
CSC 343 Operating Systems, Dr. Dale Parson, Fall 2014
State Machine Models of CPU Scheduling Algorithms

Located in ~parson/OpSys/state2codeV10
http://acad.kutztown.edu/~parson/fcfs.jpg (Substitute sjf or rr for fcfs)

fcfs.stm – First Come, First Served non-preemptive context scheduling

 1 # CSC 343, Fall 2013, STUDENT NAME:

 2 # fcfs.stm implements a first-come, first-served, non-preemptive scheduler as an

 3 # example for assignment 2. D. Parson.

 4

 5 machine processor {

 6 # Use this machine in all of your files in assignment 2 to start threads.

 7 # It starts 10 threads, one every tick. I am starting them quickly so that

 8 # algorithms like FCFS don't get swamped too much an early CPU-bound thread.

 9 threadsToGo = 10 ;

 10 start init, state makingThreads, accept doneStartingThreads ;

 11 init -> makingThreads init()[]/@

 12 processor.readyq = Queue(ispriority=False);

 13 threadsToGo -= 1 ; fork()@

 14 makingThreads -> makingThreads fork(pid, tid)[@threadsToGo > 0@]/@

 15 threadsToGo -= 1 ; fork()@

 16 makingThreads -> doneStartingThreads fork(pid, tid)[@threadsToGo == 0@]/

 17 }

 18

 19 # For all parts of your assignment, half of every ten threads must be IO bound.

 20 # The others are CPU bound. The I/O bound threads must request between

 21 # 1 and 250 ticks using the exponential sampler, with the knee of the curve

 22 # (half of the sampled values) at 25 ticks. The CPU bound threads must

 23 # request between 100 and 1100 ticks using the revexponential sampler,

 24 # with the knee of the curve (half of the sampled values) at 1000 ticks.

 25 # All threads must continue to run until simulation time is >= 100,000.

 26 machine thread {

 27 machineid = -1, pid = -1, tid = -1, iobound = @False@, endtime = 100000 ;

 28 # Python treats 0 as False (not iobound) and 1 as True (iobound).

 29 # The transition out of state init initializes the above variables.

 30 start init, state scheduling, state ready, state running, state waiting,

http://acad.kutztown.edu/~parson/fcfs.jpg

 31 state rescheduling, accept terminated ;

 32 init -> scheduling init()[]/@machineid, pid, tid = getid();

 33 iobound = True if ((pid % 2) == 1) else False ; yieldcpu()@

 34 # ^^^ The odd pids are IO bound.

 35 # The others (50%) are CPU bound. This job mix stresses the scheduling

 36 # algorithms better than a strictly IO-bound or CPU-bound mix.

 37 scheduling -> running yieldcpu()[@processor.contextsFree > 0@]/@

 38 processor.contextsFree -= 1 ;

 39 ticks = sample(1, 250, 'exponential', 25) if iobound

 40 else sample(100, 1100, 'revexponential', 1000);

 41 msg('pid ' + str(pid) + ' tid ' + str(tid)

 42 + ' about to CPU for ' + str(ticks) + ' ticks');

 43 cpu(ticks)@

 44 scheduling -> ready yieldcpu()[@processor.contextsFree == 0@]/@

 45 # Put myself in processor's readyq with FIFO priority.

 46 msg('pid ' + str(pid) + ' tid ' + str(tid)

 47 + ' about to wait, ready for CPU');

 48 processor.readyq.enq(thread); waitForEvent('contextReady', False)@

 49 ready -> scheduling contextReady()[]/@yieldcpu()@

 50 running -> rescheduling cpu()[]/@

 51 processor.contextsFree += 1 ;

 52 msg('thread ' + str(tid) + ' checking readyq '

 53 + str(processor.readyq.len())

 54 + ' with contextsFree ' + str(processor.contextsFree));

 55 signalEvent(processor.readyq.deq(), 'contextReady')

 56 if len(processor.readyq) > 0 else noop();

 57 yieldcpu()@

 58 rescheduling -> terminated yieldcpu()[@time() >= endtime@]/

 59 rescheduling -> waiting yieldcpu()[@time() < endtime@]/@

 60 # iodevice of -1 (process terminal) or one of the fastio devices.

 61 iodevice = sample(-1, len(processor.fastio)-1, 'uniform');

 62 msg('thread ' + str(tid) + ' blocking on IO unit ' + str(iodevice));

 63 msg('pid ' + str(pid) + ' tid ' + str(tid)

 64 + ' about to IO on dev ' + str(iodevice));

 65 io(iodevice)@

 66 waiting -> scheduling io()[]/@yieldcpu()@

 67 }

 68

 69 processor

sjf.stm – non-preeemptive Shortest Job First

 1 # CSC 343, Fall 2013, STUDENT NAME:

 2 # sjf.stm implements a short-job first, non-preemptive scheduler as a

 3 # partial solution of assignment 2. D. Parson.

 4

 5 machine processor {

 6 # Use this machine in all of your files in assignment 2 to start threads.

 7 # It starts 10 threads, one every tick. I am starting them quickly so that

 8 # algorithms like FCFS don't get swamped too much an early CPU-bound thread.

 9 threadsToGo = 10 ;

 10 start init, state makingThreads, accept doneStartingThreads ;

 11 init -> makingThreads init()[]/@

 12 processor.readyq = Queue(ispriority=True);

 13 threadsToGo -= 1 ; fork()@

 14 makingThreads -> makingThreads fork(pid, tid)[@threadsToGo > 0@]/@

 15 threadsToGo -= 1 ; fork()@

 16 makingThreads -> doneStartingThreads fork(pid, tid)[@threadsToGo == 0@]/

 17 }

 18

 19 # For all parts of your assignment, half of every ten threads must be IO bound.

 20 # The others are CPU bound. The I/O bound threads must request between

 21 # 1 and 250 ticks using the exponential sampler, with the knee of the curve

 22 # (half of the sampled values) at 25 ticks. The CPU bound threads must

 23 # request between 100 and 1100 ticks using the revexponential sampler,

 24 # with the knee of the curve (half of the sampled values) at 1000 ticks.

 25 # All threads must continue to run until simulation time is >= 100,000.

 26 machine thread {

 27 machineid = -1, pid = -1, tid = -1, iobound = @False@, endtime = 100000 ;

 28 # Python treats 0 as False (not iobound) and 1 as True (iobound).

 29 # The transition out of state init initializes the above variables.

 30 start init, state scheduling, state ready, state running, state waiting,

 31 state rescheduling, accept terminated ;

 32 init -> scheduling init()[]/@machineid, pid, tid = getid();

 33 iobound = True if ((pid % 2) == 1) else False ;

 34 # ^^^ The odd pids are IO bound.

 35 # The others (50%) are CPU bound. This job mix stresses the scheduling

 36 # algorithms better than a strictly IO-bound or CPU-bound mix.

 37 # Set ticks when going into scheduling.

 38 ticks = sample(1, 250, 'exponential', 25) if iobound

 39 else sample(100, 1100, 'revexponential', 1000);

 40 yieldcpu()@

 41 scheduling -> running yieldcpu()[@processor.contextsFree > 0@]/@

 42 processor.contextsFree -= 1 ;

 43 msg('pid ' + str(pid) + ' tid ' + str(tid) + ' about to CPU for '

 44 + str(ticks) + ' ticks'); cpu(ticks)@

 45 scheduling -> ready yieldcpu()[@processor.contextsFree == 0@]/@

 46 # Put myself in processor's readyq with sjf priority.

 47 msg('pid ' + str(pid) + ' tid ' + str(tid)

 48 + ' about to wait, ready for CPU ticks ' + str(ticks));

 49 processor.readyq.enq(thread, ticks); waitForEvent('contextReady', False)@

 50 ready -> scheduling contextReady()[]/@yieldcpu()@

 51 # ^^^ Do not set ticks coming out of ready, not used yet.

 52 running -> rescheduling cpu()[]/@

 53 processor.contextsFree += 1 ;

 54 msg('thread ' + str(tid) + ' checking readyq '

 55 + str(len(processor.readyq))

 56 + ' with contextsFree ' + str(processor.contextsFree));

 57 signalEvent(processor.readyq.deq(), 'contextReady')

 58 if len(processor.readyq) > 0 else noop();

 59 yieldcpu()@

 60 rescheduling -> terminated yieldcpu()[@time() >= endtime@]/

 61 rescheduling -> waiting yieldcpu()[@time() < endtime@]/@

 62 # iodevice of -1 (process terminal) or one of the fastio devices.

 63 iodevice = sample(-1, len(processor.fastio)-1, 'uniform');

 64 msg('thread ' + str(tid) + ' blocking on IO unit ' + str(iodevice));

 65 msg('pid ' + str(pid) + ' tid ' + str(tid) + ' about to IO on dev '

 66 + str(iodevice));

 67 io(iodevice)@

 68 waiting -> scheduling io()[]/@

 69 ticks = sample(1, 250, 'exponential', 25) if iobound

 70 else sample(100, 1100, 'revexponential', 1000);

 71 yieldcpu()@

 72 }

 74 processor

rr.stm – Round Robin Preemptive Scheduling

 1 # CSC 343, Fall 2013, STUDENT NAME:

 2 # rr.stm implements a preemptive round-robin scheduler as a

 3 # partial solution of assignment 2. D. Parson.

 5 machine processor {

 6 # Use this machine in all of your files in assignment 2 to start threads.

 7 # It starts 10 threads, one every tick. I am starting them quickly so that

 8 # algorithms like FCFS don't get swamped too much an early CPU-bound thread.

 9 threadsToGo = 10 ;

 10 start init, state makingThreads, accept doneStaringThreads ;

 11 init -> makingThreads init()[]/@

 12 processor.readyq = Queue(ispriority=False);

 13 threadsToGo -= 1 ; fork()@

 14 makingThreads -> makingThreads fork(pid, tid)[@threadsToGo > 0@]/@

 15 threadsToGo -= 1 ; fork()@

 16 makingThreads -> doneStaringThreads fork(pid, tid)[@threadsToGo == 0@]/

 17 }

 19 # For all parts of your assignment, half of every ten threads must be IO bound.

 20 # The others are CPU bound. The I/O bound threads must request between

 21 # 1 and 250 ticks using the exponential sampler, with the knee of the curve

 22 # (half of the sampled values) at 25 ticks. The CPU bound threads must

 23 # request between 100 and 1100 ticks using the revexponential sampler,

 24 # with the knee of the curve (half of the sampled values) at 1000 ticks.

 25 # All threads must continue to run until simulation time is >= 100,000.

 26 # STUDENT: The quantum must be 125 ticks. Make sure that a thread never

 27 # calls cpu() with more than quantum ticks; use Python's min(a, b) function.

 28 # Make sure to keep any un-run ticks returns from sample() in a variable,

 29 # and make sure that as long as the remaining ticks from the most

 30 # recent sample() have not reached 0, that your thread gets back to the

 31 # ready state (processor.readyq.enq) WITHOUT doing io(). It should request

 32 # io() EXACTLY at the point that it has consumed all ticks supplied

 33 # by the most recent sample() call, after which it can sample() a new

 34 # CPU-burst number of ticks. Any given cpu() call must NEVER exceed

 35 # the quantum limit.

 36 machine thread {

 37 quantum = 125, machineid = -1, pid = -1, tid = -1, iobound = @False@,

 38 endtime = 100000 ;

 39 # Python treats 0 as False (not iobound) and 1 as True (iobound).

 40 # The transition out of state init initializes the above variables.

 41 start init, state scheduling, state ready, state running, state waiting,

 42 state rescheduling, accept terminated ;

 43 init -> scheduling init()[]/@machineid, pid, tid = getid();

 44 iobound = True if ((pid % 2) == 1) else False ;

 45 # ^^^ The odd pids are IO bound.

 46 # The others (50%) are CPU bound. This job mix stresses the scheduling

 47 # algorithms better than a strictly IO-bound or CPU-bound mix.

 48 # Set ticks when going into scheduling.

 49 ticks = sample(1, 250, 'exponential', 25) if iobound

 50 else sample(100, 1100, 'revexponential', 1000);

 51 tickstorun = min(ticks, quantum);

 52 tickstodefer = ticks - tickstorun;

 53 yieldcpu()@

 54 # ^^^ pids that give a remainder of 5 for divide-by-10 are CPU bound.

 55 scheduling -> running yieldcpu()[@processor.contextsFree > 0@]/@

 56 processor.contextsFree -= 1 ;

 57 msg('pid ' + str(pid) + ' tid ' + str(tid) + ' about to CPU for '

 58 + str(tickstorun) + ' tickstorun ' + ' out of ' + str(ticks)

 59 + ' ticks, tickstodefer = ' + str(tickstodefer));

 60 cpu(tickstorun)@

 61 scheduling -> ready yieldcpu()[@processor.contextsFree == 0@]/@

 62 # Put myself in processor's readyq with rr priority.

 63 msg('pid ' + str(pid) + ' tid ' + str(tid)

 64 + ' about to wait, ready for CPU tickstorun ' + str(tickstorun)

 65 + ' out of ' + str(ticks) + ' ticks, tickstodefer = '

 66 + str(tickstodefer));

 67 processor.readyq.enq(thread); waitForEvent('contextReady', False)@

 68 ready -> scheduling contextReady()[]/@yieldcpu()@

 69 # ^^^ Do not set ticks; they have not all been used.

 70 running -> scheduling cpu()[@tickstodefer > 0@]/@

 71 processor.contextsFree += 1 ;

 72 signalEvent(processor.readyq.deq(), 'contextReady')

 73 if len(processor.readyq) > 0 else noop();

 74 tickstorun = min(tickstodefer, quantum);

 75 tickstodefer = tickstodefer - tickstorun;

 76 yieldcpu()@

 77 running -> rescheduling cpu()[@tickstodefer < 1@]/@

 78 processor.contextsFree += 1 ;

 79 signalEvent(processor.readyq.deq(), 'contextReady')

 80 if len(processor.readyq) > 0 else noop();

 81 yieldcpu()@

 82 rescheduling -> terminated yieldcpu()[@time() >= endtime@]/

 83 rescheduling -> waiting yieldcpu()[]/@

 84 # Pick an iodevice of -1 (process terminal) or one of the fastio devices.

 85 iodevice = sample(-1, len(processor.fastio)-1, 'uniform');

 86 msg('thread ' + str(tid) + ' blocking on IO unit ' + str(iodevice));

 87 msg('pid ' + str(pid) + ' tid ' + str(tid) + ' about to IO on dev '

 88 + str(iodevice));

 89 io(iodevice)@

 90 waiting -> scheduling io()[]/@

 91 ticks = sample(1, 250, 'exponential', 25) if iobound

 92 else sample(100, 1100, 'revexponential', 1000);

 93 tickstorun = min(ticks, quantum);

 94 tickstodefer = ticks - tickstorun;

 95 yieldcpu()@

 96 }

 97

 98 processor

