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ABSTRACT 
 
Creative coding is the act of computer programming 
intended to create aesthetic artifacts in one or more digital 
media such as graphical images, animated videos, 
computer games, or musical performances. Visual artists 
and musicians use computers to compose, to render, and 
to perform. Algorithms remain as important as they are 
for any computer program, but their intent is to inspire, or 
at least to entertain, in contrast to more utilitarian 
applications of algorithms. This paper outlines the 
software structures and aesthetic perspectives of two 
novel algorithms for the creative manipulation of pixels in 
the Processing language. The first algorithm focuses on 
manipulating a digital canvas after it has been painted by 
a set of animated virtual paintbrushes. The metaphor is 
visual memory, where a digital canvas remembers what 
was painted during prior animated frames, making 
manipulation of those memories accessible to the artist. 
The second algorithm focuses on using an image-
processing pipeline to analyze and fragment copies of a 
photographic image for use in screening the original 
image. The inspiration is visual processing by the brain, 
in which different areas of the brain handle different 
aspects of stimuli arriving via the optic nerves before 
integrating them into a composite image. 
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1.  Introduction 
 
Digital art has been around for decades [1]. The advent of 
powerful graphical processing units (GPUs) and 
sophisticated programming environments has pushed the 
creation of this art into the aesthetic mainstream among 
professionals, academics, and students. 
 
The author has been collaborating with electronic 
musicians and digital artists for the last 25 years, with 
collaborations increasing in frequency and sophistication 
during the last ten. Despite being a computer science 
professor, a full 70% of the author’s students in spring 
2018 are majors in Kutztown University’s new Applied 
Digital Arts program offered by the Art and Art History 

Department. The work that informs this paper runs the 
gamut from teaching introductory animated graphics 
programming through exhibiting in multimedia 
exhibitions and concerts. This is a very exciting and 
energetic time to be involved in the creation of new 
modes of artistic expression. 
 
This paper provides a high-level overview of the technical 
and aesthetic aspects of two generative compositional 
algorithms. Emphasis is on images rather than words, 
with links to four animated video recordings. 
 
2.  Related work 
 
The author’s involvement in creative graphical coding 
dates back to using the Logo language dialect of LISP [2-
4] and its body-referential turtle geometry [5] coming out 
of the MIT Media Lab in the 1970s and 80s. Current work 
uses the Processing framework that also had its beginning 
in the MIT Media Lab [6,7]. This framework includes 
powerful and efficient graphics, animation, image-
processing, and computer audio code libraries, and an 
integrated development environment / debugger oriented 
towards artists, with language bindings available for Java, 
Javascript, Python, and Java on the Android mobile 
operating system [8]. Programming reported in this paper 
is in Java. 
 
The OpenGL Shading Language (GLSL) is a C-like 
programming language targeted to GPUs that could 
accomplish some of the results described here for 
Processing [9,10]. The author has stayed with Processing 
implementation techniques because of familiarity and the 
desire to explain these techniques to Processing-savvy 
students. GLSL would likely be more efficient for some 
of the mechanisms of Section 4. 
 
Interactive and time-based digital art is a rapidly growing 
field [11]. The author is in ongoing collaborations with 
digital artists and musicians too wide ranging to list here. 
The current work derives primarily from spending time 
exploring these digital media in depth, as opposed to 
external influences. 
 



3. Graphical Canvas as Short-Term Memory 
 
The algorithm of Section 3 focuses on manipulating a 
digital canvas after it has been painted by a set of 
animated virtual paintbrushes. The metaphor is visual 
memory, where a digital canvas remembers what was 
painted during prior animated frames, making 
manipulation of those memories accessible to the artist. 
Section 3.1 gives an overview of the main aspects of a 
Processing sketch (Processing’s name for a program), 
along with an overview of the specific algorithm. Section 
3.2 explores aesthetic aspects. Using software 
paintbrushes is inspired in part by Adobe Photoshop [12], 
Adobe Illustrator [13], and similar 2D illustration 
programs, although those programs are used for static 
image capture and manipulation, not for live, interactive 
animation or creative coding. 
 
3.1 PImage and pixel manipulation in Processing 
 
Figure 1 is a UML (Unified Modeling Language [14]) 
class diagram showing the author’s Processing sketch 
ShapePaintEcho and its relationships to Processing 
library classes. Every Processing sketch takes the form of 
a subclass of library class PApplet, which is where 
Processing supplies its seemingly global variables such as 
width and height (width and height of the display window 
in pixels), and pixels, which is the 1D Java array housing 
a RGBA integer pixel value (Red, Green, Blue, and 
Alpha, Alpha being a measure of opacity) at each 
element; the pixels array has (width*height) elements, one 
for each display pixel. PApplet also supplies a large 
number of seemingly global functions, examples here 
being loadPixels() that downloads hardware display 
buffer pixel values into the pixels array, updatePixels() 
that copies the pixels array into the display buffer, and 
createImage() that creates a photo-like PImage object of a 
specified (width*height) pixel size. PApplet supplies 
many conventional drawing functions such as 
background(), ellipse(), rect(), and triangle() that do not 
require direct manipulation of pixels by the sketch. Figure 
1 focuses on pixel manipulation functions because pixel 
manipulation is the focus of this paper. 
 
Processing programmers write what appear to be global 
variables and functions, much like the C subset of C++, 
albeit in Java for Processing. Processing generates class 
wrapper code, here for class ShapePaintEcho, as a 
subclass of PApplet. Sketch programmers can use library 
variables and functions residing in PApplet without the 
knowledge or syntactic trappings of classes. Acquiring the 
language is simpler than the usual practice of writing Java 
classes right from the start. Sketch programmers can 
define inner classes when useful for modeling graphical 
entities. Originally the library class PApplet derived from 
Java’s Applet class, although Processing 3 eliminates that 
class derivation. 
 

Sketch ShapePaintEcho supplies the setup(), draw(), 
keyPressed() and mousePressed() functions of Figure 1. 
Function morphCanvas() is specific to this sketch, while 
the others are known to Processing. The Processing run-
time framework arranges to call the sketch class’ setup() 
function once, at the start of sketch execution, as the 
sketch’s “main” function; setup() sets the final 
(width*height) size of the graphical window, along with 
other fixed and mutable sketch properties. Processing then 
schedules the sketch’s draw() function to run periodically 
at the frameRate; the sketch can adjust the default 

 



frameRate of 60 frames per second during execution. 
Periodic invocation of draw() is the basis of animation. 
Typically, draw() invokes background() to erase the 
previous frame’s image and fill the display with a 
background color. Subsequent draw() code supplied by 
the sketch programmer creates shapes, loads and plots 
image files, performs geometric transformations, and clips 
the display when needed. Processing calls sketch 
functions mousePressed() and keyPressed() upon entry of 
mouse and keyboard data, respectively. 
 
ShapePaintEcho defines one nested Java interface and 
three nested classes. Interface ShapeObjectTemplate 
specifies the four diagrammed functions for displaying, 
moving, shuffling (randomizing location and other 
properties), and cloning (copying) a graphical object 
modeled by a subclass of ShapeObjectTemplate. Abstract 
class ShapeData supplies some data fields and helper 
functions used by subclasses, and concrete classes 
ShapeDrawer and ImageDrawer model and display 
various shapes and images specific to this sketch. Using 
classes to model animated graphical entities gives 
students intuitive, immediate feedback to reinforce 
learning the object-oriented structuring concepts of 
inheritance and polymorphism. 
 
A basic sketch would draw() and move() shape objects, 
shuffle() for re-initialization, and clone() for copying, on 
objects that store graphical state such as object location 
and color. That is a partial description of this sketch. 
What is novel about ShapePaintEcho is that its draw() 
function does not erase the prior frame upon each 
invocation. Instead, the keyPressed() and mousePressed() 
functions provide means for the user to manipulate the 
canvas of images painted onto the display by prior 
invocations of draw(). What follows is simplified pseudo-
code for morphCanvas() as called near the start of the 
draw() function: 
 
1. Use loadPixels() to copy the display’s pixels from the 

previous draw() frame into the pixels array. 
2. Create a new, blank PImage object with the same 

(width*height) as the display and copy the just-
loaded display’s pixels array into it. 

3. Perform graphical rotation, scaling, and shearing 
(scale shape width as a function of height or vice 
versa) on this PImage object as specified by prior 
user input via keyPressed() and mousePressed(). 

4. Plot the PImage as just another graphical object on 
the current display. Scaling the prior frame’s PImage 
up causes clipping of its former outer areas. Scaling 
the prior frame’s PImage down fills using 
background color pixels (typically black) into the 
display periphery. The morphed PImage over-writes 
the previous display with its modified copy. 

 
After returning from morphCanvas(), draw() display()s 
and move()s the current set of ShapeData modeling 
objects, i.e., the paintbrushes. “Paintbrush” object 

construction, elimination, and randomization 
(shuffle()ing) are under the control of keyboard 
commands. Thus draw() is essentially a two-step 
operation: 1) Load, manipulate, and plot the pixels of the 
previous frame; 2) plot the current shapes on top of the 
canvas morphed from the previous frame. 
 
Given the repeated copy and mutate operations of 
morphCanvas(), the “background” plotted by this function 
is a recursive visual function that incorporates not only 
the previous draw() frame, but also its predecessor, etc., 
up to the limits of display resolution and clipping. Hence 
the metaphor of canvas-as-memory, because the canvas 
remembers all previous shape-object-display steps, up to 
those limits. 
 
3.2 Aesthetics of manipulating a canvas as memory1 
  
The illustrations on the next page show four static screen 
shots of live user interaction with ShapePaintEcho. The 
first, labeled The Heart of the Machine, shows 8 shapes – 
5 rectangles, 2 triangles, and a quadrilateral – being 
plotted in the current 60th-of-a-second frame. The user has 
used the mouse and keyboard commands to direct 
morphCanvas() to scale-down repeatedly the prior frames, 
moving their apparent trails towards the center. 
Discontinuities in some of the trails indicate movement by 
their shapes in prior frames, although most appear to be 
immobile, with only canvas-trail image processing 
occurring. The trails blur because scaling results in 
misalignment of original pixel locations with their new, 
scaled locations. Scaling pixel coordinates is inexact, 
requiring lossy interpolation and averaging of location 
and color information [15]. Canvas rotations of other than 
90 and 180 degrees also result in pixel misalignment, as 
do shearing, causing aging images on the canvas to cloud 
increasingly over time. Static image editing tools such as 
Adobe Photoshop do not finalize pixel interpolation until 
the user has signalled completion of a series of geometric 
transforms, thereby reducing error. Also, a Photoshop 
user can select the interpolation algorithm to use on image 
resizing. The issue for ShapePaintEcho is not so much a 
matter of Processing’s pixel interpolation algorithms, as it 
is a matter of the frequency of lossy geometric transforms. 
At a frameRate of 60 frames per second, there can be 60 
cumulatively-lossy transforms in a second, with more if 
there is a combination of lossy scaling, rotation, and 
shearing. Misalignment accumulates rapidly. This image 
clouding is not a problem for sketches like 
ShapePaintEcho, however. It is simply an aspect of the 
artistic medium to be utilized by a digital artist. The 
author added a feature to a later version of the sketch that 
allows a user to keep copies of an original shape in a list 

                                                
1 The reader is encouraged to view the 2-minute video recording and the 
4-minute video recording at 
https://drive.google.com/open?id=1OHNdA_lNwbuGO86tHa2JMGkUhUzCY-1_ 
and https://drive.google.com/open?id=14hBoJVw_3ogh2pci-hXQT7phBs6wJrfY 
to get a better sense of the interactive, animated execution of 
ShapePaintEcho than is possible with a static set of images. 



for exact re-plotting in subsequent frames. The artistic 
effect of keeping temporal object histories can be useful, 
but it is entirely different from the canvas-based morphing 
that remains the aesthetic keystone of ShapePaintEcho. 
 
The compositional intent for The Heart of the Machine is 
the set of digital veins and arteries connecting into a 
virtual heart, with the morphing canvas serving as the 
pumping heart. 
 
The second image called Digital Dovetail grows from an 
exact, non-lossy, 180-degree cumulative rotation of the 
canvas. There is no scaling of this canvas, with lossless 
trails contributed by the un-erased movement of the 
shapes. It symbolizes transition from approximation at the 
outer boundaries to precision at the center. 
 
The Ring Exercise shows the cumulative results of 
graphical object movement with interactive, lossy canvas 
rotation and repeated up-and-down scaling. The second 
band from the outer edge has been scaled up and down by 
the user multiple times, hence the fuzziness when 
compared to the adjoining circular layers. 
 
The final image shows the effects of a paintbrush 
patterned after the Chinese I Ching [16] character 
Flaming Beauty, without fill – two solid, parallel lines 
with one broken line between them – with the canvas 
receiving lossless reflections around the X and Y center 
axes and 90 degree rotations. This set of images gives 
some idea of the expressive range of ShapePaintEcho. 
The reader is strongly encouraged to view the two videos 
linked in Footnote 1 to get a more complete sense of the 
interactive capabilities of this sketch. 
 
4. A Multithreaded Pipeline for Image 
Processing 
 
The algorithm of section 4 focuses on using an image-
processing pipeline to analyze and fragment copies of a 
photographic image for use in screening the original 
image. The inspiration is visual processing by the brain, 
in which different areas of the brain handle different 
aspects of stimuli arriving via the optic nerves before 
integrating them into a composite image. 
 
4.1 Infrastructure for image pipeline stages 
 
Figure 2 is a UML class diagram showing the author’s 
Processing sketch PhotoMontage and the author’s 
reusable Java library package PixelVisitor. The 
complexity of this class diagram is due to the fact that, 
unlike ShapePaintEcho, PhotoMontage and similar 
sketches operate on individual pixel data at the level of 
Java code. ShapePaintEcho uses optimized Processing 
library classes and functions to copy display pixels into a 
PImage object, rotate-translate-shear that PImage object, 
and then plot it. ShapePaintEcho manipulates individual 
pixels at the Java-sketch level in only a few places. In  



contrast, much of the work of PhotoMontage is 
manipulation of individual pixels. Performing this work in 
the Processing display thread slows the effective 
frameRate down to the point of uselessness. Typical tests 
of the algorithms discussed here run in the 5-frames-per-
second range while attempting a frameRate of 60 because 
of the computational intensity of the task. 
ShapePaintEcho discussed in Section 3, in contrast, has 
no difficulty maintaining a 60-frames-per-second frame 
rate. The solution for PhotoMontage is to use multi-
threading to achieve an interactive frameRate of 60-
frames-per-second as explained in this section. Code was 
run on a 2.6 GHz Intel Core i7 with 8 hardware threads (4 
dual-threaded cores) running Mac OS X 10.9.5 and 
Processing 3.3.6. 
 
The classes tagged <<active>> in Figure 2 run in 
different threads from the Processing display thread that 
invokes draw() at the frameRate. They offload the work 
of individual pixel manipulation from this Processing 
thread, working in parallel. Active class ImageLoader has 
the cyclic job of loading the next JPEG or PNG image file 
in a sequence from the file system into a PImage object, 
invoking a set of multithreaded filters on one or more 
copies of this PImage object, and then passing the 
resulting array of PImage objects to the Processing thread 
via a thread-safe java.util.concurrent.SynchronousQueue 
object called loaded in Figure 2. There is also a thread-
safe java.util.concurrent.CopyOnWriteArrayList object 
called fnames that allows both the Processing and 
ImageLoader threads to access the list of image files. 
ImageLoader provides an image-processing pipeline, 
preparing the next PImage array from the image file + 
filters while Processing’s thread manipulates and displays 
the previously pipelined/filtered array of PImage objects 
derived from an image file. 
 
Interface PixelArrayVisitor is the keystone of custom 
library package PixelVisitor. Each PixelArrayVisitor 
object reads an entire 2D PImage processed in a previous 
pipelined stage and writes a single 1D row of pixels for a 
resultant (width*height) PImage, with width pixels per 
row. Pixel width and height can number in the thousands, 
and in principle it is possible to run height 
PixelArrayVisitor active objects in a parallel worker-
thread pool in order to accelerate pixel processing. 
 
Abstract library class PixelArrayVisitorHelper stores the 
data fields shown, and class PixelArrayVisitorContainer 
stores a row of pixels produced by a PixelArrayVisitor 
object. Library interface PixelArrayVisitorFactory 
specifies a factory method for constructing an application-
specific PixelArrayVisitor object. 

 
The application classes derived from library classes of 
PixelVisitor in Figure 2 are PixelArrayVisitorColorSorter, 
derived from PixelArrayVisitor, and 
PixelArrayVisitorColorSorterFactory, a class for 
manufacturing PixelArrayVisitorColorSorter objects. 
 
PixelArrayVisitorColorSorter is an active class that is at 
the heart of the image-processing algorithm of 
PhotoMontage. A PixelArrayVisitorColorSorter thread 
visits a row of pixels in an incoming PImage and 
produces 1-of-8 derived rows, one for each of the 
following colors: black, red, green, blue, yellow, cyan, 
magenta, and white. ImageLoader uses Processing’s 
posterize filter [17] to determine the dominant color out 
of these 8 for each of the pixels in the original PImage 
row; each PixelArrayVisitorColorSorter worker thread 
creates a row for its color-of-8 with only those color-
dominated pixels from the original image, with all other 
pixels in its output row being transparent (i.e., with an 
alpha value of 0). The opaque pixels in each of the 8 
resulting, color-specific rows are identical to the pixels in 
the original, non-processed PImage. The 8 rows are 8 
maps of per-pixel dominant color-of-8 from the original 
PImage. 8 PixelArrayVisitorColorSorter threads produce 
8 PixelArrayVisitorContainer objects; a 
PixelArrayMapReducer object of Figure 2 combines all 
rows so produced into a collection of 8 complete PImage 
objects, one per dominant color. 
 
PixelArrayMapReducer, which runs within the 
ImageLoader thread, implements a map-reduce algorithm 
on pixel manipulation in the original, functional-language 
sense of map-reduce. It uses a cached thread pool from 
library class java.util.concurrent.Executors to execute 
parallel worker threads as PixelArrayVisitorColorSorter 
objects. A cached thread pool is demand-driven in its 
number of threads, up to the number of available contexts 
(hardware threads, 8 for this laptop). 
PixelArrayVisitorColorSorter provides the mapping from 
an input PImage row to 1-of-8 output 
PixelArrayVisitorContainer objects, one per row-color 
combination. When all threads running as 
PixelArrayVisitorColorSorter objects have completed 
their work, class PixelArrayMapReducer reduces their 
returned rows into an array of 8 PImage objects. The 
ImageLoader thread then sends this PImage array to the 
Processing thread via the SynchronousQueue loaded. 
Figure 3 is a UML activity diagram that outlines the steps 
discussed in the current section. 
 



Processing’s thread within the draw() function plots the 
returned original PImage as the primary image, after 
which it plots the 8 color-dominated PImages (with 
transparent pixels for other-than-dominant-color pixels) at 
various rotational angles as directed by the user. These 8 
overlays act as curtains or veils over the original image. 
Successive invocations of draw() gradually reduce the 
opacity of these curtain overlays from 100% to 0%, 

exposing the original image behind them. 
PhotoMontage’s draw() also extrudes and fragments the 
curtains at the beginning of displaying an image, 
gradually reducing the extrusion and fragmentation as it 
reduces curtain opacity, such that the curtain appears 
more like the original image as it unveils the original 
image through increased transparency. When the curtain 
reaches 100% transparency (i.e., 0% opacity), draw() 

 



dequeues the next array of the original + 8 color-
partitioned PImages from the loaded queue and repeats 
the process. With each image, successive invocations of 
draw() perform an unveiling of the original image loaded 
from a file, using extruded, fragmented curtains made 
from copies of the original image, partitioned by 
dominant color. Animated display has the feel of 
assembling the original image from its compositional 

components, in a manner suggestive of image assembly in 
the brain. 
 
4.2 Aesthetics of pixel screens as unveiling curtains 
 
Even more than the aesthetics discussed for 
ShapePaintEcho, PhotoMontage is animated, interactive 
video in nature. The still images appearing in this section 
are useful for discussion purposes only, and unlike the 

 



illustrations of Section 3, are not visual compositions in 
their own right. The reader is very strongly encouraged to 
view the 5:35 minute video WildFlowers and the 11 
minute video MovingArchitecture linked in this footnote2. 
 
The illustrations to the right are screenshots of these two 
animated, interactive videos. There are three pairs of 
early-later screenshots, where the earlier image shows the 
color-partitioned, extruded, fragmented curtain with the 
original image underneath, and the later image shows the 
unveiled original image with some mostly transparent 
remnant of the curtain. 
 
The two flower images at the top are the most revealing 
with respect to color partitioning in the curtains. Note 
how the yellow-dominated center of the flower (mostly 
the stigma) has separated from the magenta-dominated 
petals in the top image, while they appear integrated in 
the bottom image as in the original photograph. Smaller 
details of color fragmentation and extrusion are visible in 
the top pair of images. What is evident only when 
viewing the linked WildFlowers video is that these color-
oriented curtain fragments are moving independently 
from each other in the video artwork. They are flying 
apart in the process of revealing the original image. 
 
The next pair of images emphasizes the fact that the 
curtain of brickwork, mortar, and grates are scaled up 
from their original sizes (as are the flower curtains in the 
preceding pair), thereby scaling the video motion. The 
curtain flickers during video viewing because draw() 
fragments and reorders the columns of the curtain, 
defragmenting as it unveils the original image. 
 
The final pair of images shows color partitioning, 
fragmentation, and extrusion of a pair of doors and 
surrounding windows unveiled in the second image. Both 
of the latter pairs appear in the MovingArchitecture video. 
PhotoMontage works especially well with high-contrast 
color images such as those in the WildFlowers video 
because of the color partitioning. It also works well with 
architectural photographic sequences such as those of 
MovingArchitecture because the rotation, fragmentation, 
extrusion, and unveiling of angular perspective lines in 
architectural photos highlights such boundary-inducing 
lines. 
 
Watching these videos is very much like watching the 
unveiling of a scene on a stage as the curtains draw back. 
The viewer conjectures what scene will actually appear as 
the photographed image appears. Visual revelation is a 
key aspect of the PhotoMontage sketch. The author is also 
experimenting with applying it to live video input from a 
camera moving about a room and photographing its 
contents and subjects. The results of live image 
manipulation are very promising for future work. 

                                                
2 https://drive.google.com/open?id=1o8UqtmIf2IZHFhzyg4mE5hCxTthi5ug7 and 
https://drive.google.com/open?id=1658WdCHdDNFIRuIftDbgsceOAamhfSbs  

 

 



5. Conclusions and future work 
 
Custom pixel-level manipulation of generated and 
photographic images has provided some very fruitful 
sketches in which to create interactive, animated, 
computer-generated video art. Much of the interactive 
work involves exploring visual spaces opened up by these 
techniques in searches for genuine art. Generate-and-test 
is a time-honored technique in computing that applies to 
this type of computer application. 
 
The author has submitted still photographs captured from 
ShapePaintEcho animations to a state-wide Pennsylvania 
art competition in 2018. Also, one of the author’s 
colleagues in Kutztown University’s Art and Art History 
Department has invited the author to collaborate on 
artwork, based on a demonstration video of 
PhotoMontage, during a sabbatical leave in spring 2019. 
The author has joined the planning committee for 
Kutztown University’s Applied Digital Arts major 
program in spring 2018. These developments are very 
exciting for a computer scientist in the later stages of a 
long career. 
 
The author has begun exploring use of 3D graphical 
techniques in conjunction with the 2D techniques of 
ShapePaintEcho. The canvas itself becomes a curtain in 
the Z-plane of 0 – the virtual flat surface of the display – 
with animated shapes emerging in front of this virtual 2D 
canvas, and shapes disappearing behind it. Combining 
some of the techniques of PhotoMontage with 
ShapePaintEcho is also an area for future work. 
ShapePaintEcho can generate images for PhotoMontage 
to color-fragment, extrude, and unveil. 
 
Finally, recursive use of morphed, scaled-down canvas 
PImages as graphical objects to display as multiple 
mobile objects in a ShapePaintEcho or PhotoMontage 
context is a very promising area for exploration. 
 
The author’s media software tools always involve human 
interaction as a key dimension. With adequately 
expressive controls, good human performers can always 
come up with inspired ideas during performance that 
might never occur while coding a program. It is very 
important to make these visual instruments so expressive 
that a good performer can surprise the coder during 
performance. 
 
The author ends by noting that, after over a year of work 
on these sketches, the animations still often surprise me. 
There are times when I cannot figure out how my code is 
doing things that are so visually alive. 
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