

page 1

CSC 558 Data Mining and Predictive Analytics II, Fall 2023

Dr. Dale E. Parson, Assignment 2, Classification of audio data samples from assignment 1 for

predicting numeric white-noise amplification level for the signals’ generators.1 We will also

investigate discretizing the white-noise target attribute (class) and other non-target attributes.

DUE By 11:59 PM on Monday March 13, 2023 via D2L Assignment 2. The standard 10% per day

deduction for late assignments applies.

There will be one in-class work session for this assignment. Start early and come prepared to ask questions.

The 13th is the start of spring break, so no office hours that day. The preceding weeks’ office hours are at

usual times & modalities.

Download the following ZIP file via a web browser and unzip.

https://acad.kutztown.edu/~parson/whitenoise558sp2023.problem.zip

You can do all your work on a Kutztown PC or your home machine, no need for acad.

You will see the following files in this whitenoise558sp2023 directory:

README.txt Your answers to Q1 through Q20 below go here, in the required format.

csc558wn10Ksp2023.arff The handout ARFF file for assignment 2, wn means white noise.

The following four files are from csc558wn10Ksp2023.arff without the five tnoign==0 instances.

csc558wnTrain100sp2023.arff 100 initial-order training instances from csc558wn10Ksp2023NoTid0.arff.

csc558wnTest9900sp2023.arff 9900 remaining initial-order test instances of csc558wn10Ksp2023NoTid0.arff.

csc558wnTrain100Rndsp2023.arff 100 random-order instances from csc558wn10Ksp2023NoTid0.arff.

csc558wnTest9900Rndsp2023.arff 9900 other random instances from csc558wn10Ksp2023NoTid0.arff.

ALL OF YOUR ANSWERS FOR Q1 through Q20 BELOW MUST GO INTO THE README.txt

file supplied as part of assignment handout directory whitenoise558sp2023. You will lose an automatic

20% of the assignment if you do not adhere to this requirement.

1. Open csc558wn10Ksp2023.arff in Weka’s Preprocess tab. This is the same dataset used for assignment

1, with AddExpression’s derived attributes already in place, and with tosc and tid removed; tagged

numeric attribute tnoign, which is the gain on the white-noise generator, is the class (a.k.a. target

attribute) of assignment 2. Where assignment 1 had a nominal attribute as the class, this assignment has

tnoign as a numeric class attribute.

Here are the attributes in csc558wn10Ksp2023.arff.

centroid Raw spectral centroid extracted from the audio .wav file.

rms Raw root-mean-squared measure of signal strength extracted from the audio .wav file.

roll25 Raw frequency where 25% of the energy rolls off, extracted from the audio .wav file.

roll50 Raw frequency where 50% of the energy rolls off, extracted from the audio .wav file.

1 See Assn1AudioOverview http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html and in-class
discussion on the Zoom archives.

https://acad.kutztown.edu/~parson/whitenoise558sp2023.problem.zip
http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html

page 2

roll75 Raw frequency where 75% of the energy rolls off, extracted from the audio .wav file.

amplbin1 through amplbin19 Normalized amplitudes of 1st through 19th overtones of the fundamental.

Filter RemoveUseless has removed amplbin0 because of its constant value of 1.0.

Raw indicates an attribute that you normalized in assignment 1 to the reference fundamental frequency or

amplitude. Attributes centrfreq, roll25freq, roll50freq, roll75freq, nc, n25, n50, n75, and normrms are

Derived Attributes we created in assignment 1. Even though they are redundant with attributes from which

they derive, they turn out to be useful for fine-tuning classifiers. We are keeping them for now. There are

34 attributes in the ARFF data of this assignment.

tnoign Target white noise signal gain passed to the audio generator in the range [0.0, 1.0].

 Except for the five tnoign=0.0 samples that we will remove, the signal generator for

 this dataset generates tnoign in the range [0.1, 0.25). Note the Weka Preprocess

statistics for tnoign below.

Figure 1: Class attribute tnoign in the handout dataset.

Since this assignment is about predicting white noise gain tagged as attribute tnoign, it is important to

review the definition of white noise. As linked from Assn1AudioOverview, “White noise is a random signal

having equal intensity at different frequencies, giving it a constant power spectral density…In discrete time,

white noise is a discrete signal whose samples are regarded as a sequence of serially uncorrelated random

variables with zero mean and finite variance.2” This white noise signal is distinct from the Sine, Triangle,

Square, Sawtooth, and Pulse wave signals that were the focus of assignment 1, added into the composite

signal with a random gain in the range [0.5, 0.75). The dataset of assignments 1 and 2 add white noise with

a random gain in the range [0.1, 0.25) to each signal-record in the dataset, with 5 exceptions that you will

remove in step 2 below. Compare the frequency domain plot of the noiseless 1000 Hz training sine wave

of assignment 13 with the 1001 Hz sine wave with a tnoign= 0.139453694281 used as a noise-bearing

training instance in assignment 14. Both peak at about 1000 Hz, but the signal without white noise loses

2 Wikipedia page on white noise https://en.wikipedia.org/wiki/White_noise , quotation checked for accuracy.
3 http://faculty.kutztown.edu/parson/fall2023/lazy1_SinOsc_1000_0.9_0.0_0.FREQ.png
4 http://faculty.kutztown.edu/parson/fall2023/lazy1_SinOsc_1001_0.500235007566_0.139453694281_615143.FREQ.png

https://en.wikipedia.org/wiki/White_noise
http://faculty.kutztown.edu/parson/spring2020/lazy1_SinOsc_1000_0.9_0.0_0.FREQ.png
http://faculty.kutztown.edu/parson/spring2020/lazy1_SinOsc_1001_0.500235007566_0.139453694281_615143.FREQ.png

page 3

most of its strength after that. The signal with tnoign= 0.139453694281 white noise falls off considerably

less, maintaining an almost constant signal strength all the way to the Nyquist frequency of 22050 Hz. The

contribution of white noise at each frequency is random and seemingly small, but the net contribution of

white noise is to add signal strength evenly across the frequency spectrum. We are trying to determine that

contribution based strictly on audio data in the WAV files in this assignment. Important points to note

include the following.

• Most of the frequency spectrum in the range [0, 22050] Hz lies above the non-noise signal generation (sine,

triangle, etc.) fundamental frequency of [100, 2000] Hz. White noise spans the [0, 22050] Hz range. While

the non-sine waves contribute harmonics that push measures such as centroid and the rolloff frequencies

higher than the fundamental frequency, white noise pushes these measures even further up the frequency

spectrum because it spans the [0, 22050] Hz range.

• White noise contributes additional power beyond the non-noise signals across the wave + white noise

signal. Attribute rms is the measure of power across the time-varying, time-domain signal. Unlike the

normalized fundamental frequency of amplbin0, which represents only the strongest frequency component

of a signal, rms integrates signal strength across the frequency spectrum.

The five tnoign=0.0 samples illustrated in Figure 1 are outliers in relation to the other 10,000 instances.

2. Use Weka’s Unsupervised -> Instance -> RemoveWithValues Preprocess filter to remove the five

outlying instances with tnoign=0.0. Use the attributeIndex to select tnoign, use the splitPoint to select

a value for this attribute above which OR below which instances will be discarded, using

invertSelection if necessary to change the direction of the split. Successful application of

RemoveWithValues to tnoign results in 10,000 instances with tnoign in the range [0.1, 0.25), which is

the range of white noise gain for the signal generator. SAVE THIS 10000-INSTANCE DATASET

INTO FILE csc558wn10Ksp2023NoTid0.arff.

Q1: What is your exact RemoveWithValues command line from the top of Weka’s Preprocess tab?

3. Run Classify -> Functions -> LinearRegression using 10-fold cross-validation on this 10,000-instance

dataset.

Q2: Paste the following measures into README.txt Q2. We will use Correlation coefficient as the primary

measure of accuracy in this assignment.

Correlation coefficient n.n

Mean absolute error n.n

Root mean squared error n.n

Relative absolute error n.n %

Root relative squared error n.n %

Total Number of Instances 10000

Examine the Weka LinearRegression formula that starts out like this:

Linear Regression Model

tnoign =

 C.c * centroid +
 C.c * rms +

 …

page 4

 -0.4307

Q3: In terms of absolute value of the coefficients C.c, what are the top six, starting with the one with the

highest magnitude in descending order? Include the ones with minus signs in front of them, using their

magnitude (absolute value) to determine their ranking. Negative coefficients occur in one of two ways: a)

the attribute being multiplied has a negative correlation with the target numeric attribute, which is still an

informative correlation, or b) the negative coefficient is an adjustment for a positive coefficient elsewhere

in the formula. The second case usually occurs for nominal non-target attributes that appear more than once

in the formula. Do not use the constant, non-multiplier value at the end of the formula. Here is the first line

of your answer; supply the other 5.

 9.1739 * rms +

Q4: Apply the unsupervised -> attribute -> Normalize preprocessing filter to all attributes using its default

configuration parameters. With its default parameters Normalize adjusts each attribute except target tnoign

to a value in the range [0.0, 1.0] using the formula (value – min) / (max – min) for the min and max of that

attribute. Check several attributes to see the [0.0, 1.0] range and make sure tnoign has not been Normalized.

Again run LinearRegression and paste the following measures into README.txt Q4:

Correlation coefficient n.n

Mean absolute error n.n

Root mean squared error n.n

Relative absolute error n.n %

Root relative squared error n.n %

Total Number of Instances 10000

Q5: In terms of absolute value of the coefficients C.c for this Normalized LinearRegression model, what

are the top six, starting with the one with the highest magnitude in descending order? Use the approach to

coefficient absolute values that you used for Q3. List which attributes have been Removed from the top

six, which have been Added, and which have been Retained.

Figure 1 shows the non-target attribute with the highest magnitude LinearRegression coefficient along the

X axis at the top plot from Weka’s Visualize tab, the second highest magnitude coefficient in the middle,

and the third highest magnitude coefficient at the bottom. The Y axis shows target attribute tnoign. The

centers of their slopes are rather steep. A vertical slope would be useless because all values of tnoign would

correlate with a single value of the non-target attribute. A horizontal slope would be useless because all

values of the non-target attribute would correlate with a single value of tnoign. Use Weka’s Visualize tab

to see that most other attributes have much more scattered correlations of the non-target attributes to tnoign.

page 5

Figure 1

Q6: For some datasets Normalization to the range [0.0, 1.0] or some other fixed range addresses the problem

of making some attributes appear more important in the LinearRegression formula than they are when

interpreting the formula. Which attribute had the highest coefficient C.c in your answer to Q2 & Q3, and

what happened to that attribute’s importance in Normalized Q4 & Q5 relative to other attributes? Why was

its coefficient C.c so very high in Q2 compared to Normalized Q4? (Hint: You probably need to execute

Undo in the Preprocess tab to see its original range of min and max values to answer this question.)

Q7: Re-Normalize if necessary to get Normalized non-target attributes. Continue using Normalized non-
target attributes unless otherwise instructed. Run Classify -> Trees -> M5P model tree on this 10,000-

instance Normalized dataset, and record the Results (not the Model) for Q7. How do the M5P Results

page 6

(correlation coefficient and error measures) compare with those of LinearRegression for this Normalized

dataset? Make sure to include M5P’s Number of Rules measure, which is the number of leaf-linear-

regression formulas in the M5P decision tree. (Note: If you executed Undo to discard Normalization in

answering Q6, you will need to run the Normalize attribute filter now.)

Number of Rules : N

Correlation coefficient ?

Mean absolute error ?

Root mean squared error ?

Relative absolute error ? %

Root relative squared error ? %

Total Number of Instances 10000

Q8: Continue using the Normalized dataset. Run the instance-based (lazy) classifier IBk repeatedly with its

default configuration parameters, increasing the KNN (number of nearest neighbors with tnoign values to

be averaged together) parameter on each run until its performance begins to degrade, inspecting only

correlation coefficient for its peak. If CC hits a plateau, keep going until it goes up or down. What lowest

value of KNN gives the most accurate result in terms of correlation coefficient? Shows its Results.

KNN = N

Correlation coefficient n.n?

Mean absolute error n.n?

Root mean squared error n.n ?

Relative absolute error n.n? %

Root relative squared error n.n? %

Total Number of Instances 10000

Q9: Run the instance-based (lazy) classifier IBk one more time with its KNN as determined in Q8, then run

it again after changing the nearest neighbor search algorithm from LinearNNSearch to KDTree with default

parameters, and run it again using BallTree instead of KDTree. What change in behavior or performance

do you notice compared to using the default LinearNNSearch nearest neighbor search algorithm?

In preparation for the next steps, run Preprocess filter Unsupervised -> Attribute -> Discretize on the target

attribute tnoign, making sure to set the ignoreClass configuration parameter to true, allowing the Filter to

Discretize target attribute tnoign (the Last attribute). Leave the useEqualFrequency parameter at false, leave

bins at 10, and check tnoign before and after using the filter to make sure its distribution histograms look

similar, and that it is not numeric after discretization. Do NOT discretize any numeric attributes other than

tnoign. Check in the Preprocess tab to make sure no other attributes are discretized.

Q10: Now, run Preprocess filter Unsupervised -> Attribute -> Discretize on all remaining attributes with

useEqualFrequency parameter at the default false and bins at 10. Inspect some of them in the Preprocess

tab. Run classifiers rule OneR, tree J48, BayesNet, and instance (lazy) classifier IBk with the KNN

parameter found in Q8 and nearest neighbor search algorithm of KDTree, and give their Results as outlined

below, preceding each Result with the name of its classifier.

OneR

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

J48

page 7

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

BayesNet

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

IBk with the KNN parameter of

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

Q11: Execute Preprocess -> Undo once, then check to make sure that only class tnoign is still Discretized.

All other attributes except tnoign should be numeric. Now, run Preprocess filter Supervised -> Attribute -

> Discretize on all remaining attributes (not tnoign). Inspect some of them in the Preprocess tab. Supervised

Discretization attempts to correlate the non-target attribute bins with the target attribute ahead of

classification model building. Run classifiers rule OneR, tree J48, BayesNet, and instance (lazy) classifier

IBk with the KNN parameter found in Q8 and nearest neighbor search algorithm of KDTree, and give their

Results as in Q10, preceding each Result with the name of its classifier. Which classifiers became BETTER

as measured by Kappa when compared with Q10, and which became WORSE. Just write BETTER or

WORSE or SAME behind their classifier names.

OneR

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

J48

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

BayesNet

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

IBk with the KNN parameter of

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

Q12: Execute Preprocess -> Undo once, then check to make sure that only class tnoign is still Discretized.

All other attributes except tnoign should be numeric. Run classifiers rule OneR, tree J48, BayesNet, and

instance (lazy) classifier IBk with the KNN parameter found in Q8 and nearest neighbor search algorithm

of KDTree, and give their Results as before, preceding each Result with the name of its classifier. Which

classifiers became BETTER as measured by Kappa when compared with Q10, and which became WORSE.

Just write BETTER or WORSE or SAME behind their classifier names.

page 8

OneR

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

J48

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

BayesNet

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

IBk with the KNN parameter of

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

In general, increasing the resolution of the non-target attributes by keeping them numeric may help accuracy

of prediction, since discretized non-target attributes only approximate the precision found in numeric non-

target attributes. Unfortunately, precise numeric attributes may be harder for some classifiers to analyze.

Bayesian analysis, for example, does its own discretization of numeric non-target attributes; this

discretization may be better or worse than the Supervised Weka discretization filter at correlating non-target

attributes to the target class.

Q13. All attributes numeric except tnoign should still be numeric and Normalized to the range [0.0, 1.0].

Try using ensemble meta-classifier Bagging, using your most accurate classifier (in terms of Kappa)

configuration from Q12 as its base classifier. What base classifier did you select, and does it improve

performance over Q12 in terms of Kappa by more than .02 of 1.0 of the non-bagged Result of Q12? Show

your Result as before. All attributes except the target tnoign should be numeric at this point.

BASE CLASSIFIER USED:

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

Q14. Try using ensemble meta-classifier AdaBoostM1, using your most accurate classifier configuration

form Q12 as its base classifier. What base classifier did you select, and does it improve performance over

Q12 in terms of Kappa by more than .02 of 1.0 of the non-boosted Result of Q12? Show your Result as

before. All attributes except the target tnoign should be numeric at this point.

BASE CLASSIFIER USED:

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

Q15. Try using ensemble meta-classifier RandomForest, which uses RandomTree as its base classifier,

running 100 RandomTrees by default. Does it improve performance over Q12 in terms of Kappa by more

page 9

than .02 of 1.0 of the non-boosted Result of Q12? Show your Result as before. All attributes except the

target tnoign should be Normalized numeric at this point.

Correctly Classified Instances N N.N %

Incorrectly Classified Instances N N.N %

Kappa statistic N.N

Q16. What accounts for any performance improvements in terms of kappa in Q13 Q14 and Q15 over Q12

results?

For Q17 through Q20 I used the following bash shell script to create these files.
csc558wnTrain100sp2023.arff 100 initial training instances from csc558wn10Ksp2023NoTid0.arff.

csc558wnTest9900sp2023.arff 9900 remaining test instances from csc558wn10Ksp2023NoTid0.arff.

csc558wnTrain100Rndsp2023.arff 100 random-order instances from csc558wn10Ksp2023NoTid0.arff.

csc558wnTest9900Rndsp2023.arff 9900 other random instances from csc558wn10Ksp2023NoTid0.arff.

Bash script maker.sh. The non-SHUFFLED, non-Rnd instances are in original order.
echo "making 100 training instances in csc558wnTrain100sp2023.arff"

bash -c "echo '@relation csc558wnTrain100sp2023' >

csc558wnTrain100sp2023.arff"

bash -c "grep @ csc558wn10Ksp2023NoTid0.arff | grep -v @relation >>

csc558wnTrain100sp2023.arff"

bash -c "grep ^[0-9] csc558wn10Ksp2023NoTid0.arff | head -100 >>

csc558wnTrain100sp2023.arff"

echo "making 9900 test instances in csc558wnTest9900sp2023.arff"

bash -c "echo '@relation csc558wnTest9900sp2023' >

csc558wnTest9900sp2023.arff"

bash -c "grep @ csc558wn10Ksp2023NoTid0.arff | grep -v @relation >>

csc558wnTest9900sp2023.arff"

bash -c "grep ^[0-9] csc558wn10Ksp2023NoTid0.arff | tail -9900 >>

csc558wnTest9900sp2023.arff"

The SHUFFLED, Rnd instances are in random order
bash -c "grep ^[0-9] csc558wn10Ksp2023NoTid0.arff | sort --random-sort >

junk.txt"

echo "making 100 SHUFFLED training instances in

csc558wnTrain100Rndsp2023.arff"

bash -c "echo '@relation csc558wnTrain100Rndsp2023' >

csc558wnTrain100Rndsp2023.arff"

bash -c "grep @ csc558wn10Ksp2023NoTid0.arff | grep -v @relation >>

csc558wnTrain100Rndsp2023.arff"

bash -c "head -100 < junk.txt >> csc558wnTrain100Rndsp2023.arff"

echo "making 9900 SHUFFLED test instances in csc558wnTest9900Rndsp2023.arff"

bash -c "echo '@relation csc558wnTest9900Rndsp2023' >

csc558wnTest9900Rndsp2023.arff"

bash -c "grep @ csc558wn10Ksp2023NoTid0.arff | grep -v @relation >>

csc558wnTest9900Rndsp2023.arff"

bash -c "tail -9900 < junk.txt >> csc558wnTest9900Rndsp2023.arff

Q17. Load csc558wnTrain100sp2023.arff in the Preprocess tab as the training set, and set

csc558wnTest9900sp2023.arff to be the supplied test set in the Classify tab. Do NOT Normalize or

Discretize any attributes from Q17 through Q20. Run M5P and record its Results here. How many rules

(linear formulas) does M5P generate?

page 10

Number of Rules : N

Correlation coefficient ?

Mean absolute error ?

Root mean squared error ?

Relative absolute error ? %

Root relative squared error ? %

Total Number of Instances 9900

Q18. Load csc558wnTrain100Rndsp2023.arff in the Preprocess tab as the training set, and set

csc558wnTest9900Rndsp2023.arff to be the supplied test set in the Classify tab. Run M5P and record its

Results here. How many rules (linear formulas) does M5P generate?

Number of Rules : N

Correlation coefficient ?

Mean absolute error ?

Root mean squared error ?

Relative absolute error ? %

Root relative squared error ? %

Total Number of Instances 9900

Q19. Before I removed tosc from your handout data, the instances were in the following order by tosc

values. They remained in this order until my shell script randomized instance order in

csc558wnTrain100Rndsp2023.arff and csc558wnTest9900Rndsp2023.arff. Note the five

initial, 0-noise instances that you have deleted at the start of the current assignment in the above command

output:

$ grep Osc csc558lazyraw10005sp2018.arff | cut -d, -f2 |uniq -c

 1 'PulseOsc'

 1 'SawOsc'

 1 'SinOsc'

 1 'SqrOsc'

 1 'TriOsc'

 2000 'PulseOsc’

 2000 'SawOsc'

 2000 'SinOsc'

 2000 'SqrOsc'

 2000 'TriOsc'

What accounts for the improvement in accuracy measures in going from Q17 to Q18? Note that before

randomization, instances in file csc558wn10Ksp2023NoTid0.arff were in the same order as they are in the

above csc558lazyraw10005sp2018.arff file.

Q20. Can you improve performance of M5P further by bagging it? Give Results showing improvement, or

explain why this attempt at improvement fails. Make sure to use the randomized training and test files

csc558wnTrain100Rndsp2023.arff and csc558wnTest9900Rndsp2023.arff of Q18, with M5P as the base

classifier.

Correlation coefficient ?

Mean absolute error ?

Root mean squared error ?

Relative absolute error ? %

page 11

Root relative squared error ? %

Total Number of Instances 9900

