

CSC 580, Multithreaded / Multiprocessor Programming, Assignment 3, due 4/2/2011, page 1 of 11

CSC 580 - Multithreaded Programming, Spring 2011, Assignment 3

Multithreaded server architecture using ExecutorService and CompletionService

Assignment is due by 11:59 PM on Saturday, April 2, 2011 via gmake turnitin.

Dr. Dale E. Parson, http://faculty.kutztown.edu/parson

This assignment consists of refactoring and testing a simulated networked server class to utilize thread pool and

completion service infrastructure interfaces and classes studied in Chapters 6 and 7 of the textbook.

 cp ~parson/JavaLang/ThreadedServer.zip ~/JavaLang/ThreadedServer.zip

 cd ~/JavaLang

 unzip ThreadedServer.zip

 cd ./ ThreadedServer

 gmake clean test

 grep latency DEBUG.out

There are two Java source files in this project. MP3Server.java emulates a streaming media file server, and

ClientTestDriver.java comprises the test driver for class MP3Server. Class MP3Server contains the following

methods. Its full listing appears below.

MP3Server’s constructor takes threadPoolSize and bufferSize as parameters. The threadPoolSize gives the number
of threads used by an ExecutorService that you will apply from the java.util.concurrent library, and the bufferSize is

the number of bytes of data transferred by a server task in each call to java.io.PipedOutputStream.write, transferring

data to a client thread via java.io.PipedInputStream.read.

MP3Server method makeRequest takes a file name request parameter and returns an InputStream data connection

that a client thread can read in order to obtain a media data stream. The interaction model consists of a client thread

requesting a connection, which the server grants in the form of an InputStream, after which the client reads a media

directory entry or a media content file via that particular request’s InputStream.1 MakeRequest sets up a connection.

MP3Server method start initiates the server’s main service thread. (MP3Server is an active class.) Start must be

called once before makeRequest invocations can proceed.

MP3Server method shutdown terminates the main server thread and any other threads within MP3Server, using

controlled shutdown as explained in detail in the STUDENT code comments for shutdown. MP3Server will use a

subset of the interruption and shutdown techniques of Chapter 7.

Class ClientTestDriver uses multiple client threads to send a set of requests to MP3Server. An ad hoc client thread

pool reads work items from a work queue, where each work item is a file name to request from MP3Server. The

client thread requests a file, receives an InputStream object, reads the contents of that InputStream object and stores

them into a temporary file. It then compares the contents of the temporary file to a reference copy of the original file,

reporting any differences to System.err, which the makefile redirects to file ClientTestDriver.out. The client and

server also send debugging information via System.out to file DEBUG.out. This file came about in support of

debugging the URL / URLConnection problem; it also houses a latency statement of central concern to this project.

1
 In the original design a request took the form of a java.net.URL object, which class MP3Server used in conjunction with a

java.net.URLConnection object to read a file in the server address space, passing contents back to a client via a

PipedOutputStream / PipedInputStream pair from the java.io package. Unfortunately, it appears that multiple instances of URL /

URLConnection objects that refer to a common file interfere with each other when used by multiple concurrent threads. Most test

runs succeeded, but occasionally tests would fail, with the server reading more bytes than were actually in a file. After much

debugging, replacing URL / URLConnection with plain old FileInputStream objects within MP3Server eliminated the problem.

Watch out for using classes URL / URLConnection within multithreaded servers!

CSC 580, Multithreaded / Multiprocessor Programming, Assignment 3, due 4/2/2011, page 2 of 11

All of your changes go into MP3Server.java. The handout, active class runs one main server thread, which your

solution will continue using, with some code changes for interaction with an ExecutorService. It also uses one ad

hoc worker thread, which your solution must replace with a fixed thread pool ExecutorService that it constructs via

the Executors factory class using the threadPoolSize parameter passed to the MP3Server constructor. The main

server thread dispatches work to individual tasks implemented as Callable<Exception> objects. These
Callable<Exception> objects constitute a refactoring of the handout AdHocWorker Runnable class. Every variable

and type using the name “AdHoc” within MP3Server must be refactored, replaced or eliminated in your design.

In addition to the fixed thread pool ExecutorService, MP3Server must construct and use an

ExecutorCompletionService<Exception> object to manage completion of the Callable tasks. MP3Server must

allocate one additional explicit thread, in addition to the main server thread. This second thread runs in a loop calling

CompletionService.take in order to receive completion notification and completion status of the Callable tasks.

When a task completes normally, it returns null, signifying successful completion. When a task encounters an error

in copying file contents into its PipedOutputStream, it returns the Exception that identifies the problem.

CompletionService.take returns this Exception to this second server thread via a Future<Exception> object; this

thread reports any non-null Exception returned via a Future to System.err. The current test suite does not trigger any

such errors.

I have performed extensive testing in the process of tracking down the URL / URLConnection problem. I also

uncovered a problem with Networked File System performance on Ron that has been corrected.

Unlike the penny-dime puzzle, which was CPU bound, this project is I/O bound. The main bottleneck of interest in

the original, handout code comes from the fact that there is only one ad hoc worker thread. You will replace this

thread with Callable tasks that run within a fixed thread pool ExecutorService. I have found after much testing that

adding threads via the ExecutorService makes limited improvement to the throughput, mostly because the

throughput is limited by the I/O speed of networked file system (NFS). Your solution should run a little faster. The

important time measurement in this project is latency between the time that a client thread requests a connection and

the time that it begins to read data via its PipedInputStream. In the handout code there is only one ad hoc worker
thread within MP3Server, and when concurrent connection requests arrive from client threads, each client thread

must wait until the server worker thread has completed transferring one or more complete media files before that

client thread sees any data arriving in its PipedInputStream. Running grep latency DEBUG.out after gmake clean

test reveals the average latency between the time a client requests a connection and the time it actually receives data.

The server grants each connection request very rapidly, returning a buffered PipedInputStream to the client via its

own thread, but the data begin to arrive only when a server worker thread gets time to feed that data pipe.

Your solution should decrease this startup latency dramatically because, with as many server pool threads as client

threads (8 each in the makefile test case), data transfer need not occur within the constraint of one file at a time.

While overall throughput increases modestly, latency decreases because multiple server threads can interleave their

I/O constrained access to NFS. On Harry I have found average startup latency decrease from around 2000

milliseconds to around 10 milliseconds in going to my solution to project 3. Hermione and Ron show similar
improvement. This architecture is meant to mirror architectures such as web servers, in which low-latency, staged

responses to user requests in the form of display of HTML text, followed later by media such as images or audio

streams, takes priority over total throughput on a bandwidth-constrained network connection. This is a very

different but still realistic application of multithreading compared to the state machine (with CyclicBarrier) and

dataflow (without CyclicBarrier) solutions to project 2.

Here is what an initial test run of the handout code looks like on Harry.

-bash-3.00$ gmake clean test

/bin/rm -f *.o *.class .jar core *.exe *.obj *.pyc

/bin/rm -f *.class *.out *.dif ./tmpfiles/*
/bin/bash -c "javac -g ClientTestDriver.java"

/bin/rm -f ./tmpfiles/*

time /bin/bash -c "java ThreadedServer.ClientTestDriver 8 1024 8 8 >>DEBUG.out 2>ClientTestDriver.out"

CSC 580, Multithreaded / Multiprocessor Programming, Assignment 3, due 4/2/2011, page 3 of 11

real 5.0

user 5.6

sys 1.7

diff ClientTestDriver.out ClientTestDriver.ref > ClientTestDriver.dif

-bash-3.00$ grep latency DEBUG.out

Average initial latency until 1st response to client: 2494 msecs.
-bash-3.00$

After a successful test run, ClientTestDriver.out should be empty (no errors logged) and DEBUG.out contains

latency and assorted debugging information from the URL / URLConnection problem. The command line usage is

as follows. The handout code ignores the NUM_SERVERTHREADS command line argument. Look for STUDENT

comments in the handout code. When you have it working, use gmake turnitin before the end of the due date.

java ClientTestDriver NUM_CLIENTTHREADS BUFFERSIZE NUM_REQUESTS NUM_SERVERTHREADS

~/JavaLang/MP3Server.java

 1 /* MP3Server.java -- Assignment 3 server class.

 2 Dr. Dale Parson, CSC 580, Spring 2011.

 3 */

 4
 5 package ThreadedServer ;

 6 import java.util.concurrent.LinkedBlockingQueue ;

 7 import java.util.concurrent.Semaphore ;

 8 import java.util.concurrent.atomic.AtomicInteger ;

 9 import java.io.InputStream ;

 10 import java.io.FileInputStream ;

 11 import java.io.File ;

 12 import java.io.OutputStream ;
 13 import java.io.BufferedInputStream ;

 14 import java.io.BufferedOutputStream ;

 15 import java.io.PipedInputStream ;

 16 import java.io.PipedOutputStream ;

 17 import java.io.IOException ;

 18 import net.jcip.annotations.* ;

 19

 20 /**
 21 Multithreaded class that emulates a networked server. This

 22 class runs in the same process as its ClientTestDriver

 23 because its goal is to exercise capabilities of a multithreaded

 24 server that uses the java.util.concurrent.ExecutorCompletionService

 25 to distribute requests among a thread pool, await their completion,

 26 and print a diagnostic error message to System.err if the task in

 27 the thread pool encountered an Exception while sending a copy of

 28 a requested resource to a client process or thread. The completion
 29 status consists of an Exception object reference == null if no error

 30 occurs, or is non-null if an error occurs; this server uses

 31 the CompletionService to allow worker threads to inform the main

 32 server thread of either successful completion or Exception, and

 33 the main server thread logs the Exception getMessage() to System.err.

 34 There is no point in adding networked overhead to this exercise project.

 35 We want to measure improvements in server-side multithreading.

 36 The initial implementation uses a single ad hoc thread.

 37 STUDENTS must refactor it into a multithreaded server using

 38 ExecutorCompletionService with a fixed-size thread pool.

 39 @author Dr. Dale Parson

CSC 580, Multithreaded / Multiprocessor Programming, Assignment 3, due 4/2/2011, page 4 of 11

 40 **/

 41 @ThreadSafe

 42 public class MP3Server implements Runnable {

 43 private final static int EXITERROR = 1 ;
 44 // Size of the InputStream and OutputStream byte buffers.

 45 private final int bufferSize ;

 46 @GuardedBy("this")

 47 private volatile Thread mainServerThread = null ;

 48 private final AtomicInteger shutdownCount = new AtomicInteger(0);

 49 private final LinkedBlockingQueue<mainThreadRequest> mainThreadQ

 50 = new LinkedBlockingQueue<mainThreadRequest>();

 51 // STUDENT get rid of this next field. It is here to allow only

 52 // 1 AdHocWorker thread to run at a time.

 53 // STUDENT get rid of every class or field with "AdHoc" in its name.

 54 private final Semaphore AdHocLimit = new Semaphore(1);

 55 /**

 56 * Construct a MP3Server using a ExecutorCompletionService with

 57 * a fixed number of threads in its thread pool.

 58 * @param threadPoolSize is the number of threads in the pool,

 59 * must be > 0. The initial, single-threaded implementation does

 60 * nothing with this parameter. Students must change that fact.

 61 * @param bufferSize is the size of the InputStream and OutputStream

 62 * byte buffers.

 63 **/

 64 public MP3Server(int threadPoolSize, int bufferSize) {

 65 this.bufferSize = bufferSize ;

 66 }

 67 /**
 68 * Request a data stream whose source is a file, and whose contents

 69 * are to be streamed to a client reader. This method is

 70 * synchronized in order to restrict connection initialization

 71 * to a single client thread at a time.

 72 * @param request is the local file path to the data.

 73 * @return InputStream for the client to read.

 74 * @throws IOException on an invalid request.

 75 * @throws InterruptedException if shutdown is invoked on this
 76 * object while initializing a request, or if shutdown has already

 77 * occurred.

 78 **/

 79 public synchronized InputStream makeRequest(String request)

 80 throws IOException, InterruptedException {

 81 InputStream istream = new FileInputStream(new File(request));

 82 BufferedInputStream bufistream ;

 83 if (istream instanceof BufferedInputStream) {
 84 bufistream = (BufferedInputStream) istream ;

 85 } else {

 86 bufistream = new BufferedInputStream(istream);

 87 }

 88 InputStream clientStream = submitWorkerTask(bufistream);

 89 return clientStream ;

 90 }

 91 // Either the caller or submitWorkerTask must be synchronized
 92 // to ensure safe publication of the inter-thread data pipe.

 93 private BufferedInputStream submitWorkerTask(

 94 BufferedInputStream serverResource)

 95 throws IOException, InterruptedException {

CSC 580, Multithreaded / Multiprocessor Programming, Assignment 3, due 4/2/2011, page 5 of 11

 96 if (mainServerThread == null) {

 97 throw new IOException(

 98 "MP3Server requires one call to start() before makeRequest.");

 99 }
 100 PipedOutputStream serverOutput = new PipedOutputStream();

 101 PipedInputStream clientStream = new PipedInputStream(serverOutput);

 102 // Placing the serverResource and serverOutput in a

 103 // BlockQueue guarantees safe publication to the main thread. p. 52

 104 mainThreadQ.put(new mainThreadRequest(serverResource,

 105 new BufferedOutputStream(serverOutput)));

 106 return new BufferedInputStream(clientStream) ;

 107 }
 108

 109 /**

 110 * Start the main server thread for this MP3Server active object.

 111 * This method must be called once and only once before any calls

 112 * to makeRequest.

 113 **/

 114 public synchronized void start() {

 115 if (mainServerThread == null) {
 116 mainServerThread = new Thread(this);

 117 // STUDENT COMMENT OUT NEXT LINE WHEN YOU HAVE METHOD

 118 // shutdown() working correctly. It is currently in here

 119 // because shutdown() is not implemented, so the main server

 120 // thread never exits. Writing shutdown() will fix that.

 121 mainServerThread.setDaemon(true); // COMMENT THIS OUT!

 122 mainServerThread.start();

 123 }
 124 }

 125

 126 @ThreadSafe

 127 private class mainThreadRequest { // container for data

 128 public final InputStream serverResource ;

 129 public final OutputStream serverOutput ;

 130 public mainThreadRequest(InputStream serverResource,

 131 OutputStream serverOutput) {
 132 this.serverResource = serverResource ;

 133 this.serverOutput = serverOutput ;

 134 }

 135 }

 136 /**

 137 * Used to start server thread, do not invoke from external client.

 138 **/

 139 public void run() { // Main server thread, not part of pool.
 140 synchronized(this) {

 141 if (mainServerThread == null

 142 || ! mainServerThread.equals(Thread.currentThread())) {

 143 System.err.println("FATAL ERROR, "

 144 + "Multiple threads in MP3Server");

 145 System.exit(EXITERROR);

 146 }

 147 }
 148 while (shutdownCount.get() == 0) {

 149 mainThreadRequest rqst = null;

 150 boolean gotAdHocLimit = false ;

 151 try {

CSC 580, Multithreaded / Multiprocessor Programming, Assignment 3, due 4/2/2011, page 6 of 11

 152 AdHocLimit.acquire();

 153 gotAdHocLimit = true ;

 154 rqst = mainThreadQ.take();

 155 } catch (InterruptedException dying) {
 156 // Shutdown is under way.

 157 if (gotAdHocLimit) {

 158 AdHocLimit.release();

 159 }

 160 continue ; // Terminate main server thread.

 161 }

 162 Thread th = new Thread(new AdHocWorker(

 163 rqst.serverResource, rqst.serverOutput,
 164 AdHocLimit, bufferSize));

 165 th.start();

 166 }

 167 }

 168 // In this implementation the AdHocWorker thread does the work below.

 169 // In the STUDENT implementation this method must submit a

 170 // Callable<Exception> task to the ExecutorCompletionService

 171 // set up by the constructor, where that Callable<Exception> task

 172 // does all of the following work. When it has completed its work,

 173 // it passes a null reference back to the main server thread as

 174 // its result on success, or passes the Exception that occurred

 175 // as a result of a failed read or write or close operation.

 176 // The main server thread must log the getMessage() of any

 177 // Exception it receives from the Callable to System.err.

 178 // Typical exceptions include IOException on failed Input/Output

 179 // or InterruptedException which may be raised by invoking shutdown

 180 // on this object.

 181 @ThreadSafe

 182 private static class AdHocWorker implements Runnable {

 183 private final InputStream serverResource ;

 184 private final OutputStream serverOutput ;

 185 private final Semaphore AdHocLimit ;

 186 private final int bufferSize ;

 187 public AdHocWorker(InputStream serverResource,
 188 OutputStream serverOutput, Semaphore AdHocLimit,

 189 int bufferSize) {

 190 this.serverResource = serverResource ;

 191 this.serverOutput = serverOutput ;

 192 this.AdHocLimit = AdHocLimit ;

 193 this.bufferSize = bufferSize ;

 194 }

 195 public void run() {
 196 try {

 197 byte [] buffer = new byte [bufferSize];

 198 int bytesread, totalbytes = 0 ;

 199 for (bytesread = serverResource.read(buffer) ; bytesread != -1

 200 ; bytesread = serverResource.read(buffer)) {

 201 serverOutput.write(buffer, 0, bytesread);

 202 totalbytes += bytesread ;

 203 }
 204 serverResource.close();

 205 serverOutput.close();

 206 System.out.println("DEBUG server wrote " + totalbytes

 207 + " into Pipe.");

CSC 580, Multithreaded / Multiprocessor Programming, Assignment 3, due 4/2/2011, page 7 of 11

 208 } catch (IOException ioex) {

 209 // STUDENT must make this ioex the result of the Callable

 210 // passed back to the main server thread.

 211 // This AdHocWorker thread silently terminates.
 212 return ;

 213 } finally {

 214 AdHocLimit.release();

 215 }

 216 }

 217 }

 218 /**

 219 * Shutdown the server. The current implementation does nothing.

 220 * The STUDENT implementation must invoke ExecutorService.shutdown

 221 * the first time that this method is invoked; it must invoke

 222 * ExecutorService.shutdownNow the second time it is called, and must

 223 * ignore any additional calls. Also, this method must disable

 224 * any subsequent calls to makeRequest; any call to makeRequest after

 225 * a call to shutdown must throw an InterruptedException informing

 226 * the client that shutdown has occurred. Since a call to

 227 * makeRequest may occur concurrently with a call to shutdown,

 228 * STUDENTS must use thread-safe mechanisms to ensure that all

 229 * concurrent invocations see only consistent data.

 230 * Work includes incrementing shutdownCount to 1 or 2 (NO HIGHER),

 231 * interrupting mainServerThread if it is non-null,

 232 * and shutting down ExecutorService as directed above.

 233 **/

 234 public synchronized void shutdown() {

 235 }
 236 }

~/JavaLang/ClientTestDriver.java

 1 /* ClientTestDriver.java -- Assignment 3, client test driver for

 2 Multithreaded implementation of test driver for MP3Server.java.

 3 Dr. Dale Parson, CSC 580, Spring 2011.

 4 There are NO STUDENT changes in this file.

 5 */

 6

 7 package ThreadedServer ;

 8 import java.util.Scanner ;
 9 import java.util.LinkedList ;

 10 import java.util.concurrent.ConcurrentLinkedQueue ;

 11 import java.util.concurrent.atomic.AtomicLong ;

 12 import java.util.concurrent.atomic.AtomicInteger ;

 13 import java.io.InputStream ;

 14 import java.io.FileInputStream ;

 15 import java.io.BufferedInputStream ;

 16 import java.io.OutputStream ;
 17 import java.io.FileOutputStream ;

 18 import java.io.BufferedOutputStream ;

 19 import java.io.File ;

 20 import java.io.IOException ;

 21 import net.jcip.annotations.* ;

 22

 23 /**

 24 Class to test MP3Server.

CSC 580, Multithreaded / Multiprocessor Programming, Assignment 3, due 4/2/2011, page 8 of 11

 25 @see MP3Server

 26 @author Dr. Dale Parson

 27 **/

 28 @ThreadSafe
 29 public class ClientTestDriver {

 30 private final static int EXITERROR = 1 ;

 31 private final static AtomicLong sumLatencies = new AtomicLong(0L);

 32 /**

 33 * USAGE: java ClientTestDriver NUM_CLIENTTHREADS BUFFERSIZE

 34 * NUM_REQUESTS NUM_SERVERTHREADS

 35 **/

 36 private static final String usage =
 37 "USAGE: java ClientTestDriver NUM_CLIENTTHREADS BUFFERSIZE "

 38 + "NUM_REQUESTS NUM_SERVERTHREADS";

 39 public static void main(String [] args) {

 40 if (args.length != 4) {

 41 System.err.println(usage);

 42 System.exit(EXITERROR);

 43 }

 44 int clithreads = -1, bufsize = -1, requests = -1, srvthreads = -1 ;
 45 try {

 46 clithreads = Integer.parseInt(args[0]);

 47 bufsize = Integer.parseInt(args[1]);

 48 requests = Integer.parseInt(args[2]);

 49 srvthreads = Integer.parseInt(args[3]);

 50 } catch (NumberFormatException fx) {

 51 System.err.println("Invalid integer on command line: "

 52 + args[0] + " " + args[1] + " " + args[2] + " " + args[3]);
 53 System.exit(EXITERROR);

 54 }

 55 if (clithreads < 1 || bufsize < 1 || requests < 1 || srvthreads < 1) {

 56 System.err.println("Invalid integer on command line: "

 57 + args[0] + " " + args[1] + " " + args[2] + " " + args[3]);

 58 System.exit(EXITERROR);

 59 }

 60 try {
 61 MP3Server server = new MP3Server(srvthreads, bufsize);

 62 server.start();

 63 InputStream directoryStream = server.makeRequest("mp3files.txt");

 64 LinkedList<String> fnames = new LinkedList<String>();

 65 Scanner scanner = new Scanner(directoryStream);

 66 while (scanner.hasNextLine()) {

 67 fnames.add(scanner.nextLine());

 68 }
 69 scanner.close();

 70 if (fnames.size() == 0) {

 71 throw new IOException(

 72 "ERROR: Dirctory of MP3 resources is empty.");

 73 }

 74 // Set up clientRequestQueue before starting any worker threads.

 75 ConcurrentLinkedQueue<String> clientRequestQueue

 76 = new ConcurrentLinkedQueue<String>();
 77 for (int i = 0 ; i < requests ; i++) {

 78 clientRequestQueue.add(fnames.get(i % fnames.size()));

 79 }

 80 Thread [] threads = new Thread [clithreads] ;

CSC 580, Multithreaded / Multiprocessor Programming, Assignment 3, due 4/2/2011, page 9 of 11

 81 for (int i = 0 ; i < clithreads ; i++) {

 82 ClientTestHelper helper = new ClientTestHelper(

 83 clientRequestQueue, server, bufsize);

 84 threads[i] = new Thread(helper);
 85 threads[i].start();

 86 }

 87 for (int i = 0 ; i < clithreads ; i++) {

 88 threads[i].join();

 89 }

 90 server.shutdown();

 91 System.out.println(

 92 "Average initial latency until 1st response to client: "
 93 + (sumLatencies.get() / requests) + " msecs.");

 94 } catch (IOException ioex) {

 95 System.err.println("CLIENT IO ERROR : "

 96 + ioex.getMessage());

 97 System.exit(EXITERROR);

 98 } catch (InterruptedException intrx) {

 99 System.err.println("CLIENT INTERRUPTED ERROR : "

 100 + intrx.getMessage());
 101 System.exit(EXITERROR);

 102 }

 103 }

 104 @ThreadSafe

 105 private static class ClientTestHelper implements Runnable {

 106 private final ConcurrentLinkedQueue<String> clientRequestQueue ;

 107 private final MP3Server server ;

 108 private final byte [] buffer ;
 109 private final byte [] cmpbuffer ;

 110 public ClientTestHelper(ConcurrentLinkedQueue<String> requestQ,

 111 MP3Server theServer, int bufsize) {

 112 clientRequestQueue = requestQ ;

 113 server = theServer ;

 114 buffer = new byte [bufsize];

 115 cmpbuffer = new byte [bufsize];

 116 }
 117 private static final AtomicInteger tmpfilenum

 118 = new AtomicInteger(0);

 119 public void run() {

 120 InputStream toread = null ;

 121 File tmpfile = null ;

 122 OutputStream towrite = null ;

 123 File tmpdir = new File("tmpfiles");

 124 for (String todo = clientRequestQueue.poll() ; todo != null
 125 ; todo = clientRequestQueue.poll()) {

 126 try {

 127 long before = System.currentTimeMillis();

 128 toread = server.makeRequest(todo);

 129 // Read one byte for most exact timing until first

 130 // available data, before setting up tmpfile.

 131 int firstByte = toread.read();

 132 int totalbytes = 0 ;
 133 long after = System.currentTimeMillis();

 134 sumLatencies.addAndGet(after - before);

 135 // Fold a unique integer into the tmpfile name and make

 136 // sure that no 2 threads call createTempFile concurrently.

CSC 580, Multithreaded / Multiprocessor Programming, Assignment 3, due 4/2/2011, page 10 of 11

 137 synchronized (tmpfilenum) {

 138 tmpfile = File.createTempFile(("media"

 139 + tmpfilenum.getAndIncrement() + "_"),

 140 ".tmp",tmpdir);
 141 }

 142 towrite = new BufferedOutputStream(

 143 new FileOutputStream(tmpfile));

 144 if (firstByte != -1) {

 145 towrite.write(firstByte);

 146 totalbytes = 1 ;

 147 int bytesread ;

 148 for (bytesread = toread.read(buffer) ;
 149 bytesread != -1

 150 ; bytesread = toread.read(buffer)) {

 151 towrite.write(buffer, 0, bytesread);

 152 totalbytes += bytesread ;

 153 }

 154 }

 155 toread.close();

 156 toread = null ;
 157 towrite.close();

 158 towrite = null ;

 159 System.out.println("DEBUG client wrote " + totalbytes

 160 + " into tmp file.");

 161 String diffstring = cmpBytes(todo, tmpfile, totalbytes);

 162 if (diffstring == null) { // cmp is OK

 163 tmpfile.delete();

 164 } else {
 165 System.err.println("ERROR: Client compare diff: "

 166 + diffstring);

 167 System.exit(EXITERROR);

 168 }

 169 } catch (IOException ioex) {

 170 System.err.println("WARNING: Client I/O Exception: "

 171 + ioex.getMessage());

 172 } catch (InterruptedException intrx) {
 173 System.err.println("WARNING: Client Thread Interrupted: "

 174 + intrx.getMessage());

 175 } finally {

 176 try {

 177 if (toread != null) {

 178 toread.close() ;

 179 toread = null ;

 180 }
 181 if (towrite != null) {

 182 towrite.close();

 183 towrite = null ;

 184 }

 185 // Leave tmpfile intact if it choked above.

 186 tmpfile = null ;

 187 } catch (IOException shouldNotHappen) {

 188 }
 189 }

 190 }

 191 }

 192 private String cmpBytes(String todo, File tmpfile, int totalbytes) {

CSC 580, Multithreaded / Multiprocessor Programming, Assignment 3, due 4/2/2011, page 11 of 11

 193 try {

 194 InputStream reference = new FileInputStream(

 195 new File(todo));

 196 if (! (reference instanceof BufferedInputStream)) {
 197 reference = new BufferedInputStream(reference);

 198 }

 199 BufferedInputStream tmpdata = new BufferedInputStream(

 200 new FileInputStream(tmpfile));

 201 int refbytes, tmpbytes, location = 0 ;

 202 for (refbytes = reference.read(buffer),

 203 tmpbytes = tmpdata.read(cmpbuffer) ;

 204 refbytes != -1 && refbytes == tmpbytes ;
 205 refbytes = reference.read(buffer),

 206 tmpbytes = tmpdata.read(cmpbuffer)) {

 207 for (int i = 0 ; i < refbytes ; i++) {

 208 if (buffer[i] != cmpbuffer[i]) {

 209 return new String("CMP ERROR BETWEEN "

 210 + todo + " and " + tmpfile.getPath()

 211 + " at byte " + (location + i)

 212 + " on " + totalbytes
 213 + " read via input Pipe.");

 214 }

 215 }

 216 location += refbytes ;

 217 }

 218 if (refbytes != tmpbytes) {

 219 return new String("CMP ERROR BETWEEN LENGTH OF "

 220 + todo + " and " + tmpfile.getPath()
 221 + " at end of files.");

 222 }

 223 reference.close();

 224 tmpdata.close();

 225 } catch (Exception diffx) {

 226 return new String("Exception during COMPARE: "

 227 + diffx.getMessage());

 228 }
 229 return null ;

 230 }

 231 }

 232 }

