
Kutztown University
Research Commons at Kutztown University
Computer Science and Information Technology
Faculty

Computer Science and Information Technology
Department

4-7-2018

Creative Graphical Coding via Pipelined Pixel
Manipulation
Dale E. Parson
Kutztown University, parson@kutztown.edu

Follow this and additional works at: https://research.library.kutztown.edu/cisfaculty

Part of the Graphic Design Commons, and the Graphics and Human Computer Interfaces
Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science and Information Technology Department at Research
Commons at Kutztown University. It has been accepted for inclusion in Computer Science and Information Technology Faculty by an authorized
administrator of Research Commons at Kutztown University. For more information, please contact czerny@kutztown.edu,.

Recommended Citation
Proceedings of the 33rd Annual Spring Conference of the Pennsylvania Computer and Information Science Educators (PACISE)
Shippensburg University of PA, Shippensburg, PA, April 6-7, 2018. This won the Best Faculty Paper award.

https://research.library.kutztown.edu?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cisfaculty?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cisfaculty?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cis?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cis?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cisfaculty?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1134?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:czerny@kutztown.edu,

CREATIVE GRAPHICAL CODING VIA PIPELINED PIXEL MANIPULATION

Dale E. Parson
Kutztown University of PA

parson@kutztown.edu

ABSTRACT

Creative coding is the act of computer programming
intended to create aesthetic artifacts in one or more digital
media such as graphical images, animated videos,
computer games, or musical performances. Visual artists
and musicians use computers to compose, to render, and
to perform. Algorithms remain as important as they are
for any computer program, but their intent is to inspire, or
at least to entertain, in contrast to more utilitarian
applications of algorithms. This paper outlines the
software structures and aesthetic perspectives of two
novel algorithms for the creative manipulation of pixels in
the Processing language. The first algorithm focuses on
manipulating a digital canvas after it has been painted by
a set of animated virtual paintbrushes. The metaphor is
visual memory, where a digital canvas remembers what
was painted during prior animated frames, making
manipulation of those memories accessible to the artist.
The second algorithm focuses on using an image-
processing pipeline to analyze and fragment copies of a
photographic image for use in screening the original
image. The inspiration is visual processing by the brain,
in which different areas of the brain handle different
aspects of stimuli arriving via the optic nerves before
integrating them into a composite image.

KEYWORDS

computer graphics, creative coding, generative art, image
processing, Processing language

1. Introduction

Digital art has been around for decades [1]. The advent of
powerful graphical processing units (GPUs) and
sophisticated programming environments has pushed the
creation of this art into the aesthetic mainstream among
professionals, academics, and students.

The author has been collaborating with electronic
musicians and digital artists for the last 25 years, with
collaborations increasing in frequency and sophistication
during the last ten. Despite being a computer science
professor, a full 70% of the author’s students in spring
2018 are majors in Kutztown University’s new Applied
Digital Arts program offered by the Art and Art History

Department. The work that informs this paper runs the
gamut from teaching introductory animated graphics
programming through exhibiting in multimedia
exhibitions and concerts. This is a very exciting and
energetic time to be involved in the creation of new
modes of artistic expression.

This paper provides a high-level overview of the technical
and aesthetic aspects of two generative compositional
algorithms. Emphasis is on images rather than words,
with links to four animated video recordings.

2. Related work

The author’s involvement in creative graphical coding
dates back to using the Logo language dialect of LISP [2-
4] and its body-referential turtle geometry [5] coming out
of the MIT Media Lab in the 1970s and 80s. Current work
uses the Processing framework that also had its beginning
in the MIT Media Lab [6,7]. This framework includes
powerful and efficient graphics, animation, image-
processing, and computer audio code libraries, and an
integrated development environment / debugger oriented
towards artists, with language bindings available for Java,
Javascript, Python, and Java on the Android mobile
operating system [8]. Programming reported in this paper
is in Java.

The OpenGL Shading Language (GLSL) is a C-like
programming language targeted to GPUs that could
accomplish some of the results described here for
Processing [9,10]. The author has stayed with Processing
implementation techniques because of familiarity and the
desire to explain these techniques to Processing-savvy
students. GLSL would likely be more efficient for some
of the mechanisms of Section 4.

Interactive and time-based digital art is a rapidly growing
field [11]. The author is in ongoing collaborations with
digital artists and musicians too wide ranging to list here.
The current work derives primarily from spending time
exploring these digital media in depth, as opposed to
external influences.

3. Graphical Canvas as Short-Term Memory

The algorithm of Section 3 focuses on manipulating a
digital canvas after it has been painted by a set of
animated virtual paintbrushes. The metaphor is visual
memory, where a digital canvas remembers what was
painted during prior animated frames, making
manipulation of those memories accessible to the artist.
Section 3.1 gives an overview of the main aspects of a
Processing sketch (Processing’s name for a program),
along with an overview of the specific algorithm. Section
3.2 explores aesthetic aspects. Using software
paintbrushes is inspired in part by Adobe Photoshop [12],
Adobe Illustrator [13], and similar 2D illustration
programs, although those programs are used for static
image capture and manipulation, not for live, interactive
animation or creative coding.

3.1 PImage and pixel manipulation in Processing

Figure 1 is a UML (Unified Modeling Language [14])
class diagram showing the author’s Processing sketch
ShapePaintEcho and its relationships to Processing
library classes. Every Processing sketch takes the form of
a subclass of library class PApplet, which is where
Processing supplies its seemingly global variables such as
width and height (width and height of the display window
in pixels), and pixels, which is the 1D Java array housing
a RGBA integer pixel value (Red, Green, Blue, and
Alpha, Alpha being a measure of opacity) at each
element; the pixels array has (width*height) elements, one
for each display pixel. PApplet also supplies a large
number of seemingly global functions, examples here
being loadPixels() that downloads hardware display
buffer pixel values into the pixels array, updatePixels()
that copies the pixels array into the display buffer, and
createImage() that creates a photo-like PImage object of a
specified (width*height) pixel size. PApplet supplies
many conventional drawing functions such as
background(), ellipse(), rect(), and triangle() that do not
require direct manipulation of pixels by the sketch. Figure
1 focuses on pixel manipulation functions because pixel
manipulation is the focus of this paper.

Processing programmers write what appear to be global
variables and functions, much like the C subset of C++,
albeit in Java for Processing. Processing generates class
wrapper code, here for class ShapePaintEcho, as a
subclass of PApplet. Sketch programmers can use library
variables and functions residing in PApplet without the
knowledge or syntactic trappings of classes. Acquiring the
language is simpler than the usual practice of writing Java
classes right from the start. Sketch programmers can
define inner classes when useful for modeling graphical
entities. Originally the library class PApplet derived from
Java’s Applet class, although Processing 3 eliminates that
class derivation.

Sketch ShapePaintEcho supplies the setup(), draw(),
keyPressed() and mousePressed() functions of Figure 1.
Function morphCanvas() is specific to this sketch, while
the others are known to Processing. The Processing run-
time framework arranges to call the sketch class’ setup()
function once, at the start of sketch execution, as the
sketch’s “main” function; setup() sets the final
(width*height) size of the graphical window, along with
other fixed and mutable sketch properties. Processing then
schedules the sketch’s draw() function to run periodically
at the frameRate; the sketch can adjust the default

frameRate of 60 frames per second during execution.
Periodic invocation of draw() is the basis of animation.
Typically, draw() invokes background() to erase the
previous frame’s image and fill the display with a
background color. Subsequent draw() code supplied by
the sketch programmer creates shapes, loads and plots
image files, performs geometric transformations, and clips
the display when needed. Processing calls sketch
functions mousePressed() and keyPressed() upon entry of
mouse and keyboard data, respectively.

ShapePaintEcho defines one nested Java interface and
three nested classes. Interface ShapeObjectTemplate
specifies the four diagrammed functions for displaying,
moving, shuffling (randomizing location and other
properties), and cloning (copying) a graphical object
modeled by a subclass of ShapeObjectTemplate. Abstract
class ShapeData supplies some data fields and helper
functions used by subclasses, and concrete classes
ShapeDrawer and ImageDrawer model and display
various shapes and images specific to this sketch. Using
classes to model animated graphical entities gives
students intuitive, immediate feedback to reinforce
learning the object-oriented structuring concepts of
inheritance and polymorphism.

A basic sketch would draw() and move() shape objects,
shuffle() for re-initialization, and clone() for copying, on
objects that store graphical state such as object location
and color. That is a partial description of this sketch.
What is novel about ShapePaintEcho is that its draw()
function does not erase the prior frame upon each
invocation. Instead, the keyPressed() and mousePressed()
functions provide means for the user to manipulate the
canvas of images painted onto the display by prior
invocations of draw(). What follows is simplified pseudo-
code for morphCanvas() as called near the start of the
draw() function:

1. Use loadPixels() to copy the display’s pixels from the

previous draw() frame into the pixels array.
2. Create a new, blank PImage object with the same

(width*height) as the display and copy the just-
loaded display’s pixels array into it.

3. Perform graphical rotation, scaling, and shearing
(scale shape width as a function of height or vice
versa) on this PImage object as specified by prior
user input via keyPressed() and mousePressed().

4. Plot the PImage as just another graphical object on
the current display. Scaling the prior frame’s PImage
up causes clipping of its former outer areas. Scaling
the prior frame’s PImage down fills using
background color pixels (typically black) into the
display periphery. The morphed PImage over-writes
the previous display with its modified copy.

After returning from morphCanvas(), draw() display()s
and move()s the current set of ShapeData modeling
objects, i.e., the paintbrushes. “Paintbrush” object

construction, elimination, and randomization
(shuffle()ing) are under the control of keyboard
commands. Thus draw() is essentially a two-step
operation: 1) Load, manipulate, and plot the pixels of the
previous frame; 2) plot the current shapes on top of the
canvas morphed from the previous frame.

Given the repeated copy and mutate operations of
morphCanvas(), the “background” plotted by this function
is a recursive visual function that incorporates not only
the previous draw() frame, but also its predecessor, etc.,
up to the limits of display resolution and clipping. Hence
the metaphor of canvas-as-memory, because the canvas
remembers all previous shape-object-display steps, up to
those limits.

3.2 Aesthetics of manipulating a canvas as memory1

The illustrations on the next page show four static screen
shots of live user interaction with ShapePaintEcho. The
first, labeled The Heart of the Machine, shows 8 shapes –
5 rectangles, 2 triangles, and a quadrilateral – being
plotted in the current 60th-of-a-second frame. The user has
used the mouse and keyboard commands to direct
morphCanvas() to scale-down repeatedly the prior frames,
moving their apparent trails towards the center.
Discontinuities in some of the trails indicate movement by
their shapes in prior frames, although most appear to be
immobile, with only canvas-trail image processing
occurring. The trails blur because scaling results in
misalignment of original pixel locations with their new,
scaled locations. Scaling pixel coordinates is inexact,
requiring lossy interpolation and averaging of location
and color information [15]. Canvas rotations of other than
90 and 180 degrees also result in pixel misalignment, as
do shearing, causing aging images on the canvas to cloud
increasingly over time. Static image editing tools such as
Adobe Photoshop do not finalize pixel interpolation until
the user has signalled completion of a series of geometric
transforms, thereby reducing error. Also, a Photoshop
user can select the interpolation algorithm to use on image
resizing. The issue for ShapePaintEcho is not so much a
matter of Processing’s pixel interpolation algorithms, as it
is a matter of the frequency of lossy geometric transforms.
At a frameRate of 60 frames per second, there can be 60
cumulatively-lossy transforms in a second, with more if
there is a combination of lossy scaling, rotation, and
shearing. Misalignment accumulates rapidly. This image
clouding is not a problem for sketches like
ShapePaintEcho, however. It is simply an aspect of the
artistic medium to be utilized by a digital artist. The
author added a feature to a later version of the sketch that
allows a user to keep copies of an original shape in a list

1 The reader is encouraged to view the 2-minute video recording and the
4-minute video recording at
https://drive.google.com/open?id=1OHNdA_lNwbuGO86tHa2JMGkUhUzCY-1_
and https://drive.google.com/open?id=14hBoJVw_3ogh2pci-hXQT7phBs6wJrfY
to get a better sense of the interactive, animated execution of
ShapePaintEcho than is possible with a static set of images.

for exact re-plotting in subsequent frames. The artistic
effect of keeping temporal object histories can be useful,
but it is entirely different from the canvas-based morphing
that remains the aesthetic keystone of ShapePaintEcho.

The compositional intent for The Heart of the Machine is
the set of digital veins and arteries connecting into a
virtual heart, with the morphing canvas serving as the
pumping heart.

The second image called Digital Dovetail grows from an
exact, non-lossy, 180-degree cumulative rotation of the
canvas. There is no scaling of this canvas, with lossless
trails contributed by the un-erased movement of the
shapes. It symbolizes transition from approximation at the
outer boundaries to precision at the center.

The Ring Exercise shows the cumulative results of
graphical object movement with interactive, lossy canvas
rotation and repeated up-and-down scaling. The second
band from the outer edge has been scaled up and down by
the user multiple times, hence the fuzziness when
compared to the adjoining circular layers.

The final image shows the effects of a paintbrush
patterned after the Chinese I Ching [16] character
Flaming Beauty, without fill – two solid, parallel lines
with one broken line between them – with the canvas
receiving lossless reflections around the X and Y center
axes and 90 degree rotations. This set of images gives
some idea of the expressive range of ShapePaintEcho.
The reader is strongly encouraged to view the two videos
linked in Footnote 1 to get a more complete sense of the
interactive capabilities of this sketch.

4. A Multithreaded Pipeline for Image
Processing

The algorithm of section 4 focuses on using an image-
processing pipeline to analyze and fragment copies of a
photographic image for use in screening the original
image. The inspiration is visual processing by the brain,
in which different areas of the brain handle different
aspects of stimuli arriving via the optic nerves before
integrating them into a composite image.

4.1 Infrastructure for image pipeline stages

Figure 2 is a UML class diagram showing the author’s
Processing sketch PhotoMontage and the author’s
reusable Java library package PixelVisitor. The
complexity of this class diagram is due to the fact that,
unlike ShapePaintEcho, PhotoMontage and similar
sketches operate on individual pixel data at the level of
Java code. ShapePaintEcho uses optimized Processing
library classes and functions to copy display pixels into a
PImage object, rotate-translate-shear that PImage object,
and then plot it. ShapePaintEcho manipulates individual
pixels at the Java-sketch level in only a few places. In

contrast, much of the work of PhotoMontage is
manipulation of individual pixels. Performing this work in
the Processing display thread slows the effective
frameRate down to the point of uselessness. Typical tests
of the algorithms discussed here run in the 5-frames-per-
second range while attempting a frameRate of 60 because
of the computational intensity of the task.
ShapePaintEcho discussed in Section 3, in contrast, has
no difficulty maintaining a 60-frames-per-second frame
rate. The solution for PhotoMontage is to use multi-
threading to achieve an interactive frameRate of 60-
frames-per-second as explained in this section. Code was
run on a 2.6 GHz Intel Core i7 with 8 hardware threads (4
dual-threaded cores) running Mac OS X 10.9.5 and
Processing 3.3.6.

The classes tagged <<active>> in Figure 2 run in
different threads from the Processing display thread that
invokes draw() at the frameRate. They offload the work
of individual pixel manipulation from this Processing
thread, working in parallel. Active class ImageLoader has
the cyclic job of loading the next JPEG or PNG image file
in a sequence from the file system into a PImage object,
invoking a set of multithreaded filters on one or more
copies of this PImage object, and then passing the
resulting array of PImage objects to the Processing thread
via a thread-safe java.util.concurrent.SynchronousQueue
object called loaded in Figure 2. There is also a thread-
safe java.util.concurrent.CopyOnWriteArrayList object
called fnames that allows both the Processing and
ImageLoader threads to access the list of image files.
ImageLoader provides an image-processing pipeline,
preparing the next PImage array from the image file +
filters while Processing’s thread manipulates and displays
the previously pipelined/filtered array of PImage objects
derived from an image file.

Interface PixelArrayVisitor is the keystone of custom
library package PixelVisitor. Each PixelArrayVisitor
object reads an entire 2D PImage processed in a previous
pipelined stage and writes a single 1D row of pixels for a
resultant (width*height) PImage, with width pixels per
row. Pixel width and height can number in the thousands,
and in principle it is possible to run height
PixelArrayVisitor active objects in a parallel worker-
thread pool in order to accelerate pixel processing.

Abstract library class PixelArrayVisitorHelper stores the
data fields shown, and class PixelArrayVisitorContainer
stores a row of pixels produced by a PixelArrayVisitor
object. Library interface PixelArrayVisitorFactory
specifies a factory method for constructing an application-
specific PixelArrayVisitor object.

The application classes derived from library classes of
PixelVisitor in Figure 2 are PixelArrayVisitorColorSorter,
derived from PixelArrayVisitor, and
PixelArrayVisitorColorSorterFactory, a class for
manufacturing PixelArrayVisitorColorSorter objects.

PixelArrayVisitorColorSorter is an active class that is at
the heart of the image-processing algorithm of
PhotoMontage. A PixelArrayVisitorColorSorter thread
visits a row of pixels in an incoming PImage and
produces 1-of-8 derived rows, one for each of the
following colors: black, red, green, blue, yellow, cyan,
magenta, and white. ImageLoader uses Processing’s
posterize filter [17] to determine the dominant color out
of these 8 for each of the pixels in the original PImage
row; each PixelArrayVisitorColorSorter worker thread
creates a row for its color-of-8 with only those color-
dominated pixels from the original image, with all other
pixels in its output row being transparent (i.e., with an
alpha value of 0). The opaque pixels in each of the 8
resulting, color-specific rows are identical to the pixels in
the original, non-processed PImage. The 8 rows are 8
maps of per-pixel dominant color-of-8 from the original
PImage. 8 PixelArrayVisitorColorSorter threads produce
8 PixelArrayVisitorContainer objects; a
PixelArrayMapReducer object of Figure 2 combines all
rows so produced into a collection of 8 complete PImage
objects, one per dominant color.

PixelArrayMapReducer, which runs within the
ImageLoader thread, implements a map-reduce algorithm
on pixel manipulation in the original, functional-language
sense of map-reduce. It uses a cached thread pool from
library class java.util.concurrent.Executors to execute
parallel worker threads as PixelArrayVisitorColorSorter
objects. A cached thread pool is demand-driven in its
number of threads, up to the number of available contexts
(hardware threads, 8 for this laptop).
PixelArrayVisitorColorSorter provides the mapping from
an input PImage row to 1-of-8 output
PixelArrayVisitorContainer objects, one per row-color
combination. When all threads running as
PixelArrayVisitorColorSorter objects have completed
their work, class PixelArrayMapReducer reduces their
returned rows into an array of 8 PImage objects. The
ImageLoader thread then sends this PImage array to the
Processing thread via the SynchronousQueue loaded.
Figure 3 is a UML activity diagram that outlines the steps
discussed in the current section.

Processing’s thread within the draw() function plots the
returned original PImage as the primary image, after
which it plots the 8 color-dominated PImages (with
transparent pixels for other-than-dominant-color pixels) at
various rotational angles as directed by the user. These 8
overlays act as curtains or veils over the original image.
Successive invocations of draw() gradually reduce the
opacity of these curtain overlays from 100% to 0%,

exposing the original image behind them.
PhotoMontage’s draw() also extrudes and fragments the
curtains at the beginning of displaying an image,
gradually reducing the extrusion and fragmentation as it
reduces curtain opacity, such that the curtain appears
more like the original image as it unveils the original
image through increased transparency. When the curtain
reaches 100% transparency (i.e., 0% opacity), draw()

dequeues the next array of the original + 8 color-
partitioned PImages from the loaded queue and repeats
the process. With each image, successive invocations of
draw() perform an unveiling of the original image loaded
from a file, using extruded, fragmented curtains made
from copies of the original image, partitioned by
dominant color. Animated display has the feel of
assembling the original image from its compositional

components, in a manner suggestive of image assembly in
the brain.

4.2 Aesthetics of pixel screens as unveiling curtains

Even more than the aesthetics discussed for
ShapePaintEcho, PhotoMontage is animated, interactive
video in nature. The still images appearing in this section
are useful for discussion purposes only, and unlike the

illustrations of Section 3, are not visual compositions in
their own right. The reader is very strongly encouraged to
view the 5:35 minute video WildFlowers and the 11
minute video MovingArchitecture linked in this footnote2.

The illustrations to the right are screenshots of these two
animated, interactive videos. There are three pairs of
early-later screenshots, where the earlier image shows the
color-partitioned, extruded, fragmented curtain with the
original image underneath, and the later image shows the
unveiled original image with some mostly transparent
remnant of the curtain.

The two flower images at the top are the most revealing
with respect to color partitioning in the curtains. Note
how the yellow-dominated center of the flower (mostly
the stigma) has separated from the magenta-dominated
petals in the top image, while they appear integrated in
the bottom image as in the original photograph. Smaller
details of color fragmentation and extrusion are visible in
the top pair of images. What is evident only when
viewing the linked WildFlowers video is that these color-
oriented curtain fragments are moving independently
from each other in the video artwork. They are flying
apart in the process of revealing the original image.

The next pair of images emphasizes the fact that the
curtain of brickwork, mortar, and grates are scaled up
from their original sizes (as are the flower curtains in the
preceding pair), thereby scaling the video motion. The
curtain flickers during video viewing because draw()
fragments and reorders the columns of the curtain,
defragmenting as it unveils the original image.

The final pair of images shows color partitioning,
fragmentation, and extrusion of a pair of doors and
surrounding windows unveiled in the second image. Both
of the latter pairs appear in the MovingArchitecture video.
PhotoMontage works especially well with high-contrast
color images such as those in the WildFlowers video
because of the color partitioning. It also works well with
architectural photographic sequences such as those of
MovingArchitecture because the rotation, fragmentation,
extrusion, and unveiling of angular perspective lines in
architectural photos highlights such boundary-inducing
lines.

Watching these videos is very much like watching the
unveiling of a scene on a stage as the curtains draw back.
The viewer conjectures what scene will actually appear as
the photographed image appears. Visual revelation is a
key aspect of the PhotoMontage sketch. The author is also
experimenting with applying it to live video input from a
camera moving about a room and photographing its
contents and subjects. The results of live image
manipulation are very promising for future work.

2 https://drive.google.com/open?id=1o8UqtmIf2IZHFhzyg4mE5hCxTthi5ug7 and
https://drive.google.com/open?id=1658WdCHdDNFIRuIftDbgsceOAamhfSbs

5. Conclusions and future work

Custom pixel-level manipulation of generated and
photographic images has provided some very fruitful
sketches in which to create interactive, animated,
computer-generated video art. Much of the interactive
work involves exploring visual spaces opened up by these
techniques in searches for genuine art. Generate-and-test
is a time-honored technique in computing that applies to
this type of computer application.

The author has submitted still photographs captured from
ShapePaintEcho animations to a state-wide Pennsylvania
art competition in 2018. Also, one of the author’s
colleagues in Kutztown University’s Art and Art History
Department has invited the author to collaborate on
artwork, based on a demonstration video of
PhotoMontage, during a sabbatical leave in spring 2019.
The author has joined the planning committee for
Kutztown University’s Applied Digital Arts major
program in spring 2018. These developments are very
exciting for a computer scientist in the later stages of a
long career.

The author has begun exploring use of 3D graphical
techniques in conjunction with the 2D techniques of
ShapePaintEcho. The canvas itself becomes a curtain in
the Z-plane of 0 – the virtual flat surface of the display –
with animated shapes emerging in front of this virtual 2D
canvas, and shapes disappearing behind it. Combining
some of the techniques of PhotoMontage with
ShapePaintEcho is also an area for future work.
ShapePaintEcho can generate images for PhotoMontage
to color-fragment, extrude, and unveil.

Finally, recursive use of morphed, scaled-down canvas
PImages as graphical objects to display as multiple
mobile objects in a ShapePaintEcho or PhotoMontage
context is a very promising area for exploration.

The author’s media software tools always involve human
interaction as a key dimension. With adequately
expressive controls, good human performers can always
come up with inspired ideas during performance that
might never occur while coding a program. It is very
important to make these visual instruments so expressive
that a good performer can surprise the coder during
performance.

The author ends by noting that, after over a year of work
on these sketches, the animations still often surprise me.
There are times when I cannot figure out how my code is
doing things that are so visually alive.

References

[1] Paul, Christiane, Digital Art, Thames & Hudson
(publisher) World of Art series, 2003.

[2] Clayson, James, Visual Modeling with Logo: A
Structured Approach to Seeing (Exploring With Logo),
MIT Press, 1988.

[3] Harvey, Brian, Computer Science Logo Style, Second
Edition, Volume 3: Beyond Programming, MIT Press,
1997.

[4] Papert, Seymour, Mindstorms: Children, Computers,
and Powerful Ideas, Basic Books, 1982.

[5] Abelson, Harold and Andrea diSessa, Turtle
Geometry: The Computer as a Medium for Exploring,
MIT Press, 1981.

[6] Reas, Casey and Ben Fry, Processing: A
Programming Handbook for Visual Designers and
Artists, Second Edition, MIT Press, 2014.

[7] Shiffman, Daniel, Learning Processing, A Beginner's
Guide to Programming Images, Animation, and
Interaction, Second Edition, Morgan Kaufmann, 2015.

[8] Processing home page, https://processing.org/, link
tested in January 2018.

[9] Shaders, https://processing.org/tutorials/pshader/, link
tested January 2018.

[10] Core Language (GLSL), OpenGL,
https://www.khronos.org/opengl/wiki/Core_Language_(G
LSL) , link tested January 2018.

[11] The Digital Art Movement, Modern Art Insight,
http://www.theartstory.org/movement-digital-art.htm, link
tested January 2018.

[12] Weinmann, Elaine and Peter Lourekas, Photoshop
CC: Visual QuickStart Guide, Peachpit Press, 2015.

[13] Weinmann, Elaine and Peter Lourekas, Illustrator
CC: Visual QuickStart Guide, Peachpit Press, 2014.

[14] Fowler, Martin, UML Distilled: A Brief Guide to the
Standard Object Modeling Language, Third Edition,
Addison-Wesley, 2003.

[15] IDL interpolation methods, http://northstar-
www.dartmouth.edu/doc/idl/html_6.2/Interpolation_Meth
ods.html , link tested January 2018.

[16] Blofeld, John (translator), I Ching, The Book of
Change, E.P. Dutton & Co., 1968.

[17] Documentation for Processing’s filter function,
https://processing.org/reference/filter_.html, link tested
January 2018.

	Kutztown University
	Research Commons at Kutztown University
	4-7-2018

	Creative Graphical Coding via Pipelined Pixel Manipulation
	Dale E. Parson
	Recommended Citation

	PixelPacise2018paperFinal

