

page 1

CSC 558 Data Mining and Predictive Analytics II, Spring 2023

Dr. Dale E. Parson, Assignment 1, Classification of audio data samples for waveform class using

decision trees and Bayesian techniques with large training datasets (10-fold cross-validation),

adding to these approaches three instance-based (lazy) approaches with small training datasets.1

DUE By 11:59 PM on Saturday February 25 via D2L Assessment -> Assignment 1 in our D2L

course page. Details are at the end of this handout. The standard 10% per day deduction for late

assignments applies.

Download the following ZIP file via a web browser and unzip.

https://acad.kutztown.edu/~parson/lazy558sp2023.problem.zip

You will see the following files in this unzipped lazy558sp2023 directory:

README.txt Your answers to Q1 through Q15 below go here, in the required format.

csc558lazyraw10005sp2023.arff The handout ARFF file for assignment 1.

You can download Weka 3.8.6 at https://waikato.github.io/weka-wiki/downloading_weka/ . Do not use

version 3.9.

How can you avoid running out of memory in Weka?

I will test out projects using the default Weka memory allocation to try to ensure that they work without

expanding memory. However, I am including memory expansion instructions just in case we need them.

1. Run Weka using a command line or batch script that sets memory size. I run it this way on my Mac:

java -server -Xmx4000M -jar /Applications/weka-3-8-0/weka.jar

That requires having the Java runtime environment (not necessarily the Java compiler) installed on your

machine (true of campus PCs), and locating the path to the weka.jar Java archive that contains the Weka

class libraries and other resources. This line allocates 4,000,000 bytes of storage for Weka. As for this

semester’s assignments, I have created batch file WekaWith4GBcampus.bat under the shared campus PC

networked location S:\ComputerScience\WEKA\. There is also WekaWith2GBcampus.bat.

2. Right-click results buffers in the Weka -> Classify window, or use Alt-click on Mac (control-click on

PC) to Delete result buffer after you are done with one. They take up space. You can also save these

results to text files via this menu. Some of these models take a long time to execute. I have noted that

condition in these instructions. In such cases, it may save time just to exit Weka and restart it via the

command line or a batch file with a large memory limit, rather than just deleting result buffers. I can

give batch execution instructions if needed

1 See http://faculty.kutztown.edu/parson/fall2021/CSC558Audio1_2021.html and in-class discussion on the Zoom

archive from February 1, 2023.

https://acad.kutztown.edu/~parson/lazy558sp2023.problem.zip
https://waikato.github.io/weka-wiki/downloading_weka/
http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html

page 2

Figure 2: Deleting a Weka result buffer

http://faculty.kutztown.edu/parson/fall2021/CSC558Audio1_2021.html outlines the application dataset.

We will go over this when preparing for the assignment. It explains the meaning of the attributes and their

relationships.

ALL OF YOUR ANSWERS FOR Q1 through Q12 BELOW MUST GO INTO THE README.txt

file supplied as part of assignment handout directory lazy558sp2023. You will lose an automatic 20% of

the assignment if you do not adhere to this requirement. Q13 through Q15 are the correct ARFF file

contents that you must save following instructions below. Each of Q1 through Q15 is worth 6.6% of the

project, and any glaring bug in ARFF file contents or your procedure can count up to 10%.

1. Open csc558lazyraw10005sp2023.arff in Weka’s Preprocess tab.

Here are the attributes in csc558lazyraw10005sp2023.arff. Other than the 5 zero-noise training instances,

I have generated new data with a similar distribution to 2020’s data for 2023’s assignment 1.

tid Unique ID for each instance except that the 5 noiseless reference samples have ID 0.

tosc Waveform type. This string must become the nominal class (target) attribute.

tfreq Fundamental frequency in Hertz (cycles per second) passed to the audio generator.

toscgn Waveform signal gain passed to the audio generator in the range [0.0, 1.0].

tnoign White noise signal gain passed to the audio generator in the range [0.0, 1.0].

centroid Raw spectral centroid extracted from the audio .wav file.2

rms Raw root-mean-squared measure of signal strength extracted from the audio .wav file.

roll25 Raw frequency where 25% of the energy rolls off, extracted from the audio .wav file.

roll50 Raw frequency where 50% of the energy rolls off, extracted from the audio .wav file.

roll75 Raw frequency where 75% of the energy rolls off, extracted from the audio .wav file.

smprate Rate at which the computer sampled audio, extracted from the audio .wav file.

fftbins Number of raw bins used in frequency analysis, extracted from the audio .wav file.

hrmbins Number of cooked bins used in Parson’s data reduction, extracted from fftbins data.

shftfftfund Number of fftbins used to normalize fundamental frequency, extracted from fftbins.

amplscale Multiplier used to scale fundamental frequency to normalized 1.0, extracted from fftbins.

amplbin0 Normalized amplitude of fundamental frequency as extracted from the audio signal data.

amplbin1 through amplbin19 Normalized amplitudes of 1st through 19th overtones of the fundamental.

2 See http://faculty.kutztown.edu/parson/fall2021/CSC558Audio1_2021.html for signal processing term

definitions.

http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html
http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html

page 3

Raw indicates an attribute that you must normalize to the reference fundamental frequency or amplitude.

The first 5 attributes with names starting in “t” do not come from the audio signal. They were parameters

to the audio generator. We are interested in predicting tosc (waveform oscillator type) from several of the

non-“t” attributes. We must remove tfreq, toscgn, and tnoign before analyzing data relationships. We

must get rid of tid after we use it to select the small training sets. We must convert tosc from a string to a

nominal attribute and make it the final attribute in the list; tosc is what we are trying to predict. We will

also get rid of some of the other attributes that impede analysis, as explained in class.

2. Use Weka’s unsupervised -> attribute -> StringToNominal attribute filter to make tosc into a

nominal attribute. Inspect its value set.

3. As directed in http://faculty.kutztown.edu/parson/fall2021/CSC558Audio1_2021.html , use

Weka’s AddExpression attribute filter to create derived attributes nc, n25, n50, n75 that are

centroid and the rolloff frequencies normalized in terms of the fundamental frequency. We will

discuss this normalization. You will need to create some temporary “helper attributes” such as

nyfreq and funfreq. Create derived attributes in the order from step 1a through step 2 on that

web page. The nc, n25, n50, n75 attributes correlate to the frequency-to-signal-strength

distribution of the tosc waveform, regardless of the actual fundamental frequency funfreq, so

they must be normalized via division by that frequency. Note that funfreq shows some funfreq

fundamental frequencies outside the [100, 2000] Hz range of tfreq, caused by overtones and

noise in some of the instances.

Figure3 : funfreq goes outside of the tfreq range. Label is for spring 2020 dataset.

Our 2023 dataset differs in details but still has out-of-band funfreq values.

Q1. Go into Weka’s Preprocess Edit window and sort on the funfreq attribute in descending order by

holding down the SHIFT key and clicking on the funfreq heading. Look at the tosc classification for

waveforms with a funfreq > 2040 Hz. Do the instances with funfreq > 2040 Hz correlate with a

single category of tosc, and if so, what is the tosc value for these instances? If not, what are the tosc

values for these instances?

Q2. Is it a good idea to keep these instances with funfreq > 2040 Hz in the dataset for classifying

tosc, answer YES or NO (not both). Explain why.

http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html

page 4

Note that by inspecting the right side of the Weka Preprocess tab for derived attributes centrfreq,

roll25freq, roll50freq, and roll75freq, they share the same distribution as their raw counterparts

centroid, roll25, roll50, and roll75, because the nyfreq multiplier is a constant. In contrast, the

normalized attributes nc, n25, n50, and n75 have per-instance distributions because the funfreq

divisor varies across instances.

4. As directed in http://faculty.kutztown.edu/parson/fall2021/CSC558Audio1_2021.html , create

derived attribute normrms that normalizes the rms signal level. The rms is the square root of the

average of the squares of signal amplitude across time for a waveform. The amplscale gives

Parson’s pre-ARFF scaling of the peak signal harmonic (the fundamental frequency) in script

una2csv.py3, while rms gives the raw average signal strength, which correlates to the tosc

waveform; normrms scales the rms similarly to peak signal scaling done by Parson’s

preprocessing. Note that the graphical distribution of normrms as seen in Weka differs from that

of rms because amplscale varies by instance.

5. Remove tfreq, toscgn, and tnoign. The fundamental frequency in the range [100, 2000] Hz does

not determine the tosc waveform type. Also, tfreq does not come from the audio file; it was input

to the generator, as were toscgn and tnoign. Derived attributes funfreq and normrms

approximate the fundamental frequency and the signal strength from other attributes extracted

from the waveform.

6. Use Weka’s Reorder attribute filter to place tosc in the last position, after normrms, without

changing the relative order of any of the other attributes.

7. Use Weka’s RemoveUseless attribute filter to get rid of constant-valued attributes, some of which

have been used temporarily in steps 3 and 4. Take notes on which attributes are removed.

Here are the attributes and their required order in the Weka Preprocess tab at this point after

RemoveUseless.

@attribute tid numeric

@attribute centroid numeric

@attribute rms numeric

@attribute roll25 numeric

@attribute roll50 numeric

@attribute roll75 numeric

@attribute shftfftfund numeric

@attribute amplscale numeric

@attribute amplbin1 numeric

@attribute amplbin2 numeric

@attribute amplbin3 numeric

@attribute amplbin4 numeric

@attribute amplbin5 numeric

@attribute amplbin6 numeric

@attribute amplbin7 numeric

@attribute amplbin8 numeric

@attribute amplbin9 numeric

@attribute amplbin10 numeric

@attribute amplbin11 numeric

@attribute amplbin12 numeric

3 http://faculty.kutztown.edu/parson/fall2021/una2csv.py.txt

http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html
http://faculty.kutztown.edu/parson/spring2020/una2csv.py.txt

page 5

@attribute amplbin13 numeric

@attribute amplbin14 numeric

@attribute amplbin15 numeric

@attribute amplbin16 numeric

@attribute amplbin17 numeric

@attribute amplbin18 numeric

@attribute amplbin19 numeric

@attribute funfreq numeric

@attribute centrfreq numeric

@attribute roll25freq numeric

@attribute roll50freq numeric

@attribute roll75freq numeric

@attribute nc numeric

@attribute n25 numeric

@attribute n50 numeric

@attribute n75 numeric

@attribute normrms numeric

@attribute tosc {PulseOsc,SawOsc,SinOsc,SqrOsc,TriOsc}

Q3. Which attributes does RemoveUseless remove, including any derived attributes removed? Why?

Q4. Why did we keep some of these attributes until this point? Name the “useless” attribute(s) that we

needed to keep to this point.

8. Save this dataset as csc558lazy10005sp2023.arff, without “raw” in its name. You will turn this

file in to me via D2L at the end of the project. Reload this file using Weka’s Open file button to

get around the class identifying bug in the current Weka; class attribute tosc must be the final

attribute.

9. Remove the tid attribute, because it pairs directly with tosc for all tid values except 0; the 5

noiseless reference instances all use tid == 0. Tid is not part of the audio data, and it “gives

away” the result. We will later need to restore it temporarily from the file saved in step 8 or by

executing Undo in the Preprocessor, in order to build some training dataset files.

10. Go to the Weka Classify tab and save the following result line only after running the following

Weka classifiers on this dataset with 10-fold cross-correlation: ZeroR, OneR, J48, RandomTree,

NaiveBayes, BayesNet, and IBk, keeping the default configuration parameters. IBk (a Weka lazy

classifier) is the newcomer since csc458. It is related to K-nearest neighbor4. There is a paper

relating to nearest-neighbor classification on our course page near assignment 1. There are two

other instance-based (lazy) classifiers that run too slowly with this large training dataset that we

will use later. Also, varying the search algorithm and distance weighting parameters for IBk have

no effect on its result, although changing the search algorithm may speed IBK somewhat.

Q5: Copy and paste all of these following results, this line only, with the classifier name in front:

ZeroR: Correctly Classified Instances N N.N %

Kappa statistic N

OneR: Correctly Classified Instances N N.N %

Kappa statistic N

4 https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

page 6

J48: Correctly Classified Instances N N.N %

Kappa statistic N

RandomTree: Correctly Classified Instances N N.N %

Kappa statistic N

NaiveBayes: Correctly Classified Instances N N.N %

Kappa statistic N

BayesNet: Correctly Classified Instances N N.N %

Kappa statistic N

IBk: Correctly Classified Instances N N.N %

Kappa statistic N

11. Restore tid, either by executing Undo or by loading csc558lazy10005sp2023.arff that you

saved.

NOTE: I experimented with removing all remaining attributes (raw or derived) that were used to derive

the normalized attributes of steps 3 and 4. These attributes are redundant with normalized attributes nc,

n25, n50, n75 and normrms, which you are keeping. The ones I removed were centroid, rms, roll25,

roll50, roll75, shftfftfund, amplscale, funfreq, centrfreq, roll25freq, roll50freq, and roll75freq. Results for

re-running Q5 stayed almost exactly the same all classifiers. So, I am not having you remove these

attributes.

Q6. Give one reason why removing redundant non-target attributes might have improved results for at

least one machine learning algorithm tested in Q5.

Q7. Why does ZeroR have the kappa result that it has? Relate this result to one of the terms in the Kappa

statistic as explained on this page5.

12. Next you must make two training sets with 5 elements each. Copy your

csc558lazy10005sp2023.arff and makeTrainingData.sh files into a lazy558sp2023/ directory on

acad6 and run bash -x makeTrainingData.sh, which performs the following steps. Or you can do

this in a text editor in steps listed after these makeTrainingData.sh automated steps.

echo "making 5 noiseless training instances in csc558lazytrain5sp2023.arff"

making 5 noiseless training instances in csc558lazytrain5sp2023.arff

bash -c "echo '@relation csc558lazytrain5sp2023' > csc558lazytrain5sp2023.arff"

bash -c "grep @ csc558lazy10005sp2023.arff | grep -v @relation >> csc558lazytrain5sp2023.arff"

bash -c "grep ^0, csc558lazy10005sp2023.arff | grep -v @relation >> csc558lazytrain5sp2023.arff"

echo "making 5 noisey training instances in csc558lazynoise5sp2023.arff"

making 5 noisey training instances in csc558lazynoise5sp2023.arff

echo "Sin, Tri, Sqr, Saw, Pulse:"

Sin, Tri, Sqr, Saw, Pulse:

5 http://faculty.kutztown.edu/parson/fall2019/Fall2019Kappa.html.
6 You can run makeTrainingData.sh on a Mac or home Linux machine this way.

http://faculty.kutztown.edu/parson/fall2019/Fall2019Kappa.html

page 7

bash -c "echo '@relation csc558lazynoise5sp2023' > csc558lazynoise5sp2023.arff"

bash -c "grep @ csc558lazy10005sp2023.arff | grep -v @relation >> csc558lazynoise5sp2023.arff"

bash -c "grep ^981018, csc558lazy10005sp2023.arff | grep -v @relation >>

csc558lazynoise5sp2023.arff" # first PulseOsc

bash -c "grep ^738502, csc558lazy10005sp2023.arff | grep -v @relation >>

csc558lazynoise5sp2023.arff" # first SawOsc

bash -c "grep ^526474, csc558lazy10005sp2023.arff | grep -v @relation >>

csc558lazynoise5sp2023.arff" # first SinOsc

bash -c "grep ^126978, csc558lazy10005sp2023.arff | grep -v @relation >>

csc558lazynoise5sp2023.arff" # first SqrOsc

bash -c "grep ^997716, csc558lazy10005sp2023.arff | grep -v @relation >>

csc558lazynoise5sp2023.arff" # first TriOsc

MANUAL ALTERNATIVE TO RUNNING makeTrainingData.sh

A. Copy csc558lazy10005sp2023.arff to csc558lazytrain5sp2023.arff.

B. Change the @relation name in the first line of csc558lazytrain5sp2023.arff to

csc558lazytrain5sp2023.

C. Keep all lines up through @data along with the first five subsequent lines that begin with the two

characters “0,”, deleted all lines below those. These are the training instances for the five

waveform types with 0 white noise levels.

D. Save that file as csc558lazytrain5sp2023.arff.

E. Copy csc558lazy10005sp2023.arff to csc558lazynoise5sp2023.arff.

F. Change the @relation name in the first line of csc558lazytrain5sp2023.arff to

csc558lazynoise5sp2023.

G. Keep all lines up through @data along with the five lines that begin with the following character

sequences, deleting all other lines below @data. These are the training instances for the five

waveform types with non-zero white noise levels.

981018,

738502,

526474,

126978,

997716,

H. Save that file as csc558lazynoise5sp2023.arff.

Running makeTrainingData.sh or performing these manual steps gives csc558lazytrain5sp2023.arff a

@relation line of csc558lazytrain5sp2023, and csc558lazynoise5sp2023.arff a @relation name of

csc558lazynoise5sp2023. Both files get all of the @attribute declarations of

csc558lazy10005sp2023.arff, along with the ARFF @data line. Training file

csc558lazytrain5sp2023.arff gets the five 0-noise instances with tid == 0, and

csc558lazynoise5sp2023.arff gets five noise-bearing instances with tid values of 981018 (SinOsc),

738502 (TriOsc), 526474 (SqrOsc), 126978 (SawOsc), and 997716 (PulseOsc) with the tid attribute

intact. Verify in Weka that each has one of each tosc type with the specified tids and exactly 5 instances.

13. In Weka load training set csc558lazytrain5sp2023.arff and Remove the tid attribute in memory.

Leave it in the file. In the Classify tab of Weka set the Supplied test set to

csc558lazy10005sp2023.arff instead of using cross-validation on the small training set. Figure 1

below shows how to set up a supplied test dataset. This test is similar to the sonic survey and

machine listener research projects previously discussed, in that there is a small training set (a.k.a.

reference set) of 5 instances and a large test of 10,005 instances against which to test it. The 5

page 8

redundant training instances in the test dataset are not a significant number of instances for

testing.

Figure 1: Using a Supplied test dataset in Weka’s Classify tab

Q8. Repeat the tests of Q5 with the tid-deleted csc558lazytrain5sp2023.arff, adding lazy classifiers

KStar and LWL into the set below. Give their Correct instances as before. Note that Weka may ask you

to accept attribute-to-attribute mappings from the training set to the test set. The attributes have

the same names and positions in the ARFF files, so this should run OK. You will see

InputMappedClassifier messages. Make sure that you have removed tid from the in-memory training set.

You can leave it in the test set file, since it is not mapped from the training set.

ZeroR: Correctly Classified Instances N N.N %

Kappa statistic N

OneR: Correctly Classified Instances N N.N %

Kappa statistic N

J48: Correctly Classified Instances N N.N %

Kappa statistic N

RandomTree: Correctly Classified Instances N N.N %

Kappa statistic N

NaiveBayes: Correctly Classified Instances N N.N %

Kappa statistic N

BayesNet: Correctly Classified Instances N N.N %

Kappa statistic N

IBk: Correctly Classified Instances N N.N %

page 9

Kappa statistic N

KStar: Correctly Classified Instances N N.N %

Kappa statistic N

LWL: Correctly Classified Instances N N.N %

Kappa statistic N

Q9. Account for the top classifier for Q8. Why is its performance substantially better than most of the

remaining classifiers and at least marginally better than all the others?

14. In Weka load training set csc558lazynoise5sp2023.arff and delete the tid attribute in memory.

Leave it in the file. In the Classify tab of Weka keep the Supplied test set at

csc558lazy10005sp2023.arff instead of using cross-validation on the small training set. This is a

repeat of the previous test run using a training set that has some noise in the signals.

Q10. Repeat the tests of Q8 with the tid-deleted csc558lazynoise5sp2023.arff, adding lazy classifiers

KStar and LWL into the set below. Give their Correct instances as before. Note that Weka may ask you to

accept attribute-to-attribute mappings from the training set to the test set. The attributes have the same

names and positions in the ARFF files, so this should run OK. You will see InputMappedClassifier

messages. Make sure that you have removed tid from the in-memory training set. You can leave it in the

test set file, since it is not mapped from the training set.

ZeroR: Correctly Classified Instances N N.N %

Kappa statistic N

OneR: Correctly Classified Instances N N.N %

Kappa statistic N

J48: Correctly Classified Instances N N.N %

Kappa statistic N

RandomTree: Correctly Classified Instances N N.N %

Kappa statistic N

NaiveBayes: Correctly Classified Instances N N.N %

Kappa statistic N

BayesNet: Correctly Classified Instances N N.N %

Kappa statistic N

IBk: Correctly Classified Instances N N.N %
Kappa statistic N

KStar: Correctly Classified Instances N N.N %

Kappa statistic N

LWL: Correctly Classified Instances N N.N %

Kappa statistic N

page 10

Q11. Account for performance improvements in the top 3 classifiers of Q8&Q9 in going to Q10. What

accounts for the improvements?

Q12. Why does IBk perform significantly better than KStar for Q8 through Q11 for this signal dataset?

Q13 points are for a correctly saved csc558lazy10005sp2023.arff in the project directory.

Q14 points are for a correctly saved csc558lazytrain5sp2023.arff in the project directory.

Q15 points are for a correctly saved csc558lazynoise5sp2023.arff in the project directory.

After making certain that the completed README.txt file and the files required in Q13, Q14, and Q15

are in the project directory, go to D2L -> Assessments -> Assignments -> Assignment 1 instance-based

(lazy) classification and upload the three ARFF files of Q13, Q14, and Q15 along with README.txt.

Please just zip the entire project directory with all of its files if possible and turn that into D2L

Assignment 1.

