in the generated

__codeTable__[N], run this from the command line, supplying the index N:

./decode.py prisonerd2024.py N

If compilation or testing blows up, you can inspect the log file in prisonerd2024.log, searching for error

messages and the defunct string. Ignore this warning in the log file:

000000000002,MSG,thread 0 process 0,WARNING, signalEvent discards event type receiveOtherAction

because model is waiting in queue: waiting on simulation scheduler (simulation sleep) for model: Thread

pid 0, tid 0, state sendMyAction, waitingon cpu, __sleepResult__ None, __isdead__False

Macro SendRecvSync uses two means to send an action to a partner and await the partner’s action, a call

to library function signalEvent and message buffer pcb.incomingMessage[othertid] as discussed above.

When the receiving thread state machine is not in a state that responds to the event sent by signalEvent, it

logs the above WARNING message. However, since this application checks the

pcb.incomingMessage[tid] buffer in such cases, we can ignore the warning.

When all goes well with make clean test, the penalty sums in state timeInJail for each thread state

machine will match my values in file prisonerd2024_crunch.ref to within 20%, and you are ready to

turn it in. Check that you have completed the comments. To turn it in do this:

make turnitin

and hit Enter at the prompt.

page 4

In the above, P0-T0 is timeInJail for thread 0 of process 0, followed by timeInJail for thread 1 of

process 0, which does not have an X label. Then comes timeInJail for thread 0 of process 1, and so on.

We will discuss the analysis of this graph in class.

When everything works, run make turnitin before the project deadline. Make sure to meet any

documentation comment requirements stated in the STUDENT comments in the handout. If you later

make changes that you want to turn in, just run make turnitin again, which over-writes the previous

submission. There is a 10% per-day penalty for late assignments, and I will not accept and assignment

after I go over my solution in class. Note we are not using the turnin script in my courses. Also, please

run make clean whenever you end a work session on this project, since the log files actually reside in

~parson/tmp in order to avoid overloading your file space limits.

See STM.doc.txt in the project directory for documentation for the simulation library functions.

