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Abstract  

The human brain and its learning mechanics are great secrets that researchers are still 

working on understanding, and revealing their mysteries. Despite the complexities of the 

human brain and its learning mechanics, researchers are able to recognize some obvious 

facts about the brain that improve its learning experience, such as, using small data sets 

and distributed sessions for training the brain is considered to be the most effective 

method for learning, whereas, cramming information, and traditional teaching methods 

such as stand-and-deliver lectures for long hours are proven to be ineffective and have 

very little results on the brain learning experience [1], because the brain cannot absorb 

this information and process it, and as a result it cannot develop the links between the 

neurons’ cells so the brain can acquire and retain the information. 

In our research, we work on finding machine learning models that are capable of learning 

from small datasets similar to the ones used for human learning, mimicking the best 

human brain learning method, and predicting results that are statistically similar to the 

results of short-term human learning on similar tasks.  

After considering multiple datasets to use in our research, we settled on the datasets of 

the Sonification research [2] that was led by Dr. Dale Parson for 2 years. The datasets of 

the Sonification research are very convenient and suitable for our research for many 

reasons.  

First, the datasets were very small which conform to our main theoretical concept of 

using small datasets for training the machine learning models.  
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Second, the Sonification research results are available and can be compared with the 

results of our machine learning models. 

Third, we will be able to employ the results of our research to benefit the completion of 

the Sonification research, in the sense that Dr. Parson will be using the result of our 

research which is represented by the Virtual Survey Listener Tool to test new 

Sonification approaches for finding the best one among all of the Sonification 

approaches. 
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Chapter 1 

	

1. Introduction 

	

Reverse engineering the human brain has been always a main objective for researchers. 

Many models and machine learning algorithms were developed for mimicking the brain 

learning mechanics, and inference process. Despite the progress these models have made, 

in many cases the results were deviating from the correct prediction for various reasons. 

Thus, researchers have dealt with these problems by introducing correction factors such 

as adding hidden variable, taking event order in consideration, and introducing quantum 

mechanics as possible solution for undetermined deficiencies.  

Since it is proven that human brain learning process is more efficient on a smaller data 

set, in our research, we will consider the size of the training data set as a new factor in 

training machine learning systems for finding the best performing model.  

Our research is tightly coupled with the Sonification Research [2], therefore, getting 

familiar with some of the terms such as Sonification, training dataset, and testing dataset, 

would be helpful for understanding the context of the research.  

Sonification is the aural counterpart to visualization. However, instead of mapping data 

attribute values to visual structure as in the case of visualization, Sonification maps data 

attribute values to properties of sound [3]. 

Training dataset is a set of data used to discover potentially predictive relationships [4]. 
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Testing dataset is a set of data used to assess the strength and utility of a predictive 

relationship [4]. 

We will use the same datasets and processes that were used in the Sonification research 

[2] for training the machine learning models. In the Sonification research, the researchers 

conducted a survey on many students to find out the best Sonification approach out of 

three different ones. The survey process was as follows: Each participant would listen to 

a small set of reference sounds for each of the Sonification approaches as a training 

phase, then the classification phase starts by making the participant listen to another set 

of sounds where the participant’s job is to classify each of these sounds as closest to one 

of the reference sounds that was trained on. This process is a common case for human 

learning experience, where we get exposed to a small set of data that the brain processes 

for making future decisions. In order to make the Sonification data usable in our research, 

we need to transform the audio wave files that the survey taker was listening to into data 

files that can be input to the machine learning models for training and classification. The 

performance of these models will be measured based on their results compared to the 

actual results of the Sonification survey.  
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Chapter 2 

	

1. Background 

	

1.1. What Is Machine Learning?  

Machine learning is subfield of computer science and artificial intelligence [5] that 

concentrates on developing self-learning programs that use pattern recognition and 

computational learning theory for finding data pattern on which the software rely for 

adapting their decision making strategy and improve their performance, without the need 

for explicit human interaction and coding.  

Machine learning and data mining overlap in the sense that both focused on finding 

patterns in the data sets. However, instead of re-forming these data to be comprehensible 

by human, in the case of data mining, machine learning uses these patterns to grow and 

improve their performance and decision making strategies [6]. 

Also, machine learning is used for tasks that are not feasible through classical designing 

and programming explicit algorithms. Such applications include spam filtering, optical 

character recognition (OCR), search engines and computer vision [7].  

1.2. What Are Different Types of Machine Learnings? 

Machine learning can be categorized in two different methods [8]:  

The first method classifies machine learning algorithms based on the nature of the data 

that is available for training the system as follows: 
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1) Supervised learning: the system is initialized with training data sets that are 

comprised of a system features data and their corresponding outputs, in order to 

allow the system to find general rules and patterns that can rely on for making 

future predictions and decisions. 

2) Unsupervised learning: In unsupervised learning, the system is fed data without 

labels, then the system will process the data in order to find different structures 

that can be used for clustering and other forms of statistical correlation.  

3) Reinforcement learning: The system interacts with dynamic environment in order 

to learn and gain more experience, in order to achieve a certain goal, such as a 

self-driving car program. 

 

The second method classifies machine learning based on the output of the system: 

1) Classification: In this type, the system is fed data that is classified into discrete 

classes; then the job of the system is to correctly classify new instances of data. 

This type falls under the supervised learning model.  

2) Regression: The output of this system is similar to the classification category, but 

there will be unlimited categories, therefore the output will be continuous. 

3) Clustering: the output of the system will be comprised of multiple groups that are 

not labeled. Unlike classification type where classes are known before hand, the 

groups will be inferred after the data processing. This type falls under the 

unsupervised learning model. 

4) Density estimation: The output will be the distribution of the input in some space. 
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5) Dimensionality reduction simplifies inputs by mapping them into a lower-

dimensional space. 

  

1.3. What Are Available Machine Learning Algorithms? 

Nowadays, there are a lot of machine learning algorithms; these algorithms can be 

grouped in many different ways. In this section we will follow the approach of grouping 

algorithms by their function similarity [9]. For our research purpose, we will get a brief 

introduction to some of the algorithm groups that were used for finding the best result 

algorithm. 

The list is not meant to be exhaustive, but it will be sufficient for having a good idea 

about these different groups. 

1.3.1. Bayesian Algorithms: 

Bayesian methods are those that explicitly apply Bayes’ Theorem for problems such as 

classification and regression. Bayes’ Theorem employs classical probability for inferring 

and predicting the result of a system. 

Bayes’ Theorem is represented mathematically in the following formula: 

P(H|E) = P(E|H) . P(H) / P(E) 

Equation	1	-	Bayes'	Theorem	

Where 

| denotes a conditional probability (so that (A|B) means A given B). 
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• H: stands for any hypothesis whose probability may be affected 

by data (called evidence below). Often there are competing hypotheses, and the 

task is to determine which is the most probable. 

• The evidence E corresponds to new data that were not used in computing the prior 

probability. 

• P(H): the prior probability, is the estimate of the probability of the 

hypothesis H before the data E, the current evidence, is observed. 

•  P(H|E), the posterior probability, is the probability of H given E, i.e., after E is 

observed. This is what we want to know: the probability of a hypothesis given the 

observed evidence. 

•  P(E|H) is the probability of observing E given H. As a function 

of E with H fixed, this is the likelihood – it indicates the compatibility of the 

evidence with the given hypothesis. The likelihood function is a function of the 

evidence, E, while the posterior probability is a function of the hypothesis, H. 

•  P(E) is sometimes termed the marginal likelihood or "model evidence". This 

factor is the same for all possible hypotheses being considered (as is evident from 

the fact that the hypothesis H does not appear anywhere in the symbol, unlike for 

all the other factors), so this factor does not enter into determining the relative 

probabilities of different hypotheses. 
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Figure	1	-	Bayesian	Algorithms	

In other words, and as we can see in figure 1, the inferred result, which is the posterior 

probability P(H|E),  is a function of the prior probability of the hypothesis P(H), and the 

likelihood for the observed data P(E|H).  

Therefore, to train a system that uses the Bayesian method, it requires big training data 

sets with a lot of instances for calculating accurate event probabilities. In addition, there 

is a need for a prior probability knowledge which is always a debatable subject. These 

needs do not align with our research objective of finding a machine learning model that 

requires small data set for training the system, therefore, we predicted that this group of 

algorithms will yield bad results. 

The most popular Bayesian algorithm implementations are: 
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• Naive Bayes: Class for building and training the classifier assuming that all values 

of a system attribute are independent of the values of any other attributes, given 

the class variable, therefore it is a special case of BayesNet classifier.1 

• Bayesian Network (BN): Class that is using various search algorithms and quality 

measures for building and training Bayesian Network classifiers. This algorithm 

provides data structures (network structure, conditional probability distributions, 

etc.) and facilities common to Bayes Network learning algorithms like K2 and B 

for searching and finding the structures in the data. 

• Gaussian Naive Bayes: Class for building Naive Bayes classifier that uses 

Gaussian distributions by default for numeric attributes. However, it has options 

to use supervised discretization or kernel density estimation. 

• Multinomial Naive Bayes:  Class for building and using a Multinomial Naive 

Bayes classifier, which is a specific instance of a Naive Bayes classifier that uses a 

multinomial distribution for each of the features.	

	

1.3.2. Association Rule Learning Algorithms 

Association rule learning is a method to extract rules that best explain observed 

relationships between variables in data.  

Following the original definition by Agrawal et al. [11] the problem of association rule 

mining is defined as: 

Let I= {i1,i2,i3,….,in} be a set of n binary attributes called items. 
																																																													
1	Machine	learning	algorithm	summaries	come	from	the	Weka	toolkit	on-line	documentation	[10].	
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Let  D= {t1,t2,t3,….,tm}  be a set of transactions called the database. 

Each transaction in D has a unique transaction ID and contains a subset of the items in I. 

A rule is defined as an implication of the form: 

X => Y 

Where 𝑋,𝑌 ∁ 𝐼 and  𝑋 ∩ 𝑌 = ∅ . 

Every rule is composed by two different sets of items, also known as item sets, X and Y, 

where X is called antecedent or left-hand-side (LHS) and Y consequent or right-hand-

side (RHS). 

	

Figure	2	-	Association	Rule	

The illustration in figure 2 shows three association rules. Each of them consist of multiple 

antecedents on the left hand side that belong to the set of items I, and the consequent that 

is shown on the right hand side and belong to the set of transactions D. 

The consequents are results of certain data pattern that are represented by the 

antecedents’ groupings. 
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The association rule method is used mainly for discovering regularities between data in 

large-scale transactions, so it can be exploited by an organization for data mining on 

large-scale of data. As a result, this machine learning method requires a big training set 

for extracting sufficient rules for more accurate prediction, an approach that does not 

align with our objective of finding a machine learning algorithm that can perform well 

with small training data set. 

The most popular association rule learning algorithm implementations are: 

• OneR: Class for building and using a 1R classifier; in other words, uses the 

minimum-error attribute for prediction, discretizing numeric attributes. 

• Apriori: Class for implementing an Apriori-type algorithm. Iteratively reduces the 

minimum support until it finds the required number of rules with the given 

minimum confidence. 

• Eclat: Classifier for building an Eclat algorithm. It is an internal classifier that is 

trained to predict the correct frame before the second classifier is trained to 

predict the actual class. 

 

1.3.3. Decision Tree Algorithms 

Decision tree methods, as the name indicates, use tree model for making decisions. These 

models use the attribute values as a determining factor for which path to follow in the 

decision tree, where each decision tree path leads to a specific prediction. Decision trees 
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can be used for classification and regression problems. Decision trees can be preferred 

choice because they are easy to understand, fast, and accurate. 

	

Figure	3	-	Decision	Tree	

The illustration in figure 3 shows a decision tree where each of the nodes represents a 

system attribute, and each directed edge or arrow that connects two nodes represents a 

distinct value for the attribute that the edge started from. The leaves of the tree represent 

the classes or predictions of the model. As we can see from the illustration, each distinct 

path leads to a certain prediction that depends on the data attribute’s values. 

Decision trees do not necessarily need a big data set to generate an accurate model, 

especially, if the training data set contains instances with distinctive and dominant 

attributes, where the values of the dominant features can determine and distinguish the 

target class. Therefore, modeling a system with a dominant set of features using decision 

tree is feasible with a small training data set that contains sufficient and distinguished 

information about the dominant attributes. As a result, by satisfying the previously 
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mentioned requirement for a system, decision tree model will become a possible 

candidate for our research, where a small training data set can be sufficient for generating 

a well-trained model.  

The most popular decision tree algorithms implementations are: 

• DecisionStump: Class for building and using a decision stump. Usually used in 

conjunction with a boosting algorithm. It does regression based on mean-squared 

error or classification based on entropy. Missing values are treated as a separate 

value. 

• RandomTree: Class for constructing a tree that considers K randomly chosen 

attributes at each node. Performs no pruning. Also has an option to allow 

estimation of class probabilities (or target mean in the regression case) based on a 

hold-out set (back-fitting). 

• RandomForest: Class for constructing a forest of RandomTree classifiers. 

• HoeffdingTree: A Hoeffding tree (VFDT) is an incremental, anytime decision tree 

induction algorithm that is capable of learning from massive data streams, 

assuming that the distribution generating examples does not change over time. 

Hoeffding trees exploit the fact that a small sample can often be enough to choose 

an optimal splitting attribute.  

• J48: Class for generating a pruned or unpruned C4.5 decision tree. 

• logistic model trees (LMT): Classifier for building logistic model trees, which are 

classification trees with logistic regression functions at the leaves.  
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• REPTree: Fast decision tree learner. Builds a decision/regression tree using 

information gain/variance and prunes it using reduced-error pruning (with back-

fitting).  

1.3.4. Instance-based Algorithms 

In instance-based learning model, the training data is saved in memory to be used later in 

the classification process, where the newly classified instances are compared with the 

saved training data using a similarity function and similarity measures for determining 

the best match of the new instance with the saved data for making the prediction. Since 

instance-based learning model is storing the training data in the memory, it is also called 

memory-based learning model.  

	

Figure	4	-	Instance-Based	Learning	

The illustration in figure 4 shows a new instance of data that is represented by the filled 

circle which could be belong to a test dataset, and multiple hollow circles that represent 

the classes on which the system is trained. These classes are normally saved in memory 

in the case of instance-based learning.  The arrows or edges that connect the filled circle 
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with the hollow circles in figure 4 represent the classification process, where the model 

classifies the new instance based upon a similarity function that measures the distance of 

the new instance from the classes that were trained on, then classify the instance 

accordingly. The similarity function varies based on the machine learning model that is 

used. 

The training and classification process of the instance-based learning models is very 

similar to the human learning and classification process, where in the case of human, the 

brain get exposed to a set of data that get processed and saved in the brain forming the 

prior knowledge, which is the counterpart to the training classes that are saved in the 

memory in an instance-based learning model, Then the brain classifies new data instances 

by measuring the similarity distance between the new data and the prior knowledge using 

some similarity functions. This is identical to the classification process of instance-based 

learning models.  

The similarity between both processes provides a strong hint about instance-based 

learning model being a strong candidate for mimicking human learning experience using 

small training datasets, which is the goal of our research. And it bears average correct 

results that are in the same range of human average correct results.  

The most popular instance-based algorithms implementations are: 

• KStar: is an instance-based classifier that is the class of a test instance and is 

based upon the class of those training instances similar to it, as determined by 
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some similarity function. It differs from other instance-based learners in that it 

uses an entropy-based distance function. 

• k-Nearest Neighbor (kNN): K-nearest neighbor classifier can select appropriate 

value of K based on cross-validation. Can also do distance weighting. 

• Locally Weighted Learning (LWL): Locally weighted learning classifier uses an 

instance-based algorithm to assign instance weights which are then used by a 

specified Weighted Instances Handler. It is capable of doing classification or 

regression. 

 

In our research we used KStar instance-based learner as a representative of instance-

based learning models. 

 

1.3.5. Ensemble Algorithms 

Ensemble machine learning model relies on combining multiple weaker machine learning 

models, which are created and trained separately using the same training data set, in order 

to create a strong model that uses certain function to make its overall prediction 

decisions. 
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Figure	5	-	Ensemble	Algorithms	

The illustration in figure 5 shows three boxes. Each represents a weak machine learning 

model that is trained separately using the same training dataset. The hollow circle in 

figure 5 represents the function of the ensemble learner that takes the output of every 

weak learner as an input; the arrows connecting the boxes with the circle represent this 

process; the function processes the data and produces the final prediction accordingly.  

This method is a very powerful technique, and each type of the ensemble learners has its 

own functionalities. 

The most popular ensemble algorithms implementations are: 

• AdaBoostM1 (Adaptive Boosting): Class for boosting a nominal class classifier 

using the Adaboost M1 method. Only nominal class problems can be tackled. 

Often dramatically improves performance, but sometimes over-fits. 

• Bootstrapped Aggregation (Bagging): Class for bagging a classifier to reduce 

variance. Can do classification and regression depending on the base learner.  
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• Stacked Generalization (blending): Combines several classifiers using the 

stacking method. Can do classification or regression. 

• Gradient Boosting Machines (GBM): Meta classifier that enhances the 

performance of a regression base classifier. Each iteration fits a model to the 

residuals left by the classifier on the previous iteration. Prediction is accomplished 

by adding the predictions of each classifier.  

 In terms of our research, ensemble learners were very successful in finding similar or 

even better results than human results with small data sets. We tested with AdaBoostM1, 

Bagging and RandomForest algorithms. These algorithms can be used in conjunction 

with many other types of learning algorithms to improve their performance where the 

output of the other learning algorithms ('weak learners') is combined into a weighted sum 

that represents the final output of the boosted classifier [10].  

 

1.4. What Is Machine Listening? 

Machine Listening is a method for extracting meaningful information from audio signals 

using machine learning algorithms.  

Machine Listening is an important concept for creating a system that is on par with 

humans. Since human is capable of interpreting audio signals using complex perceptual 

mechanism, a comparable system to human should be utilizing Machine listening 

technique for analyze the characteristics of audio signal and act upon it.  
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1.5. What Is Weka Tool? 

Weka is a popular machine learning implementation tool, developed at the University Of 

Waikato, New Zealand. It is free software licensed under the GNU General Public 

License [10]. 

Weka includes a variety of tools for visualization, data analysis, and predictive modeling, 

transforming datasets, such as the algorithms for discretization. Weka can be interacted 

with using command line interface or graphical user interface. Weka provides you with 

the ability to preprocess a dataset, feed it into a learning scheme, and analyze the 

resulting classifier and its performance. Weka workbench has functionality that provides 

the user with the ability of creating, training, and testing many machine learning 

classifiers such as regression, clustering, association rule, decision tree, ensemble, and 

many more classifiers. All classifiers in Weka take their input in the form of single 

relational table in the ARFF format described in the next section. 

Some machine learning practitioners consider Weka to be deficient because its training 

data sets must reside in main memory during learning. This requirement for memory 

residence is considered a weakness when dealing with very large datasets. However, 

because the focus of the present research is on small datasets amenable to fast human 

learning, Weka is a good fit for this research. 
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1.6. What is ARFF format? 

ARFF (Attribute Relation File Format) is a file format created for standardizing datasets 

representation.  

An ARFF file is an ASCII text file that describes a list of instances sharing a set of 

attributes. The file consists of a two-dimensional table of data (a relation), in which a 

column gives a single-valued attribute possessed by every instance in the data set, and a 

row is one instance, also known as record or tuple, in the data set. The ARFF file data is 

not normalized according to the rules of relational data; they are in first normal form. 

Attribute values of an ARFF file data can be unknown for a given instance. 

1.6.1. ARFF File Syntax 

Figure 6 shows an example of ARFF file syntax.  

The lines that beginning with a % sign are comments.  Following the comments at the 

beginning of the file are the name of the relation (weather) and a block defining the 

attributes (outlook, temperature, humidity, windy, play?). Nominal attributes are followed 

by the set of values they can take on, enclosed in curly braces. Values can include spaces; 

if so, they must be placed within quotation marks. Numeric values are followed by the 

keyword numeric. 

For more information about ARFF format you can refer to Weka data mining book [10]. 
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Figure	6	-	ARFF	file	for	the	weather	data 
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Chapter 3 

1. Scope of Data 

	

1.1. Sonification Research Overview 

Sonification research [2] was our main source of data that was used for training and 

testing the models in our project, thus, a detailed overview about the Sonification 

research will be useful in understanding the nature of the data sets, and it will provide a 

solid background for understanding the theoretical concept and the implementation goals 

of our research.  

We will start by defining some terms to familiarize ourselves with the processes used.  

Sonification is the aural counterpart to visualization. However, instead of mapping data 

attribute values to visual structure as in the case of visualization, Sonification maps data 

attribute values to properties of sound [3]. 

Parallel Coordinate Plotting: is a data visualization technique that provides means for 

graphing and exploring multidimensional relational datasets on a two-dimensional 

display [12]. 

The Sonification research supplying data to this study used Parallel Coordinate plotting 

along with some other algorithms for translating data sets into sounds to be used for 

perceptual exploration [2]. The similarity between the parallel coordinating plotting and 

time domain signal audio waveform, made the Sonification process possible. 
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The main objective of the Sonification research was to find the most effective 

Sonification approach among three other approaches (harmonic, melodic, and waveform) 

in terms of generating sounds that are distinguishable by listeners for classification 

purposes.  

In the process of preparing the research data, researchers plotted a dataset from previous 

studies [13] [14] using a homegrown software tool for parallel coordinate plotting to 

generate the graph shown in figure 7. Each thin multi-segment path represents one record 

in the dataset, intersecting a vertical axis at the point of the value for that record’s 

attribute. Also, the graph shows three thick paths and three Mid-thickness paths for the 

mean and population standard deviation, respectively, of three sets of instances. 

	

Figure	7	-	Parallel	Coordinates	Plot	of	22	of	the	106	attributes	in	the	Student	Work	Pattern	
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These mean paths were determined to be the reference instances based on the value 

ranges of certain attributes. The thick black path of mean values for class 0 instances are 

referred to as Reference Set 0, the thick medium-gray path of mean values for class 1 

instances are referred to as Reference Set 1, and the thick light-gray path of mean values 

for class 2 instances are referred to as Reference Set 2. Partitioning of instances into one 

of Set 0, Set 1, or Set 2 is an application-specific classification specific to the dataset. The 

sonification study and the present study take the classification of each instance as a given. 

The focus of the sonification study is to convert each instance of classification into 

sound; the focus of the present study is to recognize each classification in these sounds by 

using machine listening, which is machine learning applied to patterns in sound. 

Using the dataset instances and the reference dataset instances that were inferred from the 

parallel coordinate plotting graph, sonification generates sounds for each data record in 

the original dataset and for each of the three reference data instances respectively. 

Researchers repeated the Sonification process using three Sonification approaches, 

harmonic, melodic, and waveform. All three algorithms generate sounds in some relation 

to a baseline frequency, which is 220 Hz.  

The Harmonic Sonification Algorithm generates simultaneous notes in a chord and 

maintains two tables of frequencies, Sweet Notes and Sour Notes, that are in-scale and 

out-of-scale respectively for the baseline note of 220 Hz.  Sweet and Sour Note refers to 2 

different types of notes based on the frequency range that they belong to; so the generated 

sound is distinctive for each type. A high Sweet value, which comes from a close 

proximity to the Reference Set 0 (mean) value for an attribute being sonified, gives a 
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strong consonant (sweet) sound. A high Sour value, which comes from a distant 

proximity to the Reference Set 0 value for an attribute being sonified, gives a strong 

dissonant (sour) sound. Each sonified attribute contributes a mix of sweetness and 

sourness. The Sweet and Sour notes for each of the Sonification algorithms are generated 

using a helper algorithm that extracts two numeric values for the most distinguishing 

attributes in the dataset of mean values and the dataset of the data records. Then it 

computes the difference between an attribute being sonified and that attribute value for 

Reference Set 0, and based on the result, the algorithm assigns a Sweet weight and a Sour 

weight to that attribute [2]. Figure 8 shows the Sweet and Sour values as a function of 

attribute standard deviation. These Sweet and Sour strengths applied to each attribute’s 

distance-from-Reference-Set-0-mean is a non-linear step function at the boundaries of 

one sample standard deviation and two sample standard deviations from the Reference 

Set 0 mean value. “The most distinguishing attributes in the dataset” are 5 attributes that 

most clearly distinguish the closest Reference Set for the majority of data records in this 

dataset.	
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Figure	8	-	Sweet	and	Sour	values	as	a	function	of	attribute	standard	deviation	

The Melodic Sonification Algorithm (technically, a set of melodic intervals) generates 

note frequencies, amplitudes, and waveforms that are identical to the Harmonic 

Sonification approach, but it generates them to play only one attribute’s Sweet and Sour 

notes at a time, sequencing them across a 2 second duration. 

The Waveform Sonification Algorithm is substantially different from the other two; the 

five most distinguishing attributes of Figure 7 are sorted to approximate a triangular 

waveform for the Reference Set 0 mean values. 

After the completion of the Sonification processes, researchers conducted a survey where 

each listener classifies a data record’s sound as being closest to the reference sound of Set 

0, Set 1 or Set 2, thereby classifying the record as belonging to Set 0 or 1 or 2. The 

participant classifies a representative subset of the dataset that was sonified repeatedly for 

each of the three Sonification algorithms. At the end of the research, researchers were 

able to find the most effective approach based on the survey result data. 

 



26	
	

	

1.2. Sonic Survey Results 

The first sonic survey was conducted in fall of 2015 using the formerly mentioned 

algorithms. The results were in favor of the Waveform Sonification Algorithm as we can 

see in table 1. 

Sonification 
(Fall 2015) 

Category Mean correct 
responses 

Harmonic All 3 sets 55.8% 
Melodic All 3 sets 55.4% 

Waveform All 3 sets 61.4% 
	

Table	1	-	fall	2015	Sonification	survey	results 

The result was a surprise to the research leader Dr. Parson, who anticipated that 

Waveform Sonification Algorithm would be the worst Sonification approach among the 

three formerly mentioned Sonification algorithms. This result encouraged the researchers 

to develop new algorithms called WaveformDouble, WaveformFourThirds, and 

WaveformOnePt95 that are variations of the Waveform Sonification Algorithm. The 

details of these algorithms are explained later in chapter 6. The latter Sonification 

algorithms were surveyed in the spring of 2016 where the results are shown in Table 2.  

Sonification (Spring 
2016) 

Category Mean correct 
responses 

WaveformDouble All 3 sets 67.8% 
WaveformFourThirds All 3 sets 65.8% 
WaveformOnePt95 All 3 sets 67.6% 

	

Table	2	-	spring	2016	Sonification	Survey	Results 

In our research we used the spring of 2016 sonic survey results to compare with our 

machine learning models results for evaluating the models performance.  
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1.3. Nature of Data 

Now that we have a good overview of the Sonification research and its data, we can 

examine the benefits of using it in our research:  

First, the training data set, which comprises of the three reference sounds, is small, which 

makes it conform to our proposal of considering a small data set as new factor for 

training the models. 

Second, the training data set is different than the test data set, which is the most common 

case in human learning process, where the human will make a prediction by seeing 

completely new data, while using previous knowledge and seen data as reference point. 

Third, having two sets of data, one for training and another for testing, will help us in 

preventing the over-fitting problem. The reason for that is, we are predicting the accuracy 

of a classifier by using a testing data set that is completely different than the training data 

set. Thus, finding a classifier with good results, means that the classifier was trained well 

and not over-fitted. 

Fourth, the survey results are available to compare with the classifiers results in order to 

evaluate their performance, whether it is giving similar, better or worse performance than 

humans’ performance.  
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1.4. Data Transformation 

A data transformation step was required to make the data usable in our project, because 

the Sonification data sets are in the WAV audio file format. Therefore we need to 

transform these WAV files into data files that are consumable as an input by the machine 

learning models.  

In order to get a better understanding of the transformation process, we will start by 

defining a couple of terms: 

1. ChucK is a programming language for real-time sound synthesis and music 

creation. ChucK presents a unique time-based, concurrent programming 

model that's precise and expressive, dynamic control rates, and the ability to add 

and modify code on-the-fly [15]. 

2. Spectral centroid is a measure used in digital signal processing to characterize 

a spectrum. It indicates where the "center of mass" of the spectrum is. 

Perceptually, it has a robust connection with the impression of "brightness" of a 

sound [16].  

3. Audio power is the electrical power transferred from an audio amplifier to 

a loudspeaker, measured in watts.  

4. Roll-off is the steepness of a transmission function with frequency, particularly 

in electrical network analysis, and most especially in connection with filter circuits in 

the transition between a passband and a stopband. 

5. Fast Fourier transform (FFT) is an algorithm that computes the  Fourier transform of 

a sequence, or its inverse. Fourier analysis converts a signal from its original 
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domain (often time or space) to a representation in the frequency domain and vice 

versa. 

In order to do the transformation process, Dr. Parson created a ChucK program that 

analyzes the WAV files from the survey. It analyzes each WAV signal for a second 

and extracts the following data:  

• Centroid 

• RMS (root-mean-squared) power  

• 25% Roll-off point – frequency at which 25% of the energy has dissipated 

• 50% Roll-off point – frequency at which 50% of the energy has dissipated 

• 75% Roll-off point – frequency at which 50% of the energy has dissipated 

• 64-window FFT where FFT is the histogram of frequency strengths in the 

signal and it can be shown in Figure 9 for all of the three Reference sets of the 

waveform Sonification approach.  
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Figure	9-	Filtered	waveform	frequency-domain	spectra	for	Reference	Set	0,	Set	1,	and	Set	2	mean	values 

 

Then we pass the ChucK program output to python data-reformatting scripts for 

assembling the data and generating ARFF files that are consumable by Weka machine 

learning classifiers.  
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Chapter 4 

1. Design and Implementation 

	

1.1. Data Dissection 

As mentioned before, the goal is to find machine learning algorithms that are capable of 

mimicking human leaning experience using the same training data sets and producing 

results that are comparable to the human correctness average results. 

Now that we are familiar with the Sonification research data and transformation process, 

we will dig further into the structure of the datasets that we will be using for our research. 

After processing the WAV files, which were produced in the Sonification research and 

used in the survey, through the transformation steps that was explained earlier, we end up 

with three groups of datasets, each group corresponding to one of Sonification 

approaches and comprising 50 datasets , where a dataset is an ARFF file that comprises 

39 instances, each instance being the data that was generated in the transformation 

process of one WAV file used in the Sonification survey for one student. There are 39 

instances because the survey used 39 Sonified WAV files that are split evenly among the 

three classification reference Sounds. In another word, there are 13 instances for each of 

the classes and they are presented randomly in one survey. Therefore, an ARFF file in a 

dataset represents one student’s worth of survey data that can be entered into a machine 

learning model for classification. In addition, for each of the three groups there is one 

training ARFF file that contains the training instances that are generated from the 
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transformation process of the reference sounds WAV files. Thus, each of the groups has 

its own training dataset that corresponds to the Sonification approach that the group is 

representing. 

 

1.2. Weka Tool Limitation 

Knowing the structure of the datasets that we are working with allows us to define the 

steps that are needed to find the best performing machine learning model as follow: 

• Train the model using an ARFF training file that corresponds to one of the 

Sonification approaches, where the ARFF file is the representation of the training 

dataset that was used for training the students in the sonic survey for that 

particular Sonification approach. 

• Input the test data to the machine learning model for classification, where the test 

data is the set of all ARFF files that were generated from the WAV files of that 

Sonification approach and used in every student survey. 

• Calculate the average correct result and standard deviation for the results that 

were produced by the model using each of the ARFF files, and then calculate the 

overall average correct results of all averages. 

• Repeat the previous steps for every Sonification approach. 

• Repeat the steps for every possible machine learning model and its option 

variations. 
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Weka tool is very suitable choice for performing the previous steps, because it provides 

the implementations for all the selected machine learning models, and it provides great 

capabilities for generating the needed results, however, it lacks the scalability 

functionality that is needed for completing the models’ evaluation process. In our 

research, we need to run all the datasets through the permutation of every machine 

learning model with its options variations, then calculate the results as mentioned in the 

previous section for every machine learning model, then calculate the overall result for all 

models. Running all these experiments and extracting all the needed results is almost 

impossible without the help of an automated process, therefore, we designed and 

implemented a new tool that extends the capabilities of the Weka tool and allows us to 

get the results that we need in an easy and efficient automated process. This tool is called 

Machine Learning Evaluator Tool.  

1.3. What is The Machine Learning Evaluator Tool? 

The Machine Learning Evaluator Tool is a Java application that uses Weka as a library 

for extending and scaling Weka Tool capabilities. The Machine Learning Evaluator Tool 

is capable of: 

• Navigating through specified directories for loading training and testing datasets. 

• Training data models using training datasets. 

• Running test datasets against all possible permutations of classifiers and their 

options variations.  

• Extracting results for every classifier and dataset run. 
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• Calculating the overall result for each classifier for every option variation. 

• Filtering classifiers based on their average result’s correct percentages. 

• Saving detailed, summarized, and filtered results’ reports in csv and text files 

formats. 

 

1.4. Machine Learning Evaluator Tool Design and Implementation: 

The Machine Learning Evaluator Tool is designed in a modular way that makes it easy to 

maintain and scale, where each class is self-contained and responsible for achieving one 

job that is not shared with any other classes.   

In addition, adding new functionality such as adding a new machine learning evaluator is 

made simple and can be done by adding one class only, that extends the 

ClassifierEvaluator.java class and implements run() method.  

Also, classifiers configurations are consolidated in one class for ease of access in all 

classes.   

The Machine Learning Evaluator Tool UML Diagram  is shown in figure 10 
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Figure	10	-	Machine	Learning	Evaluator	UML	Diagram	
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The Machine Learning Evaluator Tool is comprised of the following Classes: 

1. SurveyEvaluator.java: Is the main class that parses the command line arguments, 

and runs the machine learning evaluators accordingly. 

2. ClassifierEvaluator.java: Is an abstract class to be extended by every machine 

learning evaluator class. It implements the functions that are shared between all 

evaluators and specifies the abstract functions that need to be implemented on 

every machine learning evaluator class. The main function in this class is the 

execute() method that contains the logic for applying a machine learning classifier 

using all its option variations on a specific dataset.  

3. ClassifierResult.java: As the name implies, this class contains the result of using a 

classifier with all its option variations. It contains a hash map that maps between 

each classifier option and the corresponding results, where the results consist of 

every dataset run using that particular option. Also it contains the average result 

and standard deviation for each option across all datasets results.  

4. EvaluationConfigurations.java: This class contains all the information that is 

needed for running the classifier’s evaluators such as classifiers’ options, and the 

information needed for storing the results.  

5. OptionResult.java: is a helper class that is used by ClassifierResult.java class. It 

carries the result of running one dataset on a particular classifier. The result is 

comprised of the average correct result, average wrong result and the standard 

deviation of running that particular dataset.  
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6. AdaBoostM1Evaluator.java: Is a driver class that runs the evaluation for 

AdaBoostM1 classifier against the provided datasets. 

7. BaggingEvaluator.java: Is a driver class that runs the evaluation for Bagging 

classifier against the provided datasets. 

8. BayesNetEvaluator.java: Is a driver class that runs the evaluation for BayesNet 

classifier against the provided datasets. 

9. DecisionStumpEvaluator.java: Is a driver class that runs the evaluation for 

DecisionStump classifier against the provided datasets. 

10. J48Evaluator.java: Is a driver class that runs the evaluation for J48 classifier 

against the provided datasets. 

11. KStarEvaluator.java: Is a driver class that runs the evaluation for KStar classifier 

against the provided datasets. 

12. MultilayerPerceptronEvaluator.java: Is a driver class that runs the evaluation for 

MultilayerPerceptron classifier against the provided datasets. 

13. NaiveBayesEvaluator.java: Is a driver class that runs the evaluation for 

NaiveBayes classifier against the provided datasets. 

14. OneREvaluator.java: Is a driver class that runs the evaluation for OneR classifier 

against the provided datasets. 

15. RandomForestEvaluator.java: Is a driver class that runs the evaluation for 

RandomForest classifier against the provided datasets. 

16. RandomTreeEvaluator.java: Is a driver class that runs the evaluation for 

RandomTree classifier against the provided datasets. 
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17. RepTreeEvaluator.java: Is a driver class that runs the evaluation for RepTree 

classifier against the provided datasets. 

After compiling the code, the tool can be run using the command line interface using the 

following options: 

• -h :outputs help information. 

• -b <base directory path>: sets the base directory path where training and testing 

datasets are located. 

• -tf  <training file name> : sets the training file name. 

• -Tf  <test file name> :  sets the test file name, where % is used as wild character to 

be replaced with sequence numbers in the application. 

• -rn <number of sets>: specifies number of records. 

• -c <classifier name>: specifies which classifier to run by name. 

• -rac <minimum avg. correct percentage >   <maximum avg. correct percentage >: 

filters classifiers’ average results by provided average correct result range. 

• -raw <minimum avg. wrong percentage > <maximum wrong percentage >: filters 

classifiers’ average results by provided average wrong result range. 

• -resD <result directory path>: specifies directory path for storing the results. 

The following is a command line example for running the datasets with all classifiers: 

java -jar SurveyEvaluator.jar -b <base directory path where training and testing data 

are available> -tf waveformDoubleTraining.una.arff -Tf waveformDoubleTest-
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%.una.arff -rn <number of sets>  -rac <minimum correct range>   <maximum correct 

range> –resD  <result directory path> 

Using the Machine Learning Evaluator tool made our research possible, in the sense that 

testing all different permutations of machine learning classifiers with their option 

variations was impossible without the Machine Learning Evaluator Tool. In addition, the 

Machine Learning Evaluator Tool can be very useful not only for this particular research, 

but also for future research work evaluating machine learning models performances with 

any sets of data. 
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Chapter 5 

1. Data Analysis 

	

1.1. Machine Learning Evaluation Process Summary 

A full machine learning model evaluation process can be shown in the workflow in figure 

11.  

	

Figure	11	-	Machine	Learning	Evaluation	Process	flow	chart	
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The WAV files that are used in the Sonification survey are passed into transformation 

and data formatting steps to produce the ARFF data files, which in turn are passed into 

the Machine Learning Evaluator Tool that trains the machine learning model and process 

the instances for classification. Then it calculates the results to produce the average 

correct classification result. This process is repeated for every machine learning model 

option variation and for every Sonification approach.  

1.2. Machine Learning Evaluation Results  

The result data of the Sonification survey that was conducted in the spring of 2016 can be 

shown in table 2. 

By looking at the results in table 2, we can see that the human average correct results for 

the three types of Sonification approaches are in the range between 64% - 68 %. 

Therefore, we will be looking mainly for the classifiers that can achieve close to this 

range across the three Sonification approaches.  

After applying the process that was mentioned in the previous section on all ARFF files, 

we get the results that are shown in table 3, where this table consists of five columns.  

• First column is the classifier name, which corresponds to the machine learning 

algorithm that was used for classification.  

• Second column is the option that was used while running the classifier. Weka Tool 

provides each classifier with many options to use while running the algorithm, 

which can significantly affect the performance of the classifier.  
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• Third column is the average correct result for WaveformDouble Sonification 

approach.  

• Fourth column is the average correct results for WaveformFourThirds 

Sonification approach.  

• Fifth column is the average correct results for WaveformOnePt95Sonification 

approach. 

 

Classifier Option 

Correct 
result Avg. 
Double  

Correct 
result Avg. 
Four Third 

Correct 
result Avg. 
1.95 

NaiveBayes no-arg 58.15384615 60.1025641 66.66666667 
NaiveBayes K 71.28205128 57.8974359 70.46153846 

BayesNet 

-D -Q 
weka.classifiers.bay
es.net.search.local.
HillClimber -- -P 1 
-S BAYES -E 
weka.classifiers.bay
es.net.estimate.Sim
pleEstimator -- -A 
0.5 33.33333333 33.33333333 33.33333333 

BayesNet 

-D -Q 
weka.classifiers.bay
es.net.search.local.
TabuSearch -- -L 5 
-U 10 -P 1 -S 
BAYES -E 
weka.classifiers.bay
es.net.estimate.Sim
pleEstimator -- -A 
0.5 33.33333333 33.33333333 33.33333333 
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BayesNet 

-D -Q 
weka.classifiers.bay
es.net.search.local.
RepeatedHillClimb
er -- -U 10 -A 1 -P 
1 -S BAYES -E 
weka.classifiers.bay
es.net.estimate.Sim
pleEstimator -- -A 
0.5 33.33333333 33.33333333 33.33333333 

BayesNet 

-D -Q 
weka.classifiers.bay
es.net.search.local.
LAGDHillClimber 
-- -L 2 -G 5 -P 1 -S 
BAYES -E 
weka.classifiers.bay
es.net.estimate.Sim
pleEstimator -- -A 
0.5 33.33333333 33.33333333 33.33333333 

BayesNet 

-D -Q 
weka.classifiers.bay
es.net.search.local.S
imulatedAnnealing 
-- -A 10.0 -U 10000 
-D 0.999 -R 1 -S 
BAYES -E 
weka.classifiers.bay
es.net.estimate.Sim
pleEstimator -- -A 
0.5 33.33333333 33.33333333 33.33333333 

BayesNet 

-D -Q 
weka.classifiers.bay
es.net.search.local.
K2 -- -P 1 -S 
BAYES -E 
weka.classifiers.bay
es.net.estimate.Sim
pleEstimator -- -A 
0.5 33.33333333 33.33333333 33.33333333 

RandomTree 
-K 9 -M 1.0 -V 
0.001 -S 0 66.05128205 59.12820513 69.28205128 

RandomTree 
-K 9 -M 1.0 -V 
0.001 -S 1 64.82051282 55.43589744 57.28205128 

RandomTree 
-K 8 -M 1.0 -V 
0.001 -S 9 76.51282051 55.64102564 56.30769231 
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RandomTree 
-K 0 -M 1.0 -V 
0.001 -S 0 58.92307692 58.76923077 69.28205128 

RandomTree 
-K 9 -M 1.0 -V 
0.001 -S 8 52.05128205 55.12820513 59.12820513 

RandomTree 
-K 6 -M 1.0 -V 
0.001 -S 1 57.12820513 55.38461538 62.87179487 

RandomTree 
-K 9 -M 1.0 -V 
0.001 -S 9 69.69230769 55.38461538 64 

RandomTree 
-K 6 -M 1.0 -V 
0.001 -S 2 67.43589744 53.69230769 68.92307692 

RandomTree 
-K 9 -M 1.0 -V 
0.001 -S 6 59.74358974 56.15384615 59.33333333 

RandomTree 
-K 9 -M 1.0 -V 
0.001 -S 7 69.48717949 64.61538462 63.69230769 

RandomTree 
-K 6 -M 1.0 -V 
0.001 -S 0 61.48717949 60.25641026 69.28205128 

RandomTree 
-K 9 -M 1.0 -V 
0.001 -S 4 61.94871795 67.17948718 54.20512821 

RandomTree 
-K 6 -M 1.0 -V 
0.001 -S 5 60.30769231 60.56410256 52.92307692 

RandomTree 
-K 9 -M 1.0 -V 
0.001 -S 5 63.64102564 58 57.94871795 

RandomTree 
-K 6 -M 1.0 -V 
0.001 -S 6 64.05128205 56.76923077 60.05128205 

RandomTree 
-K 9 -M 1.0 -V 
0.001 -S 2 51.02564103 55.43589744 68.30769231 

RandomTree 
-K 6 -M 1.0 -V 
0.001 -S 3 62.35897436 72.82051282 52.1025641 

RandomTree 
-K 9 -M 1.0 -V 
0.001 -S 3 52.05128205 63.33333333 53.74358974 

RandomTree 
-K 6 -M 1.0 -V 
0.001 -S 4 61.94871795 56.92307692 62.71794872 

RandomTree 
-K 4 -M 1.0 -V 
0.001 -S 10 54.61538462 63.33333333 47.58974359 

RandomTree 
-K 3 -M 1.0 -V 
0.001 -S 10 52.05128205 61.84615385 52.76923077 

RandomTree 
-K 10 -M 1.0 -V 
0.001 -S 4 69.84615385 59.79487179 55.74358974 

RandomTree 
-K 10 -M 1.0 -V 
0.001 -S 5 67.84615385 58 55.53846154 
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RandomTree 
-K 2 -M 1.0 -V 
0.001 -S 10 54.61538462 52.92307692 51.02564103 

RandomTree 
-K 10 -M 1.0 -V 
0.001 -S 6 60.30769231 67.43589744 53.58974359 

RandomTree 
-K 10 -M 1.0 -V 
0.001 -S 7 70.05128205 51.02564103 56 

RandomTree 
-K 10 -M 1.0 -V 
0.001 -S 8 54.61538462 55.12820513 65.02564103 

RandomTree 
-K 10 -M 1.0 -V 
0.001 -S 9 67.64102564 52.25641026 58.87179487 

RandomTree 
-K 10 -M 1.0 -V 
0.001 -S 10 52.05128205 63.8974359 55.53846154 

RandomTree 
-K 5 -M 1.0 -V 
0.001 -S 0 58.35897436 47.23076923 66.30769231 

RandomTree 
-K 6 -M 1.0 -V 
0.001 -S 8 54.61538462 51.02564103 65.02564103 

RandomTree 
-K 5 -M 1.0 -V 
0.001 -S 1 57.12820513 55.53846154 63.69230769 

RandomTree 
-K 6 -M 1.0 -V 
0.001 -S 7 60.92307692 64.76923077 60.41025641 

RandomTree 
-K 0 -M 1.0 -V 
0.001 -S 9 76.51282051 52.25641026 58.87179487 

RandomTree 
-K 6 -M 1.0 -V 
0.001 -S 9 74 54.05128205 64 

RandomTree 
-K 10 -M 1.0 -V 
0.001 -S 1 60.25641026 55.38461538 58.92307692 

RandomTree 
-K 5 -M 1.0 -V 
0.001 -S 4 71.64102564 58 62.71794872 

RandomTree 
-K 10 -M 1.0 -V 
0.001 -S 0 64.05128205 59.43589744 66.41025641 

RandomTree 
-K 5 -M 1.0 -V 
0.001 -S 5 65.8974359 60.56410256 50.61538462 

RandomTree 
-K 10 -M 1.0 -V 
0.001 -S 3 49.48717949 67.69230769 52.1025641 

RandomTree 
-K 5 -M 1.0 -V 
0.001 -S 2 68.97435897 51.79487179 56 

RandomTree 
-K 8 -M 1.0 -V 
0.001 -S 0 60.92307692 59.12820513 69.28205128 

RandomTree 
-K 10 -M 1.0 -V 
0.001 -S 2 51.02564103 55.43589744 60.66666667 
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RandomTree 
-K 5 -M 1.0 -V 
0.001 -S 3 57.23076923 67.69230769 53.84615385 

RandomTree 
-K 0 -M 1.0 -V 
0.001 -S 3 52.05128205 57.43589744 56.51282051 

RandomTree 
-K 8 -M 1.0 -V 
0.001 -S 2 56.15384615 55.38461538 64.97435897 

RandomTree 
-K 0 -M 1.0 -V 
0.001 -S 4 56.82051282 67.48717949 63.33333333 

RandomTree 
-K 8 -M 1.0 -V 
0.001 -S 1 70.51282051 61.38461538 59.12820513 

RandomTree 
-K 0 -M 1.0 -V 
0.001 -S 1 57.12820513 61.23076923 53.23076923 

RandomTree 
-K 8 -M 1.0 -V 
0.001 -S 4 71.07692308 68.25641026 63.33333333 

RandomTree 
-K 0 -M 1.0 -V 
0.001 -S 2 62.1025641 48.76923077 68.30769231 

RandomTree 
-K 6 -M 1.0 -V 
0.001 -S 10 49.48717949 63.33333333 53.84615385 

RandomTree 
-K 8 -M 1.0 -V 
0.001 -S 3 52.05128205 57.43589744 52.1025641 

RandomTree 
-K 0 -M 1.0 -V 
0.001 -S 7 69.48717949 63.8974359 55.28205128 

RandomTree 
-K 8 -M 1.0 -V 
0.001 -S 6 64.41025641 63.8974359 63.07692308 

RandomTree 
-K 0 -M 1.0 -V 
0.001 -S 8 52.05128205 51.28205128 59.8974359 

RandomTree 
-K 8 -M 1.0 -V 
0.001 -S 5 56.35897436 60.56410256 52.1025641 

RandomTree 
-K 8 -M 1.0 -V 
0.001 -S 8 54.61538462 51.79487179 65.02564103 

RandomTree 
-K 0 -M 1.0 -V 
0.001 -S 5 62.15384615 58 50.61538462 

RandomTree 
-K 0 -M 1.0 -V 
0.001 -S 6 63.74358974 63.8974359 60.05128205 

RandomTree 
-K 5 -M 1.0 -V 
0.001 -S 10 49.48717949 61.84615385 52.15384615 

RandomTree 
-K 8 -M 1.0 -V 
0.001 -S 7 69.64102564 63.8974359 55.28205128 

RandomTree 
-K 3 -M 1.0 -V 
0.001 -S 7 63.84615385 52.61538462 55.43589744 
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RandomTree 
-K 3 -M 1.0 -V 
0.001 -S 6 61.23076923 56.76923077 60.61538462 

RandomTree 
-K 3 -M 1.0 -V 
0.001 -S 5 64.20512821 56.92307692 56.25641026 

RandomTree 
-K 3 -M 1.0 -V 
0.001 -S 4 70.51282051 60.56410256 63.79487179 

RandomTree 
-K 5 -M 1.0 -V 
0.001 -S 7 62.56410256 63.8974359 56.1025641 

RandomTree 
-K 5 -M 1.0 -V 
0.001 -S 6 70.05128205 58.61538462 59.84615385 

RandomTree 
-K 3 -M 1.0 -V 
0.001 -S 9 74 60.35897436 58.61538462 

RandomTree 
-K 5 -M 1.0 -V 
0.001 -S 9 66.25641026 65.64102564 57.12820513 

RandomTree 
-K 3 -M 1.0 -V 
0.001 -S 8 54.61538462 52.05128205 62.46153846 

RandomTree 
-K 5 -M 1.0 -V 
0.001 -S 8 54.61538462 56.87179487 64.82051282 

RandomTree 
-K 3 -M 1.0 -V 
0.001 -S 2 60.51282051 51.48717949 77.8974359 

RandomTree 
-K 3 -M 1.0 -V 
0.001 -S 3 58.92307692 72.82051282 57.94871795 

RandomTree 
-K 3 -M 1.0 -V 
0.001 -S 0 61.48717949 63.07692308 70.41025641 

RandomTree 
-K 3 -M 1.0 -V 
0.001 -S 1 68.82051282 59.12820513 63.69230769 

RandomTree 
-K 0 -M 1.0 -V 
0.001 -S 10 54.61538462 57.38461538 55.23076923 

RandomTree 
-K 7 -M 1.0 -V 
0.001 -S 0 58.92307692 58.76923077 69.28205128 

RandomTree 
-K 7 -M 1.0 -V 
0.001 -S 1 57.12820513 61.23076923 53.23076923 

RandomTree 
-K 7 -M 1.0 -V 
0.001 -S 2 62.1025641 48.76923077 68.30769231 

RandomTree 
-K 7 -M 1.0 -V 
0.001 -S 3 52.05128205 57.43589744 56.51282051 

RandomTree 
-K 7 -M 1.0 -V 
0.001 -S 4 56.82051282 67.48717949 63.33333333 

RandomTree 
-K 7 -M 1.0 -V 
0.001 -S 5 62.15384615 58 50.61538462 
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RandomTree 
-K 7 -M 1.0 -V 
0.001 -S 6 63.74358974 63.8974359 60.05128205 

RandomTree 
-K 7 -M 1.0 -V 
0.001 -S 7 69.48717949 63.8974359 55.28205128 

RandomTree 
-K 7 -M 1.0 -V 
0.001 -S 8 52.05128205 51.28205128 59.8974359 

RandomTree 
-K 7 -M 1.0 -V 
0.001 -S 9 76.51282051 52.25641026 58.87179487 

RandomTree 
-K 1 -M 1.0 -V 
0.001 -S 10 54.61538462 57.53846154 51.79487179 

RandomTree 
-K 8 -M 1.0 -V 
0.001 -S 10 57.17948718 52.20512821 57.43589744 

RandomTree 
-K 7 -M 1.0 -V 
0.001 -S 10 54.61538462 57.38461538 55.23076923 

RandomTree 
-K 1 -M 1.0 -V 
0.001 -S 1 64.82051282 57.23076923 65.43589744 

RandomTree 
-K 1 -M 1.0 -V 
0.001 -S 0 57.79487179 66.92307692 62.87179487 

RandomTree 
-K 2 -M 1.0 -V 
0.001 -S 6 52.15384615 60.41025641 61.43589744 

RandomTree 
-K 2 -M 1.0 -V 
0.001 -S 5 63.74358974 62 58.71794872 

RandomTree 
-K 2 -M 1.0 -V 
0.001 -S 4 56.82051282 58 61.43589744 

RandomTree 
-K 2 -M 1.0 -V 
0.001 -S 3 61.48717949 72.82051282 66.05128205 

RandomTree 
-K 2 -M 1.0 -V 
0.001 -S 9 58.35897436 58.82051282 58.61538462 

RandomTree 
-K 2 -M 1.0 -V 
0.001 -S 8 65.48717949 49.28205128 62.82051282 

RandomTree 
-K 2 -M 1.0 -V 
0.001 -S 7 68.1025641 72.20512821 63.8974359 

RandomTree 
-K 4 -M 1.0 -V 
0.001 -S 1 68.82051282 61.02564103 60.30769231 

RandomTree 
-K 1 -M 1.0 -V 
0.001 -S 8 65.48717949 55.48717949 62.92307692 

RandomTree 
-K 4 -M 1.0 -V 
0.001 -S 2 64.51282051 54.51282051 70.15384615 

RandomTree 
-K 1 -M 1.0 -V 
0.001 -S 9 61.48717949 53.02564103 55.23076923 
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RandomTree 
-K 4 -M 1.0 -V 
0.001 -S 3 57.23076923 54.87179487 52.92307692 

RandomTree 
-K 1 -M 1.0 -V 
0.001 -S 6 67.28205128 61.8974359 76.35897436 

RandomTree 
-K 1 -M 1.0 -V 
0.001 -S 7 64.51282051 66.35897436 56.20512821 

RandomTree 
-K 4 -M 1.0 -V 
0.001 -S 4 71.64102564 58 57.64102564 

RandomTree 
-K 1 -M 1.0 -V 
0.001 -S 4 65.94871795 60.56410256 66.35897436 

RandomTree 
-K 1 -M 1.0 -V 
0.001 -S 5 68.35897436 62 59.23076923 

RandomTree 
-K 1 -M 1.0 -V 
0.001 -S 2 61.07692308 67.33333333 64.82051282 

RandomTree 
-K 4 -M 1.0 -V 
0.001 -S 0 64.05128205 64.87179487 64.76923077 

RandomTree 
-K 1 -M 1.0 -V 
0.001 -S 3 65.43589744 60.25641026 60.97435897 

RandomTree 
-K 9 -M 1.0 -V 
0.001 -S 10 54.61538462 62.35897436 53.23076923 

RandomTree 
-K 4 -M 1.0 -V 
0.001 -S 9 64 53.69230769 55.53846154 

RandomTree 
-K 4 -M 1.0 -V 
0.001 -S 8 54.61538462 53.74358974 66.82051282 

RandomTree 
-K 4 -M 1.0 -V 
0.001 -S 7 64.30769231 69.02564103 73.38461538 

RandomTree 
-K 4 -M 1.0 -V 
0.001 -S 6 62.76923077 62.56410256 69.12820513 

RandomTree 
-K 4 -M 1.0 -V 
0.001 -S 5 57.38461538 58 47.58974359 

RandomTree 
-K 2 -M 1.0 -V 
0.001 -S 0 58.30769231 64.87179487 63.8974359 

RandomTree 
-K 2 -M 1.0 -V 
0.001 -S 1 60.25641026 57.53846154 56 

RandomTree 
-K 2 -M 1.0 -V 
0.001 -S 2 59.07692308 64.76923077 70.15384615 

Random 
Forest 

-P 100 -I 100 -num-
slots 1 -K 0 -M 1.0 
-V 0.001 -S 4 58.05128205 56.56410256 58.61538462 
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Random 
Forest 

-P 100 -I 100 -num-
slots 1 -K 0 -M 1.0 
-V 0.001 -S 5 57.79487179 56.51282051 58.35897436 

Random 
Forest 

-P 100 -I 100 -num-
slots 1 -K 0 -M 1.0 
-V 0.001 -S 10 57.64102564 56.82051282 61.53846154 

Random 
Forest 

-P 100 -I 100 -num-
slots 1 -K 0 -M 1.0 
-V 0.001 -S 6 57.38461538 58.56410256 58.71794872 

Random 
Forest 

-P 100 -I 100 -num-
slots 1 -K 0 -M 1.0 
-V 0.001 -S 7 57.64102564 59.17948718 57.94871795 

Random 
Forest 

-P 100 -I 100 -num-
slots 1 -K 0 -M 1.0 
-V 0.001 -S 1 57.79487179 58.92307692 57.69230769 

Random 
Forest 

-P 100 -I 100 -num-
slots 1 -K 0 -M 1.0 
-V 0.001 -S 2 58.30769231 56.76923077 60.41025641 

Random 
Forest 

-P 100 -I 100 -num-
slots 1 -K 0 -M 1.0 
-V 0.001 -S 3 57.8974359 57.12820513 58.30769231 

Random 
Forest 

-P 100 -I 100 -num-
slots 1 -K 0 -M 1.0 
-V 0.001 -S 9 58.15384615 58.87179487 58.35897436 

Random 
Forest 

-P 100 -I 100 -num-
slots 1 -K 0 -M 1.0 
-V 0.001 -S 8 57.07692308 58.41025641 61.28205128 

AdaBoostM1 

-P 100 -S 1 -I 10 -
W 
weka.classifiers.tree
s.J48 -- -C 0.25 -M 
2 33.33333333 33.33333333 33.33333333 

AdaBoostM1 

-P 100 -S 1 -I 10 -
W 
weka.classifiers.tree
s.DecisionStump 66.56410256 67.02564103 71.43589744 

AdaBoostM1 

-P 100 -S 1 -I 10 -
W 
weka.classifiers.tree
s.RandomForest -- -
P 100 -I 100 -num-
slots 1 -K 0 -M 1.0 
-V 0.001 -S 1 72.41025641 67.23076923 70.1025641 
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AdaBoostM1 

-P 100 -S 1 -I 10 -
W 
weka.classifiers.tree
s.HoeffdingTree -- -
L 2 -S 1 -E 1.0E-7 -
H 0.05 -M 0.01 -G 
200.0 -N 0.0 73.53846154 68.25641026 71.8974359 

AdaBoostM1 

-P 100 -S 1 -I 10 -
W 
weka.classifiers.laz
y.KStar -- -B 20 -M 
a 53.84615385 57.07692308 59.84615385 

AdaBoostM1 

-P 100 -S 1 -I 10 -
W 
weka.classifiers.bay
es.NaiveBayes 58.15384615 60.1025641 66.66666667 

AdaBoostM1 

-P 100 -S 1 -I 10 -
W 
weka.classifiers.bay
es.BayesNet -- -D -
Q 
weka.classifiers.bay
es.net.search.local.
K2 -- -P 1 -S 
BAYES -E 
weka.classifiers.bay
es.net.estimate.Sim
pleEstimator -- -A 
0.5 33.33333333 33.33333333 33.33333333 

Bagging 

-P 100 -S 1 -num-
slots 1 -I 10 -W 
weka.classifiers.rul
es.DecisionTable -- 
-X 1 -S 
"weka.attributeSele
ction.BestFirst -D 1 
-N 5" 33.33333333 33.33333333 33.33333333 

Bagging 

-P 100 -S 1 -num-
slots 1 -I 10 -W 
weka.classifiers.tree
s.J48 -- -C 0.25 -M 
2 33.33333333 33.33333333 33.33333333 
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Bagging 

-P 100 -S 1 -num-
slots 1 -I 10 -W 
weka.classifiers.tree
s.HoeffdingTree -- -
L 2 -S 1 -E 1.0E-7 -
H 0.05 -M 0.01 -G 
200.0 -N 0.0 73.53846154 68.05128205 71.8974359 

Bagging 

-P 100 -S 1 -num-
slots 1 -I 10 -W 
weka.classifiers.bay
es.NaiveBayes 61.79487179 62.15384615 66.66666667 

Bagging 

-P 100 -S 1 -num-
slots 1 -I 10 -W 
weka.classifiers.tree
s.REPTree -- -M 2 -
V 0.001 -N 3 -S 1 -
L -1 -I 0.0 33.33333333 33.33333333 33.33333333 

OneR -B 3 33.33333333 33.33333333 33.33333333 
OneR -B 6 33.33333333 33.33333333 33.33333333 
J48 -U -M 2 33.33333333 33.33333333 33.33333333 
J48 -C 0.25 -M 2 33.33333333 33.33333333 33.33333333 

REPTree 
-M 2 -V 0.001 -N 3 
-S 1 -L -1 -I 0.0 33.33333333 33.33333333 33.33333333 

REPTree 
-M 2 -V 0.001 -N 3 
-S 1 -L -1 -I 0.0 -R 33.33333333 33.33333333 33.33333333 

Decision 
Stump -batch-size 200 49.23076923 55.12820513 58.15384615 
Decision 
Stump no-arg 58.15384615 60.1025641 66.66666667 
KStar -B 20 -E -M a 77.12820513 70.92307692 68.87179487 
KStar -B 20 -M a 71.38461538 58.05128205 70.41025641 

Multilayer 
Perceptron 

-L 0.3 -M 0.2 -N 
500 -V 0 -S 0 -E 20 
-H a 61.12820513 54.66666667 70.76923077 

Multilayer 
Perceptron 

-L 0.3 -M 0.2 -N 
500 -V 0 -S 4 -E 20 
-H a 63.28205128 51.48717949 71.07692308 

	

Table	3	-	Evaluator	Results	using	spring	2016	Sonification	approaches 
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1.2.1. Classifiers’ Options Overview 

Before analyzing the data in the table, an overview about some of the classifiers’ options 

that are used in the machine learning models evaluation process will be useful, as it will 

help in understanding the impact of these options on the classifiers performance.  

1. RandomTree classifier is run using the following options: 

• -K: number of attributes.2 

• -M: minimum number of instances per leaf. 

• -V: minimum numeric class variance proportion of train variance for split. 

• -S: Seed for random number generator.  

2. AdaBoostM1 classifier is run using the following options: 

• -P: Percentage of weight mass to base training on. 

• -S: Random number seed. 

• -I: Number of iterations.  

• -W: Full name of base classifier. In addition to options specific to the 

classifier. 

3. Bagging classifier is run using the following options: 

• -P: Size of each bag, as a percentage of the training set size.  

• -S: Random number seed.  

• -I: Number of iterations.  

• -W: Full name of base classifier. In addition to options specific to the 

classifier. 

																																																													
2	Machine	learning	algorithms	options	come	from	the	Weka	on-line	documentation	[10].	
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4. HoeffdingTree classifier is run using the following options: 

• -L: The leaf prediction strategy to use. 0 = majority class, 1 = naive 

Bayes, 2 = naive Bayes adaptive.  

• -S: The splitting criterion to use. 0 = Gini, 1 = Info gain.  

• -E: The allowable error in a split decision - values closer to zero will 

take longer to decide.  

• -H: Threshold below which a split will be forced to break ties. 

• -M: Minimum fraction of weight required down at least two branches for 

info gain splitting.  

• -G: Grace period - the number of instances a leaf should observe 

between split attempts.  

• -N: The number of instances (weight) a leaf should observe before 

allowing naive Bayes to make predictions (NB or NB adaptive only). 

 

1.3. Data Analysis 

By looking at the data in table 3 we can see three types of classifiers: classifiers that 

performed poorly in terms of the classification’s results, classifiers that achieved results 

in the same range of human results, and classifiers that performed better than human 

results. 
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1.3.1. Poor Classifiers 

BayesNet, OneR, J48, REPTree, and ensemble classifiers AdaBoostM1 and Bagging, that 

use the formerly mentioned classifiers as options in the process of building their models, 

produced very low average correct results’ percentages equal to 33.33%. This is 

equivalent to making random classification, because we have three classes only, and each 

test dataset contains instances that are distributed evenly over the three classes, therefore, 

the classes have equal probability in the test dataset, which mean that random 

classification, in the case of sufficient number of instances should results to 33.33% 

correct classifications’ results. These results are expected for those classifiers because 

they usually need big datasets for training their models in order to produce accurate 

predictions, which is different than our case where we are using small data sets; therefore, 

the prediction was almost random. 

 

1.3.2. Classifiers within Human Results’ Range 

RandomTree Classifier with options -K 4 -M 1.0 -V 0.001 -S 0, was the only classifier 

that fell in the same range of the Student survey results, where the classifier average 

results’ ranges were between 64% and 65%.   

RandomTree classifier considers K  randomly chosen attributes at each node while 

building its model, therefore, these attributes impact significantly the accuracy of the 

model, in the sense that, the more dominant these attributes are, the more accurate the 

model. In addition, RandomTree classifier does not perform pruning; lack of pruning 

retains all nodes and paths in its classification trees; retaining as much decision logic as 
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possible is especially useful in the case of small training dataset. Pruning is more 

appropriate when there are large training sets that need to be generalized, in part, via 

pruning. In our case, the classifier with the formerly mentioned options was capable of 

producing a model with results equivalent to the human results using very small training 

dataset. However, we should keep in mind that the nature of the data that is used for 

building the classifier is very crucial for its accuracy. 

 

1.3.3. Classifiers Which Exceeded Human Results’ Range 

Kstar, and the ensemble classifiers AdaBoostM1 with options, -P 100 -S 1 -I 10 -W 

weka.classifiers.trees.HoeffdingTree -- -L 2 -S 1 -E 1.0E-7 -H 0.05 -M 0.01 -G 200.0 -N 

0.0, and Bagging classifier with options, -P 100 -S 1 -num-slots 1 -I 10 -W 

weka.classifiers.trees.HoeffdingTree -- -L 2 -S 1 -E 1.0E-7 -H 0.05 -M 0.01 -G 200.0 -N 

0.0 , performed very well. Results were in the range of 68% – 78% average correct 

classifications’ percentages.  

Kstar is an instance-based classifier, where predicting the class of an instance is based 

upon the class of those training instances similar to it, as determined by some similarity 

function [10]. This process is similar to the human learning and classification process in 

the sense that the human gets exposed to a dataset, then he uses the learned data as a 

reference point for classifying newly coming instances based on some similarity function.  

Before running the evaluation process, we expected that Kstar would  be a strong 

candidate for producing good results; however, it exceeded our expectations. Kstar 
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classifier was able to produce much better results than the human results using the same 

small training datasets.  

The ensemble classifier AdaBoostM1 with options, -P 100 -S 1 -I 10 -W 

weka.classifiers.trees.HoeffdingTree -- -L 2 -S 1 -E 1.0E-7 -H 0.05 -M 0.01 -G 200.0 -N 

0.0, relies on boosting the performance of HoeffdingTree classifier, which exploits the 

fact that a small sample can often be enough to choose an optimal splitting attribute. This 

idea is supported mathematically by the Hoeffding bound, which quantifies the number of 

observations needed to estimate some statistics within a prescribed precision [10]. This 

classifier conforms to the principle with our main goal of using a small dataset. The 

AdaBoostM1 was able to improve the performance of the HoeffdingTree classifier to 

produce results better than human correctness results. 

The second ensemble classifier that produced good results is the Bagging classifier with 

options, -P 100 -S 1 -num-slots 1 -I 10 -W weka.classifiers.trees.HoeffdingTree -- -L 2 -S 

1 -E 1.0E-7 -H 0.05 -M 0.01 -G 200.0 -N 0.0, where also it worked on improving the 

performance of HoeffdingTree classifier that we discussed in the previous ensemble 

classifier. 
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Chapter 6 

	

1. Identifying Best Sonification Approach 

	

1.1. Sonification Algorithms Overview 

The Sonification algorithms that were used in the Sonification research have evolved 

gradually according to the students’ survey results. 

In fall of 2015, they conducted the survey using Harmonic, Melodic, and Waveform 

algorithms. The results of that survey, which are shown in table 1, was a surprise to the 

research leader Dr. Parson, where Waveform algorithm unexpectedly achieved a better 

performance than the other two algorithms.  

Sonification 
(Fall 2015) 

Category Mean correct 
responses 

Harmonic All 3 sets 55.8% 
Melodic All 3 sets 55.4% 

Waveform All 3 sets 61.4% 

Table	4	-	fall	2015	Sonification	survey	results 

These results encouraged the researchers to explore more variations of the Waveform 

Sonification algorithm, therefore, they developed WaveformDouble, 

WaveformFourThirds and WaveformOnePt95 algorithms.  

WaveformDouble sums two copies of the waveform in the original Waveform sonification 

algorithm, one at the original frequency and another with a frequency that is 2.0 X the 

original waveform.  
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WaveformFourThirds and WaveformOnePt95 are similar to WaveformDouble, except 

that they sum second frequencies that are 4.0/3.0 X, and 1.95 X the original Waveform 

respectively, instead of 2.0 in the WaveformDouble.                                      

In spring of 2016 researchers conducted the survey using WaveformDouble, 

WaveformFourThirds and WaveformOnePt95 algorithms where the survey results are 

shown in Table 2.  

Sonification (Spring 
2016) 

Category Mean correct 
responses 

WaveformDouble All 3 sets 67.8% 
WaveformFourThirds All 3 sets 65.8% 
WaveformOnePt95 All 3 sets 67.6% 

Table	5	-	spring	2016	Sonification	Survey	Results 

Despite the fact that the results were better than the results of fall 2015 survey, Dr. Parson 

was still thinking of improving the performance of the previously used algorithms by 

fixing the curve that was used for generating the Sweet and Sour notes for each of the 

data attributes. As you can see in the original curve shown in figure 12, the Sweet note 

that is represented by the blue curve, is changing the direction at 0.9 standard deviation 

value. The fix for that issue can be shown in the curve in figure 13. In addition, Dr. 

Parson generated a new linear version of the Sweet and Sour curve as shown in figure 14, 

which can be also used for generating the Sweet and Sour notes for the Sonification 

algorithms instead of the original and the fixed curves versions. 

In addition, Dr. Parson had new ideas for completely new Sonification approaches that he 

wanted to implement hoping for better results, where the new Sonification algorithms 

will rely on using different wave types other than the triangular one, which was the main 
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type of the previously tested waveform algorithm variations (WaveformDouble, 

WaveformFourThirds and WaveformOnePt95).  

1.2. New Sonification Algorithms 

The first set of new Sonification algorithms are Waveformdblsaw, Waveform43rdssaw, 

and Waveform195saw. These algorithms use a sawtooth waveform that starts at the 

lowest level for an attribute and rises to the highest, then falling back to lowest, instead of 

a triangular waveform. In addition, these algorithms use frequencies that are 2.0 X, 

4.0/3.0 X, and 1.95 X the frequency of the original waveform frequency. 

The second set of new algorithms consists of Waveformdblrevs, Waveform43rdsrevs, and 

Waveform195revs. These algorithms use a reverse-sawtooth (high-to-low ramps) 

waveform that starts at the highest level for an attribute and drops down to the lowest, 

then rises up to highest, instead of a triangular waveform. In addition, these algorithms 

use second frequencies that are 2.0 X, 4.0/3.0 X, and 1.95 X the frequency of the original 

waveform frequency.  

We implemented the two sets of new algorithms using the fixed and the linear version of 

the Sweet and Sour curves shown in figure 13 and 14.  
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Figure	12	-	original	curves	in	Sonification	research	[2]	

 

	

Figure	13	-	fixed	Sweet	and	Sour	curves	
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Figure	14	-	Sweet	and	Sour	curves	for	linear	sonifications	

	

 

1.3. Research Result Utilization 

The process of evaluating new Sonification algorithms is cumbersome, because it takes a 

long time and a lot of arrangement to conduct the necessary surveys for getting all needed 

results. 

Thus, we will employ the result of our research to facilitate and automate the process of 

evaluating the performance of new Sonification algorithms, where the combination of the 

Machine Learning Evaluator Tool with the machine learning model that was capable of 

mimicking human results will produce the Virtual Survey Listener tool that can be used 

for conducting the Sonification surveys to evaluate the new Sonification algorithms. 

As was seen in the previous chapter, RandomTree Classifier with options -K 4 -M 1.0 -V 

0.001 -S 0, was the only classifier that fell in the same range of the 2016 spring survey 

results, therefore, we will use the RandomTree Classifier in conjunction with the Machine 

Learning Evaluator Tool for evaluating the new Sonification algorithms performance.  
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1.4. Data Analysis 

After applying the evaluation process that is shown in the figure 11 on the new 

Sonification algorithms using the Virtual Survey Listener tool we got the results shown in 

table 4 

Classifier Option 

Sonification 

Algorithm 

Correct Avg 

result % 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveform43rdsfixed 62.15384615 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveform43rdsrevs 49.94871795 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveform43rdssaw 54.35897436 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveform195fixed 56.20512821 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveform195revs 54.92307692 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveform195saw 65.38461538 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveformdblfixed 53.38461538 

RandomTree -K 4 -M 1.0 -V 0.001 waveformdblrevs 61.58974359 
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-S 0 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveformdblsaw 76.05128205 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveform43rdslin 59.02564103 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 

waveform43rdsrevsli

n 50.46153846 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 

waveform43rdssawli

n 51.33333333 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveform195lin 56.1025641 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveform195revslin 54.87179487 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveform195sawlin 66.25641026 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveformdbllin 52 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveformdblrevslin 59.84615385 

RandomTree 

-K 4 -M 1.0 -V 0.001 

-S 0 waveformdblsawlin 68.76923077 

Table	6	-	Virtual	Survey	Listener	Results	with	new	Sonification	approaches 
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By looking at the data in the table we can see that most of the algorithms that use 4/3 X 

the original waveform frequency are performing poorly where they achieved results 

below 53% average correct classifications, however, the 4/3 algorithm that is using 

sawtooth waveform performed slightly better as it achieved 54.35897436%. 

Algorithms that use 1.95 X the original frequency are performing better than the 4/3 

algorithms where most of the results were in the range between 54% and 59% except for 

the 1.95 algorithms that used sawtooth waveform which are Waveform195saw and 

Waveform195sawlin algorithms where results are 65.38461538% and 66.25641026% 

respectively. 

Algorithms that use double the original frequency were the best in terms of the results, in 

particular the algorithms that use the sawtooth waveform, as most of results were in the 

range between 59% and 77%. 

 As we noticed in all three groups the algorithms that used sawtooth waveform perform 

better than the algorithms that use the other types of waveforms. Sawtooth audio 

waveforms sound more “raspy” to human listeners than triangular waveforms. A triangle 

wave’s sound approaches the simple, somewhat “thin” sound of a sine wave. Therefore, 

the best Sonification approach overall is one of the algorithm that used the sawtooth 

waveform which is Waveformdblsaw algorithm, where the Virtual Survey Listener tool 

was capable of achieving 76.05128205% average correct classification for that particular 

Sonification approach. 
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1.5. Virtual Survey Listener Tool Benefit 

Now that we can use the Virtual Survey Listener tool, testing Sonification approaches 

becomes very easy and more time and cost effective, since the process is automated and 

no need for human interaction to find the results.  

The features of the Virtual Survey Listener tool will provide us with the necessary tools 

for driving the research further in the future, as we can test new Sonification approaches 

or improve the existing ones in a cost and time effective manner. 
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Chapter 7 

1. Conclusion 

	

Exercising machine learning systems in the same conditions and mechanics of human 

learning experience is crucial for finding systems that are capable of making similar 

predictions to humans in terms of the results. 

In our research we considered a very small training data set as a key factor for training 

the machine learning models in order to mimic human learning experience, because it is 

proven that human brain can learn more effectively using small datasets and distributed 

learning sessions. 

We used the Sonification research datasets as our main data source for training and 

testing the machine learning models for many reasons:  

First, the Sonification research uses small training datasets for training the survey takers, 

which conform to our objective of using small datasets for training the machine learning 

models.  

Second, the Sonification research results are available to be compared with the machine 

learning models results.  

Third, a useful result of our project is the Virtual Survey Listener Tool, which will serve 

in the completion of the Sonification research by testing new Sonification approaches. 
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We tried to be as comprehensive as possible in terms of experimenting with the most 

common machine learning models, therefore, we tested with multiple models such as: 

• Bayes algorithms such as Naïve Bayes and Bayes Net, 

• Ensemble learners such as AdaBoostM1, Bagging, and Random Forest , 

• Rules learners such as, One R,  

• Decision tree algorithms such as  J48, REP Tree, Random Tree,  Decision Stump,  

• Instance-based learner (Lazy learner) such as K Star,  

• Function learner such as Multilayer Perceptron.  

Due to the lack of Weka Tool scalability and analysis capabilities, we created the 

Machine Learning Evaluator Tool that extended the capability of the Weka Tool. The 

Machine Learning Evaluator Tool allowed us to train and test all the machine learning 

models using the Sonification datasets used in the Sonification research, and it gave us an 

easy way to represent the results and analyze them in comparison with the Sonification 

research survey results. 

After running the datasets that had already been surveyed in the Sonification research 

through the Machine Learning Evaluator Tool, we were able to distinguish three sets of 

machine learning models. The first set is represented by BayesNet, OneR, J48, REPTree 

algorithms and AdaBoostM1, Bagging algorithms that used the former algorithms for 

building their models, which demonstrated very poor results with 33.33% average correct 

classifications. The second set is represented by RandomTree classifier with options -K 4 

-M 1.0 -V 0.001 -S 0, which generated results similar to human results with a range 
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between 64% and 65% average correct classifications. The third set is represented by 

Kstar classifier, and AdaBoostM1 and Bagging classifiers that used HoeffdingTree 

classifier as option for building their models, which generated results better than human 

results with a range between 68% – 78% average correct classifications.  

When we first started the research, we expected the Kstar classifier to be among the best 

machine learning models due to the process similarity with human learning and 

classification process,  both of which save the training instances in memory (in the 

training phase) to be used later in the classification phase. Instance-based learning in 

humans and algorithms  measures similarity of test data instances to members of a limited 

set of training instances, using some form of similarity metric. 

By using the machine learning algorithm that was capable of mimicking the human 

results, the RandomTree classifier, in conjunction with the Machine Learning Evaluator 

Tool, we produced the Virtual Survey Listener tool that provided us with the ability of 

evaluating new Sonification approaches, as an effort for producing new results to be used 

for completing the Sonification research. 

The new Sonification approaches are some type of variation of the Waveform 

Sonification algorithm. They used wave shapes other than the triangular one, the 

sawtooth and reverse-sawtooth wave shapes. After running the new Sonification 

algorithms datasets through the Virtual Survey Listener tool, we found out that the 

Sonification algorithms that use sawtooth waveform perform better than the other ones, 

and Waveformdblsaw Sonification algorithm in particular is the best in terms of correct 
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average classifications as it achieved 76.05128205% correct classifications, This makes it 

the best Sonification approach among all, old and new Sonification approaches.   

The Virtual Survey Listener tool as a result of our research made the Sonification 

research more feasible in terms of time, cost effectiveness, and better results, because the 

testing can be repeated as many times as needed in order to produce an optimal 

Sonification algorithm, which can be used for developing applications that are as useful 

as the virtualization’s applications.   
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