CSC 343 Operating Systems, Dr. Dale Parson, Fall 2014
State Machine Models of CPU Scheduling Algorithms
Located in ~parson/OpSys/state2codeV10
http://acad.kutztown.edu/~parson/fcfs.jpg (Substitute sjf or rr for fcfs)

thread:rescheduling:9

processor:init:0

init:0

Y

vieldepu:0

thread:terminated:3

yieldepu:1

thread:waiting:4 thread:init:7

ffork: 1

cpu:0

thread:scheduling:8

processor:doneStartingThreads: 1

fcfs.stm - First Come, First Served non-preemptive context scheduling

1 #CSC 343, Fall 2013, STUDENT NAME:

2 # fcfs.stm implements a first-come, first-served, non-preemptive scheduler as an
3 # example for assignment 2. D. Parson.

4

5 machine processor {

6 # Use this machine in all of your files in assignment 2 to start threads.

7 # It starts 10 threads, one every tick. | am starting them quickly so that

8 # algorithms like FCFS don't get swamped too much an early CPU-bound thread.
9 threadsToGo = 10 ;

10 start init, state makingThreads, accept doneStartingThreads ;

11 init -> makingThreads init()[}/@

12 processor.readyq = Queue(ispriority=False);

13 threadsToGo -=1 ; fork()@

14 makingThreads -> makingThreads fork(pid, tid)[@threadsToGo > 0@]/@

15 threadsToGo -=1 ; fork()@

16 makingThreads -> doneStartingThreads fork(pid, tid)[@threadsToGo == 0@]/
17 3}

18

19 # For all parts of your assignment, half of every ten threads must be 10 bound.
20 # The others are CPU bound. The 1/0 bound threads must request between

21 #1and 250 ticks using the exponential sampler, with the knee of the curve

22 # (half of the sampled values) at 25 ticks. The CPU bound threads must

23 #request between 100 and 1100 ticks using the revexponential sampler,

24 # with the knee of the curve (half of the sampled values) at 1000 ticks.

25 # All threads must continue to run until simulation time is >= 100,000.

26 machine thread {

27 machineid = -1, pid = -1, tid = -1, iobound = @False@, endtime = 100000 ;
28 # Python treats 0 as False (not iobound) and 1 as True (iobound).

29 # The transition out of state init initializes the above variables.

30 start init, state scheduling, state ready, state running, state waiting,

http://acad.kutztown.edu/~parson/fcfs.jpg

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

state rescheduling, accept terminated ;
init -> scheduling init()[[/@machineid, pid, tid = getid();

iobound = True if ((pid % 2) == 1) else False ; yieldcpu()@

"N The odd pids are 10 bound.

The others (50%) are CPU bound. This job mix stresses the scheduling

algorithms better than a strictly 10-bound or CPU-bound mix.

scheduling -> running yieldcpu()[@processor.contextsFree > 0@]/@

processor.contextsFree -= 1 ;
ticks = sample(1, 250, 'exponential’, 25) if iobound
else sample(100, 1100, 'revexponential’, 1000);
msg('pid ' + str(pid) + " tid ' + str(tid)
+ "about to CPU for ' + str(ticks) + ' ticks');

cpu(ticks)@

scheduling -> ready yieldcpu()[@processor.contextsFree == 0@]/@

Put myself in processor's readyq with FIFO priority.
msg('pid ' + str(pid) + ' tid ' + str(tid)
+ 'about to wait, ready for CPU");

processor.readyq.enq(thread); waitForEvent(‘contextReady', False)@

ready -> scheduling contextReady()[[/@yieldcpu()@
running -> rescheduling cpu()[}/@
processor.contextsFree +=1 ;
msg(‘thread ' + str(tid) + ' checking readyq
+ str(processor.readyq.len())
+ ' with contextsFree ' + str(processor.contextsFree));
signalEvent(processor.readyq.deq(), ‘contextReady")
if len(processor.readyq) > 0 else noop();

yieldcpu()@

rescheduling -> terminated yieldcpu()[@time() >= endtime@]/
rescheduling -> waiting yieldcpu()[@time() < endtime@]/@
iodevice of -1 (process terminal) or one of the fastio devices.
iodevice = sample(-1, len(processor.fastio)-1, 'uniform’);
msg('thread ' + str(tid) + ' blocking on 10 unit ' + str(iodevice));
msg('pid ' + str(pid) + " tid ' + str(tid)
+ "about to 10 on dev ' + str(iodevice));

io(iodevice) @

waiting -> scheduling io()[J/@yieldcpu() @

}

processor

processor:init:0

init:0

ffork: 1

processor:doneStartingThreads: |

sjf.stm - non-preeemptive Shortest Job First

thread:rescheduling:9

lyieldepu:0

thread:terminated:3

cpu:0

yieldepu:1

thread: waiting:4

thread:scheduling:8

thread:init:7

SBoo~vwouhswNR

GO OSSR EEEEDDWWWOWWWWWWWNNNDNNMNNNNNRERRRPERPERERERERER
WNPFPOOWONOUIRWNPOOONOOOPRRWNPOOONOURRWNPOOONOOORA, WN P

CSC 343, Fall 2013, STUDENT NAME:
sjf.stm implements a short-job first, non-preemptive scheduler as a
partial solution of assignment 2. D. Parson.

machine processor {
Use this machine in all of your files in assignment 2 to start threads.
It starts 10 threads, one every tick. | am starting them quickly so that

algorithms like FCFS don't get swamped too much an early CPU-bound thread.

threadsToGo =10 ;

start init, state makingThreads, accept doneStartingThreads ;

init -> makingThreads init()[/@
processor.readyq = Queue(ispriority=True);
threadsToGo -= 1 ; fork()@

makingThreads -> makingThreads fork(pid, tid)[@threadsToGo > 0@]/@
threadsToGo -=1 ; fork()@

makingThreads -> doneStartingThreads fork(pid, tid)[@threadsToGo == 0@]/

}

For all parts of your assignment, half of every ten threads must be 10 bound.
The others are CPU bound. The 1/0 bound threads must request between
1 and 250 ticks using the exponential sampler, with the knee of the curve
(half of the sampled values) at 25 ticks. The CPU bound threads must
request between 100 and 1100 ticks using the revexponential sampler,
with the knee of the curve (half of the sampled values) at 1000 ticks.
All threads must continue to run until simulation time is >= 100,000.
machine thread {
machineid = -1, pid = -1, tid = -1, iobound = @False@, endtime = 100000 ;
Python treats 0 as False (not iobound) and 1 as True (iobound).
The transition out of state init initializes the above variables.
start init, state scheduling, state ready, state running, state waiting,
state rescheduling, accept terminated ;
init -> scheduling init()[J/@machineid, pid, tid = getid();
iobound = True if ((pid % 2) == 1) else False ;
"N The odd pids are 10 bound.
The others (50%) are CPU bound. This job mix stresses the scheduling
algorithms better than a strictly 10-bound or CPU-bound mix.
Set ticks when going into scheduling.
ticks = sample(1, 250, 'exponential’, 25) if iobound
else sample(100, 1100, 'revexponential’, 1000);
yieldcpu()@
scheduling -> running yieldcpu()[@processor.contextsFree > 0@]/@
processor.contextsFree -= 1 ;
msg('pid ' + str(pid) + " tid ' + str(tid) + ' about to CPU for '
+ str(ticks) + ' ticks"); cpu(ticks)@
scheduling -> ready yieldcpu()[@processor.contextsFree == 0@]/@
Put myself in processor's readyq with sjf priority.
msg('pid ' + str(pid) + ' tid ' + str(tid)
+ ' about to wait, ready for CPU ticks ' + str(ticks));

processor.readyq.enq(thread, ticks); waitForEvent('contextReady', False)@

ready -> scheduling contextReady()[]/@yieldcpu()@

AN Do not set ticks coming out of ready, not used yet.

running -> rescheduling cpu()[}/@
processor.contextsFree +=1;

54 msg('thread ' + str(tid) + ' checking readyq '
55 + str(len(processor.readyq))
56 + ' with contextsFree ' + str(processor.contextsFree));
57 signalEvent(processor.readyq.deq(), ‘contextReady")
58 if len(processor.readyq) > 0 else noop();
59 yieldcpu()@
60 rescheduling -> terminated yieldcpu()[@time() >= endtime@]/
61 rescheduling -> waiting yieldcpu()[@time() < endtime@]/@
62 # iodevice of -1 (process terminal) or one of the fastio devices.
63 iodevice = sample(-1, len(processor.fastio)-1, 'uniform’);
64 msg('thread ' + str(tid) + ' blocking on 10 unit ' + str(iodevice));
65 msg('pid ' + str(pid) + " tid ' + str(tid) + ' about to 10 on dev '
66 + str(iodevice));
67 io(iodevice) @
68 waiting -> scheduling io()[]/@
69 ticks = sample(1, 250, 'exponential’, 25) if iobound
70 else sample(100, 1100, 'revexponential’, 1000);
71 yieldcpu()@
72
74 processor

processor:init: 1 thread:rescheduling:9

init:0 yieldepu:0 yieldepu:1

SBoo~vwoownr

11
12
13
14
15
16
17

processor:doneStaringThreads:0

thread:waiting:4 thread:init:7

thread:terminated:3

ffork: 1

thread:scheduling:8

rr.stm - Round Robin Preemptive Scheduling

CSC 343, Fall 2013, STUDENT NAME:

rr.stm implements a preemptive round-robin scheduler as a
partial solution of assignment 2. D. Parson.

machine processor {

}

Use this machine in all of your files in assignment 2 to start threads.
It starts 10 threads, one every tick. | am starting them quickly so that
algorithms like FCFS don't get swamped too much an early CPU-bound thread.
threadsToGo =10 ;
start init, state makingThreads, accept doneStaringThreads ;
init -> makingThreads init()[}/@
processor.readyq = Queue(ispriority=False);
threadsToGo -= 1 ; fork()@
makingThreads -> makingThreads fork(pid, tid)[@threadsToGo > 0@]/@
threadsToGo -=1 ; fork()@
makingThreads -> doneStaringThreads fork(pid, tid)[@threadsToGo == 0@]/

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

For all parts of your assignment, half of every ten threads must be 10 bound.
The others are CPU bound. The 1/0 bound threads must request between
1 and 250 ticks using the exponential sampler, with the knee of the curve
(half of the sampled values) at 25 ticks. The CPU bound threads must
request between 100 and 1100 ticks using the revexponential sampler,
with the knee of the curve (half of the sampled values) at 1000 ticks.
All threads must continue to run until simulation time is >= 100,000.
STUDENT: The quantum must be 125 ticks. Make sure that a thread never
calls cpu() with more than quantum ticks; use Python's min(a, b) function.
Make sure to keep any un-run ticks returns from sample() in a variable,
and make sure that as long as the remaining ticks from the most
recent sample() have not reached 0, that your thread gets back to the
ready state (processor.readyg.enq) WITHOUT doing io(). It should request
#i0() EXACTLY at the point that it has consumed all ticks supplied
by the most recent sample() call, after which it can sample() a new
CPU-burst number of ticks. Any given cpu() call must NEVER exceed
the quantum limit.
machine thread {
quantum = 125, machineid = -1, pid = -1, tid = -1, iobound = @False@,
endtime = 100000 ;
Python treats 0 as False (not iobound) and 1 as True (iobound).
The transition out of state init initializes the above variables.
start init, state scheduling, state ready, state running, state waiting,
state rescheduling, accept terminated ;
init -> scheduling init()[]J/@machineid, pid, tid = getid();
iobound = True if ((pid % 2) == 1) else False ;
~MA The odd pids are 10 bound.
The others (50%) are CPU bound. This job mix stresses the scheduling
algorithms better than a strictly 10-bound or CPU-bound mix.
Set ticks when going into scheduling.
ticks = sample(1, 250, 'exponential’, 25) if iobound
else sample(100, 1100, 'revexponential’, 1000);
tickstorun = min(ticks, quantum);
tickstodefer = ticks - tickstorun;
yieldcpu()@
"M pids that give a remainder of 5 for divide-by-10 are CPU bound.
scheduling -> running yieldcpu()[@processor.contextsFree > 0@]/@
processor.contextsFree -= 1 ;
msg('pid ' + str(pid) + " tid ' + str(tid) + ' about to CPU for '
+ str(tickstorun) + ' tickstorun ' + ' out of ' + str(ticks)
+ ' ticks, tickstodefer = ' + str(tickstodefer));
cpu(tickstorun)@
scheduling -> ready yieldcpu()[@processor.contextsFree == 0@]/@
Put myself in processor's readyq with rr priority.
msg('pid " + str(pid) + "tid ' + str(tid)
+ " about to wait, ready for CPU tickstorun ' + str(tickstorun)
+ 'out of ' + str(ticks) + ' ticks, tickstodefer ="
+ str(tickstodefer));
processor.readyq.enq(thread); waitForEvent(‘contextReady', False) @
ready -> scheduling contextReady()[[/@yieldcpu()@
A Do not set ticks; they have not all been used.
running -> scheduling cpu()[@tickstodefer > 0@]/@
processor.contextsFree +=1;
signalEvent(processor.readyq.deq(), ‘contextReady")
if len(processor.readyq) > 0 else noop();
tickstorun = min(tickstodefer, quantum);

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

tickstodefer = tickstodefer - tickstorun;
yieldcpu()@
running -> rescheduling cpu()[@tickstodefer < 1@]/@
processor.contextsFree +=1 ;
signalEvent(processor.readyq.deq(), ‘contextReady")
if len(processor.readyq) > 0 else noop();
yieldcpu()@
rescheduling -> terminated yieldcpu()[@time() >= endtime@]/
rescheduling -> waiting yieldcpu()[J/@
Pick an iodevice of -1 (process terminal) or one of the fastio devices.
iodevice = sample(-1, len(processor.fastio)-1, 'uniform’);
msg('thread ' + str(tid) + ' blocking on 10 unit ' + str(iodevice));
msg('pid ' + str(pid) + " tid ' + str(tid) + ' about to 10 on dev'
+ str(iodevice));
io(iodevice) @
waiting -> scheduling io()[1/@
ticks = sample(1, 250, 'exponential’, 25) if iobound
else sample(100, 1100, 'revexponential’, 1000);
tickstorun = min(ticks, quantum);
tickstodefer = ticks - tickstorun;
yieldcpu()@

processor

