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CSC 558 Data Mining and Predictive Analytics II, Fall 2023 

Dr. Dale E. Parson, Assignment 2, Classification of audio data samples from assignment 1 for 

predicting numeric white-noise amplification level for the signals’ generators.1 We will also 

investigate discretizing the white-noise target attribute (class) and other non-target attributes. 

 

DUE By 11:59 PM on Monday March 13, 2023 via D2L Assignment 2. The standard 10% per day 

deduction for late assignments applies. 

 

There will be one in-class work session for this assignment. Start early and come prepared to ask questions. 

The 13th is the start of spring break, so no office hours that day. The preceding weeks’ office hours are at 

usual times & modalities. 

 

Download the following ZIP file via a web browser and unzip. 

 

https://acad.kutztown.edu/~parson/whitenoise558sp2023.problem.zip  

 

You can do all your work on a Kutztown PC or your home machine, no need for acad. 

 

You will see the following files in this whitenoise558sp2023 directory: 

 

README.txt  Your answers to Q1 through Q20 below go here, in the required format. 

csc558wn10Ksp2023.arff The handout ARFF file for assignment 2, wn means white noise. 

The following four files are from csc558wn10Ksp2023.arff without the five tnoign==0 instances. 

csc558wnTrain100sp2023.arff 100 initial-order training instances from csc558wn10Ksp2023NoTid0.arff. 

csc558wnTest9900sp2023.arff 9900 remaining initial-order test instances of csc558wn10Ksp2023NoTid0.arff. 

csc558wnTrain100Rndsp2023.arff 100 random-order instances from csc558wn10Ksp2023NoTid0.arff. 

csc558wnTest9900Rndsp2023.arff 9900 other random instances from csc558wn10Ksp2023NoTid0.arff. 

 

ALL OF YOUR ANSWERS FOR Q1 through Q20 BELOW MUST GO INTO THE README.txt 

file supplied as part of assignment handout directory whitenoise558sp2023. You will lose an automatic 

20% of the assignment if you do not adhere to this requirement. 

 

1. Open csc558wn10Ksp2023.arff in Weka’s Preprocess tab. This is the same dataset used for assignment 

1, with AddExpression’s derived attributes already in place, and with tosc and tid removed; tagged 

numeric attribute tnoign, which is the gain on the white-noise generator, is the class (a.k.a. target 

attribute) of assignment 2. Where assignment 1 had a nominal attribute as the class, this assignment has 

tnoign as a numeric class attribute. 

 

Here are the attributes in csc558wn10Ksp2023.arff. 

 

centroid Raw spectral centroid extracted from the audio .wav file. 

rms  Raw root-mean-squared measure of signal strength extracted from the audio .wav file. 

roll25  Raw frequency where 25% of the energy rolls off, extracted from the audio .wav file. 

roll50  Raw frequency where 50% of the energy rolls off, extracted from the audio .wav file. 

 
1 See Assn1AudioOverview http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html and in-class 
discussion on the Zoom archives. 

https://acad.kutztown.edu/~parson/whitenoise558sp2023.problem.zip
http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html
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roll75  Raw frequency where 75% of the energy rolls off, extracted from the audio .wav file. 

amplbin1 through amplbin19 Normalized amplitudes of 1st through 19th overtones of the fundamental. 

Filter RemoveUseless has removed amplbin0 because of its constant value of 1.0. 

 

Raw indicates an attribute that you normalized in assignment 1 to the reference fundamental frequency or 

amplitude.  Attributes centrfreq, roll25freq, roll50freq, roll75freq, nc, n25, n50, n75, and normrms are 

Derived Attributes we created in assignment 1. Even though they are redundant with attributes from which 

they derive, they turn out to be useful for fine-tuning classifiers. We are keeping them for now. There are 

34 attributes in the ARFF data of this assignment. 

 

tnoign  Target white noise signal gain passed to the audio generator in the range [0.0, 1.0]. 

  Except for the five tnoign=0.0 samples that we will remove, the signal generator for 

  this dataset generates tnoign in the range [0.1, 0.25). Note the Weka Preprocess 

statistics for tnoign below. 

 

 
 

Figure 1: Class attribute tnoign in the handout dataset. 

 
Since this assignment is about predicting white noise gain tagged as attribute tnoign, it is important to 

review the definition of white noise. As linked from Assn1AudioOverview, “White noise is a random signal 

having equal intensity at different frequencies, giving it a constant power spectral density…In discrete time, 

white noise is a discrete signal whose samples are regarded as a sequence of serially uncorrelated random 

variables with zero mean and finite variance.2” This white noise signal is distinct from the Sine, Triangle, 

Square, Sawtooth, and Pulse wave signals that were the focus of assignment 1, added into the composite 

signal with a random gain in the range [0.5, 0.75). The dataset of assignments 1 and 2 add white noise with 

a random gain in the range [0.1, 0.25) to each signal-record in the dataset, with 5 exceptions that you will 

remove in step 2 below. Compare the frequency domain plot of the noiseless 1000 Hz training sine wave 

of assignment 13 with the 1001 Hz sine wave with a tnoign= 0.139453694281 used as a noise-bearing 

training instance in assignment 14. Both peak at about 1000 Hz, but the signal without white noise loses 

 
2 Wikipedia page on white noise https://en.wikipedia.org/wiki/White_noise , quotation checked for accuracy. 
3 http://faculty.kutztown.edu/parson/fall2023/lazy1_SinOsc_1000_0.9_0.0_0.FREQ.png 
4 http://faculty.kutztown.edu/parson/fall2023/lazy1_SinOsc_1001_0.500235007566_0.139453694281_615143.FREQ.png 

https://en.wikipedia.org/wiki/White_noise
http://faculty.kutztown.edu/parson/spring2020/lazy1_SinOsc_1000_0.9_0.0_0.FREQ.png
http://faculty.kutztown.edu/parson/spring2020/lazy1_SinOsc_1001_0.500235007566_0.139453694281_615143.FREQ.png
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most of its strength after that. The signal with tnoign= 0.139453694281 white noise falls off considerably 

less, maintaining an almost constant signal strength all the way to the Nyquist frequency of 22050 Hz. The 

contribution of white noise at each frequency is random and seemingly small, but the net contribution of 

white noise is to add signal strength evenly across the frequency spectrum. We are trying to determine that 

contribution based strictly on audio data in the WAV files in this assignment. Important points to note 

include the following. 

 

• Most of the frequency spectrum in the range [0, 22050] Hz lies above the non-noise signal generation (sine, 

triangle, etc.) fundamental frequency of [100, 2000] Hz. White noise spans the [0, 22050] Hz range. While 

the non-sine waves contribute harmonics that push measures such as centroid and the rolloff frequencies 

higher than the fundamental frequency, white noise pushes these measures even further up the frequency 

spectrum because it spans the [0, 22050] Hz range. 

 

• White noise contributes additional power beyond the non-noise signals across the wave + white noise 

signal. Attribute rms is the measure of power across the time-varying, time-domain signal. Unlike the 

normalized fundamental frequency of amplbin0, which represents only the strongest frequency component 

of a signal, rms integrates signal strength across the frequency spectrum. 

 

The five tnoign=0.0 samples illustrated in Figure 1 are outliers in relation to the other 10,000 instances. 

 

2. Use Weka’s Unsupervised -> Instance -> RemoveWithValues Preprocess filter to remove the five 

outlying instances with tnoign=0.0. Use the attributeIndex to select tnoign, use the splitPoint to select 

a value for this attribute above which OR below which instances will be discarded, using 

invertSelection if necessary to change the direction of the split. Successful application of 

RemoveWithValues to tnoign results in 10,000 instances with tnoign in the range [0.1, 0.25), which is 

the range of white noise gain for the signal generator. SAVE THIS 10000-INSTANCE DATASET 

INTO FILE csc558wn10Ksp2023NoTid0.arff. 

 

Q1: What is your exact RemoveWithValues command line from the top of Weka’s Preprocess tab? 

 

3. Run Classify -> Functions -> LinearRegression using 10-fold cross-validation on this 10,000-instance 

dataset. 

 

Q2: Paste the following measures into README.txt Q2. We will use Correlation coefficient as the primary 

measure of accuracy in this assignment. 

 

Correlation coefficient                  n.n 

Mean absolute error                      n.n 

Root mean squared error                  n.n 

Relative absolute error                 n.n % 

Root relative squared error             n.n % 

Total Number of Instances            10000  

 

Examine the Weka LinearRegression formula that starts out like this: 

 

Linear Regression Model 

 

tnoign = 

      C.c * centroid + 
      C.c * rms + 

      … 
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     -0.4307 

 

Q3: In terms of absolute value of the coefficients C.c, what are the top six, starting with the one with the 

highest magnitude in descending order? Include the ones with minus signs in front of them, using their 

magnitude (absolute value) to determine their ranking. Negative coefficients occur in one of two ways: a) 

the attribute being multiplied has a negative correlation with the target numeric attribute, which is still an 

informative correlation, or b) the negative coefficient is an adjustment for a positive coefficient elsewhere 

in the formula. The second case usually occurs for nominal non-target attributes that appear more than once 

in the formula. Do not use the constant, non-multiplier value at the end of the formula. Here is the first line 

of your answer; supply the other 5. 

 

      9.1739 * rms + 

 

Q4: Apply the unsupervised -> attribute -> Normalize preprocessing filter to all attributes using its default 

configuration parameters. With its default parameters Normalize adjusts each attribute except target tnoign  

to a value in the range [0.0, 1.0] using the formula (value – min) / (max – min) for the min and max of that 

attribute. Check several attributes to see the [0.0, 1.0] range and make sure tnoign has not been Normalized. 

Again run LinearRegression and paste the following measures into README.txt Q4: 

 

Correlation coefficient                  n.n 

Mean absolute error                      n.n 

Root mean squared error                  n.n 

Relative absolute error                 n.n % 

Root relative squared error             n.n % 

Total Number of Instances            10000  

 

Q5: In terms of absolute value of the coefficients C.c for this Normalized LinearRegression model, what 

are the top six, starting with the one with the highest magnitude in descending order? Use the approach to 

coefficient absolute values that you used for Q3. List which attributes have been Removed from the top 

six, which have been Added, and which have been Retained. 

 

Figure 1 shows the non-target attribute with the highest magnitude LinearRegression coefficient along the 

X axis at the top plot from Weka’s Visualize tab, the second highest magnitude coefficient in the middle, 

and the third highest magnitude coefficient at the bottom. The Y axis shows target attribute tnoign. The 

centers of their slopes are rather steep. A vertical slope would be useless because all values of tnoign would 

correlate with a single value of the non-target attribute. A horizontal slope would be useless because all 

values of the non-target attribute would correlate with a single value of tnoign. Use Weka’s Visualize tab 

to see that most other attributes have much more scattered correlations of the non-target attributes to tnoign. 
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Figure 1 

 

Q6: For some datasets Normalization to the range [0.0, 1.0] or some other fixed range addresses the problem 

of making some attributes appear more important in the LinearRegression formula than they are when 

interpreting the formula. Which attribute had the highest coefficient C.c in your answer to Q2 & Q3, and 

what happened to that attribute’s importance in Normalized Q4 & Q5 relative to other attributes? Why was 

its coefficient C.c so very high in Q2 compared to Normalized Q4? (Hint: You probably need to execute 

Undo in the Preprocess tab to see its original range of min and max values to answer this question.) 

 

Q7: Re-Normalize if necessary to get Normalized non-target attributes. Continue using Normalized non-
target attributes unless otherwise instructed. Run Classify -> Trees -> M5P model tree on this 10,000-

instance Normalized dataset, and record the Results (not the Model) for Q7. How do the M5P Results 
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(correlation coefficient and error measures) compare with those of LinearRegression for this Normalized 

dataset? Make sure to include M5P’s Number of Rules measure, which is the number of leaf-linear-

regression formulas in the M5P decision tree. (Note: If you executed Undo to discard Normalization in 

answering Q6, you will need to run the Normalize attribute filter now.) 

 

Number of Rules : N 

Correlation coefficient                  ? 

Mean absolute error                      ? 

Root mean squared error                  ? 

Relative absolute error                 ? % 

Root relative squared error             ? % 

Total Number of Instances            10000 

 

Q8: Continue using the Normalized dataset. Run the instance-based (lazy) classifier IBk repeatedly with its 

default configuration parameters, increasing the KNN (number of nearest neighbors with tnoign values to 

be averaged together) parameter on each run until its performance begins to degrade, inspecting only 

correlation coefficient for its peak. If CC hits a plateau, keep going until it goes up or down. What lowest 

value of KNN gives the most accurate result in terms of correlation coefficient? Shows its Results. 

 

KNN = N 

Correlation coefficient                  n.n? 

Mean absolute error                      n.n? 

Root mean squared error               n.n ?  

Relative absolute error                  n.n? % 

Root relative squared error            n.n? % 

Total Number of Instances            10000 

 

Q9: Run the instance-based (lazy) classifier IBk one more time with its KNN as determined in Q8, then run 

it again after changing the nearest neighbor search algorithm from LinearNNSearch to KDTree with default 

parameters, and run it again using BallTree instead of KDTree. What change in behavior or performance 

do you notice compared to using the default LinearNNSearch nearest neighbor search algorithm? 

 

In preparation for the next steps, run Preprocess filter Unsupervised -> Attribute -> Discretize on the target 

attribute tnoign, making sure to set the ignoreClass configuration parameter to true, allowing the Filter to 

Discretize target attribute tnoign (the Last attribute). Leave the useEqualFrequency parameter at false, leave 

bins at 10, and check tnoign before and after using the filter to make sure its distribution histograms look 

similar, and that it is not numeric after discretization. Do NOT discretize any numeric attributes other than 

tnoign. Check in the Preprocess tab to make sure no other attributes are discretized. 

 

Q10: Now, run Preprocess filter Unsupervised -> Attribute -> Discretize on all remaining attributes with 

useEqualFrequency parameter at the default false and bins at 10. Inspect some of them in the Preprocess 

tab. Run classifiers rule OneR, tree J48, BayesNet, and instance (lazy) classifier IBk with the KNN 

parameter found in Q8 and nearest neighbor search algorithm of KDTree, and give their Results as outlined 

below, preceding each Result with the name of its classifier. 

 

OneR 

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

J48 
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Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

BayesNet 

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

IBk with the KNN parameter of  

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

Q11: Execute Preprocess -> Undo once, then check to make sure that only class tnoign is still Discretized. 

All other attributes except tnoign should be numeric. Now, run Preprocess filter Supervised -> Attribute -

> Discretize on all remaining attributes (not tnoign). Inspect some of them in the Preprocess tab. Supervised 

Discretization attempts to correlate the non-target attribute bins with the target attribute ahead of 

classification model building. Run classifiers rule OneR, tree J48, BayesNet, and instance (lazy) classifier 

IBk with the KNN parameter found in Q8 and nearest neighbor search algorithm of KDTree, and give their 

Results as in Q10, preceding each Result with the name of its classifier. Which classifiers became BETTER 

as measured by Kappa when compared with Q10, and which became WORSE. Just write BETTER or 

WORSE or SAME behind their classifier names. 

 

OneR 

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

J48 

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

BayesNet 

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

IBk with the KNN parameter of  

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

Q12: Execute Preprocess -> Undo once, then check to make sure that only class tnoign is still Discretized. 

All other attributes except tnoign should be numeric. Run classifiers rule OneR, tree J48, BayesNet, and 

instance (lazy) classifier IBk with the KNN parameter found in Q8 and nearest neighbor search algorithm 

of KDTree, and give their Results as before, preceding each Result with the name of its classifier. Which 

classifiers became BETTER as measured by Kappa when compared with Q10, and which became WORSE. 

Just write BETTER or WORSE  or SAME behind their classifier names. 
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OneR 

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

J48 

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

BayesNet 

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

IBk with the KNN parameter of  

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

In general, increasing the resolution of the non-target attributes by keeping them numeric may help accuracy 

of prediction, since discretized non-target attributes only approximate the precision found in numeric non-

target attributes. Unfortunately, precise numeric attributes may be harder for some classifiers to analyze. 

Bayesian analysis, for example, does its own discretization of numeric non-target attributes; this 

discretization may be better or worse than the Supervised Weka discretization filter at correlating non-target 

attributes to the target class. 

 

Q13. All attributes numeric except tnoign should still be numeric and Normalized to the range [0.0, 1.0]. 

Try using ensemble meta-classifier Bagging, using your most accurate classifier (in terms of Kappa) 

configuration from Q12 as its base classifier. What base classifier did you select, and does it improve 

performance over Q12 in terms of Kappa by more than .02 of 1.0 of the non-bagged Result of Q12? Show 

your Result as before. All attributes except the target tnoign should be numeric at this point. 

 

BASE CLASSIFIER USED: 

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

Q14. Try using ensemble meta-classifier AdaBoostM1, using your most accurate classifier configuration 

form Q12 as its base classifier. What base classifier did you select, and does it improve performance over 

Q12 in terms of Kappa by more than .02 of 1.0 of the non-boosted Result of Q12? Show your Result as 

before. All attributes except the target tnoign should be numeric at this point. 

 

BASE CLASSIFIER USED: 

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

Q15. Try using ensemble meta-classifier RandomForest, which uses RandomTree as its base classifier, 

running 100 RandomTrees by default. Does it improve performance over Q12 in terms of Kappa by more 
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than .02 of 1.0 of the non-boosted Result of Q12? Show your Result as before. All attributes except the 

target tnoign should be Normalized numeric at this point. 

 

Correctly Classified Instances        N               N.N % 

Incorrectly Classified Instances      N               N.N   % 

Kappa statistic                          N.N 

 

Q16. What accounts for any performance improvements in terms of kappa in Q13 Q14 and Q15 over Q12 

results? 

 

For Q17 through Q20 I used the following bash shell script to create these files. 
csc558wnTrain100sp2023.arff  100 initial training instances from csc558wn10Ksp2023NoTid0.arff. 

csc558wnTest9900sp2023.arff  9900 remaining test instances from csc558wn10Ksp2023NoTid0.arff. 

csc558wnTrain100Rndsp2023.arff 100 random-order instances from csc558wn10Ksp2023NoTid0.arff. 

csc558wnTest9900Rndsp2023.arff 9900 other random instances from csc558wn10Ksp2023NoTid0.arff. 

 

Bash script maker.sh. The non-SHUFFLED, non-Rnd instances are in original order. 
echo "making 100 training instances in csc558wnTrain100sp2023.arff" 

bash -c "echo '@relation csc558wnTrain100sp2023' > 

csc558wnTrain100sp2023.arff" 

bash -c "grep @ csc558wn10Ksp2023NoTid0.arff | grep -v  @relation >> 

csc558wnTrain100sp2023.arff" 

bash -c "grep ^[0-9] csc558wn10Ksp2023NoTid0.arff | head -100 >> 

csc558wnTrain100sp2023.arff" 

echo "making 9900 test instances in csc558wnTest9900sp2023.arff" 

bash -c "echo '@relation csc558wnTest9900sp2023' > 

csc558wnTest9900sp2023.arff" 

bash -c "grep @ csc558wn10Ksp2023NoTid0.arff | grep -v  @relation >> 

csc558wnTest9900sp2023.arff" 

bash -c "grep ^[0-9] csc558wn10Ksp2023NoTid0.arff | tail -9900 >> 

csc558wnTest9900sp2023.arff" 

 

The SHUFFLED, Rnd instances are in random order 
bash -c "grep ^[0-9] csc558wn10Ksp2023NoTid0.arff | sort --random-sort > 

junk.txt" 

echo "making 100 SHUFFLED training instances in 

csc558wnTrain100Rndsp2023.arff" 

bash -c "echo '@relation csc558wnTrain100Rndsp2023' > 

csc558wnTrain100Rndsp2023.arff" 

bash -c "grep @ csc558wn10Ksp2023NoTid0.arff | grep -v  @relation >> 

csc558wnTrain100Rndsp2023.arff" 

bash -c "head -100 < junk.txt >> csc558wnTrain100Rndsp2023.arff" 

echo "making 9900 SHUFFLED test instances in csc558wnTest9900Rndsp2023.arff" 

bash -c "echo '@relation csc558wnTest9900Rndsp2023' > 

csc558wnTest9900Rndsp2023.arff" 

bash -c "grep @ csc558wn10Ksp2023NoTid0.arff | grep -v  @relation >> 

csc558wnTest9900Rndsp2023.arff" 

bash -c "tail -9900 < junk.txt >> csc558wnTest9900Rndsp2023.arff 

 

Q17. Load csc558wnTrain100sp2023.arff in the Preprocess tab as the training set, and set 

csc558wnTest9900sp2023.arff to be the supplied test set in the Classify tab. Do NOT Normalize or 

Discretize any attributes from Q17 through Q20. Run M5P and record its Results here. How many rules 

(linear formulas) does M5P generate? 
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Number of Rules : N 

Correlation coefficient                  ? 

Mean absolute error                      ? 

Root mean squared error                  ? 

Relative absolute error                 ? % 

Root relative squared error             ? % 

Total Number of Instances             9900   

 

Q18. Load csc558wnTrain100Rndsp2023.arff in the Preprocess tab as the training set, and set 

csc558wnTest9900Rndsp2023.arff to be the supplied test set in the Classify tab. Run M5P and record its 

Results here. How many rules (linear formulas) does M5P generate? 

 

Number of Rules : N 

Correlation coefficient                  ? 

Mean absolute error                      ? 

Root mean squared error                  ? 

Relative absolute error                 ? % 

Root relative squared error             ? % 

Total Number of Instances             9900 

 

Q19. Before I removed tosc from your handout data, the instances were in the following order by tosc 

values. They remained in this order until my shell script randomized instance order in 

csc558wnTrain100Rndsp2023.arff  and csc558wnTest9900Rndsp2023.arff. Note the five 

initial, 0-noise instances that you have deleted at the start of the current assignment in the above command 

output: 

 

$ grep Osc csc558lazyraw10005sp2018.arff | cut -d, -f2 |uniq -c 

      1 'PulseOsc' 

      1 'SawOsc' 

      1 'SinOsc' 

      1 'SqrOsc' 

      1 'TriOsc' 

   2000 'PulseOsc’ 

   2000 'SawOsc' 

   2000 'SinOsc' 

   2000 'SqrOsc' 

   2000 'TriOsc' 

 

What accounts for the improvement in accuracy measures in going from Q17 to Q18? Note that before 

randomization, instances in file csc558wn10Ksp2023NoTid0.arff were in the same order as they are in the 

above csc558lazyraw10005sp2018.arff file. 

 

Q20. Can you improve performance of M5P further by bagging it? Give Results showing improvement, or 

explain why this attempt at improvement fails. Make sure to use the randomized training and test files 

csc558wnTrain100Rndsp2023.arff and csc558wnTest9900Rndsp2023.arff of Q18, with M5P as the base 

classifier. 

 

Correlation coefficient                  ? 

Mean absolute error                      ? 

Root mean squared error                  ? 

Relative absolute error                 ? % 
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Root relative squared error             ? % 

Total Number of Instances             9900 


