

page 1

CSC 543 Multiprocessing & Concurrent Programming, Spring 2023

Dr. Dale E. Parson, Assignment 1, Thread-safe blocking queues in Producer -> Consumer Pipelines

This assignment is due by 11:59 PM on Friday February 16 via make turnitin.

The goals of this assignment are to: 1) Write your first multi-threaded Java program for the course, using

my single-threaded code as a starting point; 2) Use non-blocking Queue-derived classes and

BlockingQueue-derived classes from java.util.concurrent; 3) Compare the performance of the above

classes in a pipeline.

Perform the following steps to set up for this semester’s projects and to get my handout. Start out in your

login directory on acad or mcgonagall. We are using Java version 8 on mcgonagall because the newer

version on acad has some incompatibilities with Weka and jython tools that I hope to address in summer.

Documentation is here:

https://docs.oracle.com/javase/8/docs/api/index.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/package-summary.html

cd $HOME

 mkdir multip

 cp ~parson/multip/pipeline2023.problem.zip multip/pipeline2023.problem.zip

Log into mcgonagall via the ssh command from acad.

 ssh mcgonagall

This is a Linux machine with 32 contexts (hardware threads) and the same architecture as acad.

After logging into mcgonagall, do the following.

 cd ./multip

 unzip pipeline2023.problem.zip

 cd ./pipeline2023

 make test

Running make clean test should work OK and create output that looks something like this:

$ make clean test

/bin/rm -f *.o *.class .jar core *.exe *.obj *.pyc

/bin/rm -f *.class *.out *.dif *.tmp sink.out *.csv junk1.txt junk2.txt

/bin/rm -f /tmp/CSC543_*_parson.* ~parson/tmp/parsonsink.out

/bin/rm -f testtime.out testtime.txt

/bin/bash -c "CLASSPATH=..:./jcip-annotations.jar /usr/bin/javac PipeSinkFile.java"

/bin/bash -c "CLASSPATH=..:./jcip-annotations.jar /usr/bin/javac PipeSourceRandom.java"

/bin/bash -c "CLASSPATH=..:./jcip-annotations.jar /usr/bin/javac PipeStageMath.java"

/bin/bash -c "CLASSPATH=..:./jcip-annotations.jar /usr/bin/javac BigDecimalPipelineBuilder.java"

Note: BigDecimalPipelineBuilder.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

chmod +x testscript

STUDENT=parson bash -x ./testscript

https://docs.oracle.com/javase/8/docs/api/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/package-summary.html

page 2

+ runatest false false java.util.LinkedList

+ CLASSPATH=..:jcip-annotations.jar

+ /bin/time '--format=%e ELAPSED %U USERCPU %S SYSTEMCPU' java

pipeline2023.BigDecimalPipelineBuilder false false pipeline2023.PipeSourceRandom '12345 3000

3000' java.util.LinkedList pipeline2023.PipeStageMath + java.util.LinkedList

pipeline2023.PipeSinkFile sink.out

There are 32 contexts on this machine.

RUNNING java

pipeline2023.BigDecimalPipelineBuilder|false|false|pipeline2023.PipeSourceRandom|12345 3000

3000|java.util.LinkedList|pipeline2023.PipeStageMath|+|java.util.LinkedList|pipeline2023.PipeSinkFile|si

nk.out

2.58 ELAPSED 24.48 USERCPU 8.86 SYSTEMCPU

+ exitStatus=0

+ '[' 0 -ne 0 ']'

+ diff ./sink.out sink.ref

+ exitStatus=0

+ '[' 0 -ne 0 ']'

+ /bin/rm -rf ./sink.out

The test driver in class pipeline2023.BigDecimalPipelineBuilder builds a pipeline of concrete, active

objects derived from interface PipelineStage, alternating with connectors derived from interface

Queue<E>, with <E> bound to <java.math.BigDecimal []>.

A dataflow diagram for the pipeline constructed by BigDecimalPipelineBuilder, and a class diagram for

the classes in the project, appear on the next page. The pipeline generates a series of bursts of pseudo-

random java.math.BigDecimal values in the first stage, sums a given burst in the second, and writes the

summations to a file in the third. The second stage also supports multiplication, but the contribution of

multithreading is less helpful because the BigDecimal terms grow so big that memory consumption-based

paging comes to dominate execution time. My solution shows similar performance enhancements on all

test platforms for summation.

There are STUDENT comments in each of these files that outline your work.

$ grep 'STUDENT.*%' *.java testscript

BigDecimalPipelineBuilder.java: * STUDENT 4%: ANNOTATE CLASS AND CHECK FIELD TYPE

DECLARATIONS PER ASSN1 SPEC.

BigDecimalPipelineBuilder.java: // STUDENT 10%: CODE GOES HERE:

PipeSinkFile.java: * STUDENT 10%: ANNOTATE CLASS AND CHECK FIELD TYPE DECLARATIONS

PER ASSN1 SPEC.

PipeSinkFile.java: inbatch = inbq.poll(); // STUDENT: 2% CHANGE

TO BLOCKING CALL

PipeSourceRandom.java: * STUDENT 10%: ANNOTATE CLASS AND CHECK FIELD TYPE

DECLARATIONS PER ASSN1 SPEC.

PipeSourceRandom.java: oubq.add(result); // STUDENT 2%: CHANGE TO

BLOCKING CALL

PipeSourceRandom.java: oubq.add(eof); // STUDENT 2%: CHANGE TO BLOCKING

CALL

PipeSourceRandom.java: oubq.add(eof); // STUDENT 2%: CHANGE TO BLOCKING

CALL

PipeStageMath.java: * STUDENT 10%: ANNOTATE CLASS AND CHECK FIELD TYPE DECLARATIONS

PER ASSN1 SPEC.

PipeStageMath.java: inbatch = inbq.poll(); // STUDENT 2%:

CHANGE TO BLOCKING CALL

PipeStageMath.java: oubq.add(eof); // STUDENT 2%: CHANGE TO

BLOCKING CALL

page 3

PipeStageMath.java: oubq.add(outbatch); // STUDENT 2%: CHANGE TO

BLOCKING CALL

PipeStageMath.java: oubq.add(eof); // STUDENT 2%: CHANGE TO BLOCKING

CALL

testscript:# STUDENT 40% of assignment CODE TO GO AT THE BOTTOM:

For each Java class (not the interface) you must precede the class declarations with one of the annotations

from the textbook as found in jcip-annotations.jar (@NotThreadSafe, @ThreadSafe, and

@Immutable), and for the latter two categories, you must ensure that the classes satisfy that tag. The

annotation goes immediately before the class declaration in the code like this:

@Annotation (one of (@NotThreadSafe, @ThreadSafe, and @Immutable in place of @Annotation)

public class BigDecimalPipelineBuilder {

1. Make any data field private that does not have to be more openly exposed.

2. Make any data field that does not need to change after construction final. These would be all

fields for @Immutable. @Immutable applies if and only if all such final fields are a) primitive

types like integers, or b) immutable objects like java.lang.String, or c) mutable objects for which

your containing class never make mutations or provides methods for mutation on these objects

after construction. Category c is known as being effectively immutable.

page 4

3. Make any data field accessed by the Pipe* constructor call (which occurs in the main thread) and

the active object thread (which runs in the run() method) as final if possible, else volatile, since

we need to guarantee that changes made in the constructor are visible to the object’s run() thread.

We could get the same cache-consistency effect by locking the object, but we are not

programming with locks yet.

4. At the top of the run() method copy any volatile field into a local variable, and use that local

variable in the run() method. These volatile fields are not used outside the run() thread once it

begins; copying them for use into locals eliminates unnecessary cache flushes and main memory

fetches; local variables are thread-confined and not subject to inter-thread cache consistency

problems. (Note: If there are no volatile fields, you can ignore this requirement.)

I will be grading on all of these requirements. See rubric percentages on the previous page of this doc.

For the above Pipe* files, you need to change a number of non-blocking calls to blocking calls for

BlockingQueue objects. See STUDENT comments. Those blocking methods declare that they throw

java.lang.InterruptedException. In places where my handout code does not catch this exception, you must

catch and ignore it. There can be no InterruptedExceptions in this program because we do not use Java

interrupts for communication between threads. In later assignments we will use them. For now an empty

catch clause where mandated by the compiler is fine.

In BigDecimalPipelineBuilder you will find this comment:

// STUDENT write this block of code.

// Write code to run each pipeline stage in transformers

// in its own Thread (start running from transformers.get(0) in

// order to pump up the queues),

// See main thread in

// ~parson/multip/demo1spring2023/GarbledOutput.java

// for loops to construct, start, and join threads.

// STUDENT 10%: CODE GOES HERE:

Your solution in this block of code must start a Thread of execution in left-to-right sequence for each

pipeline stage, then join() each Thread after they have all started via Thread.join() (a separate join

loop).

Finally, you must add tests to script testscript, whose listing appears below. I have highlighted

requirements below. NOTES ADDED AFTER INITIAL DESIGN SPEC FOR ASSIGNMENT:

1. The classes that you add in the testscript runatest lines should all come from package

java.util.concurrent. Do not add Queue classes from java.util or elsewhere.

2. Try all classes from java.util.concurrent that implement the Queue<E> interface. Some of those

also implement the BlockingQueue<E> interface, for which you can also add the runatest

multithreading, blocking parameters of “true, true” in addition to “false, false” and “true, false”.

Do not consult base classes such as java.util.AbstractQueue<E> in determining which classes to

try. Not all valid classes in java.util.concurrent subclass such abstract base classes.

3. Some of these java.util.concurrent queue classes will not work for reasons that should be

obvious from their documentation. If not, ask in class or consult with Dr. Parson.

page 5

testscript

#!/bin/bash

testscript runs a series of tests for csc543 assignment 1 Spring 2023 D. Parson

HERE IS DR. PARSON'S HANDOUT TEST FUNCTION. KEEP IT UNCHANGED & CALL IT.

function runatest() {

 # Parameters:

 # $1 is USETHREADS

 # $2 is USEBLOCK

 # $3 is the name of the Queue class; use its full package path in the call.

 # $4 is 1 to exit on run-time error, 0 to not exit

 CLASSPATH=..:jcip-annotations.jar time java pipeline2023.BigDecimalPipelineBuilder $1 $2

pipeline2023.PipeSourceRandom "12345 3000 3000" $3 pipeline2023.PipeStageMath '+' $3

pipeline2023.PipeSinkFile sink.out

 exitStatus=$?

 if [$exitStatus -ne 0]

 then

 echo "TEST ERROR" 1>&2

 exit $exitStatus

 fi

 diff ./sink.out sink.ref > sink.dif

 exitStatus=$?

 if [$exitStatus -ne 0]

 then

 echo "DIFF ERROR" 1>&2

 exit $exitStatus

 fi

 /bin/rm -rf ./sink.out

}

1. HERE IS MY TEST. STUDENT TESTS GO AT THE BOTTOM.

runatest false false java.util.LinkedList # This is the first test.

The first "false" above is USETHREADS, and the second is USEBLOCK.

IF POSSIBLE:

You should run all of your tests with USETHREADS=false, and then, for the

Queue objects that are thread-safe, run again with USETHREADS=true.

For the Queue objects that are BlockingQueue objects, make a third test run

with USETHREADS=true and USEBLOCK=true.

We are testing the multithreaded

BlockingQueues using both their non-blocking and their blocking interfaces.

You may not be able to run some of the Queue types in all possible

testing configurations. For example, trying to write to a size-bounded

queue may throw an exception and kill the program. Also, some of the

queue type(s) in java.util.concurrent require constructor parameter(s), which

are not supported by this test setup. For the ones that you cannot run,

ADD A COMMENT line below explaining why you cannot run that set of

USETHREADS and USEBLOCK parameters.

STUDENT 40% of assignment CODE TO GO AT THE BOTTOM:

Write your tests, substituting for java.util.LinkedList a

page 6

thread-safe Queue or BlockingQueue class path,

and varying USETHREADS and USEBLOCK command line arguments as indicated in

the above paragraphs. Use blank line(s) to separate tests so I can see them.

NEXT ONE NOT THREAD SAFE, IT BLOWS UP IN PREP SOMETIMES.

runatest true false java.util.LinkedList

To earn all 40% you must test ALL Queue and BlockingQueue classes in package java.util.concurrent with the

correct arguments in testscript. Use all VALID combinations of USETHREADS and USEBLOCK for each queue

class you test.

Get all of your Queue and BlockingQueue classes for testscript from java.util.concurrent. As noted above,

some combinations of USETHREADS and USEBLOCK may not work for some of those classes, and in fact

some of the classes may not work with our test setup. Use ALL of the ones in java.util.concurrent that

complete without inherent errors (fix your bugs), and WRITE A COMMENT FOR EACH

Queue/BlockingQueue test line that does not work, and explain why.

NOTE THAT YOU WILL ONLY BE ADDING TEST LINES THAT LOOK LIKE THIS

runatest false false java.util.LinkedList # Replacing false with true and other Queue classes, but do not change

function runatest. It is already done.

Run make testtime to create a time-sorted execution profile of tests on each machine after you have the program

working. Profiling output appears in file testtime.txt. You must make testtime on mcgonagall.

Run make turnitin on one of our Linux machines by the due date. The late penalty is 10% per day, and I will not

accept solutions after I go over an assignment. Plan to attend class if possible and ask questions.

	CSC 543 Multiprocessing & Concurrent Programming, Spring 2023
	Dr. Dale E. Parson, Assignment 1, Thread-safe blocking queues in Producer -> Consumer Pipelines
	This assignment is due by 11:59 PM on Friday February 16 via make turnitin.
	Log into mcgonagall via the ssh command from acad.
	After logging into mcgonagall, do the following.
	There are STUDENT comments in each of these files that outline your work.
	I will be grading on all of these requirements. See rubric percentages on the previous page of this doc.
	NOTE THAT YOU WILL ONLY BE ADDING TEST LINES THAT LOOK LIKE THIS

