CSC 343 Operating Systems, Dr. Dale Parson, Fall 2014
State Machine Models of CPU Scheduling Algorithms
Located in ~parson/OpSys/state2codeV10
http://acad.kutztown.edu/~parson/fcfs.jpg (Substitute sjf or rr for fcfs)
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fcfs.stm - First Come, First Served non-preemptive context scheduling

1  #CSC 343, Fall 2013, STUDENT NAME:

2 # fcfs.stm implements a first-come, first-served, non-preemptive scheduler as an
3 # example for assignment 2. D. Parson.

4

5 machine processor {

6 # Use this machine in all of your files in assignment 2 to start threads.

7 # It starts 10 threads, one every tick. | am starting them quickly so that

8 # algorithms like FCFS don't get swamped too much an early CPU-bound thread.
9 threadsToGo = 10 ;

10 start init, state makingThreads, accept doneStartingThreads ;

11 init -> makingThreads init()[}/@

12 processor.readyq = Queue(ispriority=False);

13 threadsToGo -=1 ; fork()@

14 makingThreads -> makingThreads fork(pid, tid)[@threadsToGo > 0@]/@

15 threadsToGo -=1 ; fork()@

16 makingThreads -> doneStartingThreads fork(pid, tid)[@threadsToGo == 0@]/
17 3}

18

19  # For all parts of your assignment, half of every ten threads must be 10 bound.
20  # The others are CPU bound. The 1/0 bound threads must request between

21  #1and 250 ticks using the exponential sampler, with the knee of the curve

22 # (half of the sampled values) at 25 ticks. The CPU bound threads must

23 #request between 100 and 1100 ticks using the revexponential sampler,

24 # with the knee of the curve (half of the sampled values) at 1000 ticks.

25  # All threads must continue to run until simulation time is >= 100,000.

26 machine thread {

27 machineid = -1, pid = -1, tid = -1, iobound = @False@, endtime = 100000 ;
28 # Python treats 0 as False (not iobound) and 1 as True (iobound).

29 # The transition out of state init initializes the above variables.

30 start init, state scheduling, state ready, state running, state waiting,
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state rescheduling, accept terminated ;
init -> scheduling init()[[/@machineid, pid, tid = getid();

iobound = True if ((pid % 2) == 1) else False ; yieldcpu()@

# "N The odd pids are 10 bound.

# The others (50%) are CPU bound. This job mix stresses the scheduling

# algorithms better than a strictly 10-bound or CPU-bound mix.

scheduling -> running yieldcpu()[@processor.contextsFree > 0@]/@

processor.contextsFree -= 1 ;
ticks = sample(1, 250, 'exponential’, 25) if iobound
else sample(100, 1100, 'revexponential’, 1000);
msg('pid ' + str(pid) + " tid ' + str(tid)
+ "about to CPU for ' + str(ticks) + ' ticks');

cpu(ticks)@

scheduling -> ready yieldcpu()[@processor.contextsFree == 0@]/@

# Put myself in processor's readyq with FIFO priority.
msg('pid ' + str(pid) + ' tid ' + str(tid)
+ 'about to wait, ready for CPU");

processor.readyq.enq(thread); waitForEvent(‘contextReady', False)@

ready -> scheduling contextReady()[[/@yieldcpu()@
running -> rescheduling cpu()[}/@
processor.contextsFree +=1 ;
msg(‘thread ' + str(tid) + ' checking readyq
+ str(processor.readyq.len())
+ ' with contextsFree ' + str(processor.contextsFree));
signalEvent(processor.readyq.deq(), ‘contextReady")
if len(processor.readyq) > 0 else noop();

yieldcpu()@

rescheduling -> terminated yieldcpu()[@time() >= endtime@]/
rescheduling -> waiting yieldcpu()[@time() < endtime@]/@
# iodevice of -1 (process terminal) or one of the fastio devices.
iodevice = sample(-1, len(processor.fastio)-1, 'uniform’);
msg('thread ' + str(tid) + ' blocking on 10 unit ' + str(iodevice));
msg('pid ' + str(pid) + " tid ' + str(tid)
+ "about to 10 on dev ' + str(iodevice));

io(iodevice) @

waiting -> scheduling io()[J/@yieldcpu() @

}
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sjf.stm - non-preeemptive Shortest Job First
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# CSC 343, Fall 2013, STUDENT NAME:
# sjf.stm implements a short-job first, non-preemptive scheduler as a
# partial solution of assignment 2. D. Parson.

machine processor {
# Use this machine in all of your files in assignment 2 to start threads.
# It starts 10 threads, one every tick. | am starting them quickly so that

# algorithms like FCFS don't get swamped too much an early CPU-bound thread.

threadsToGo =10 ;

start init, state makingThreads, accept doneStartingThreads ;

init -> makingThreads init()[/@
processor.readyq = Queue(ispriority=True);
threadsToGo -= 1 ; fork()@

makingThreads -> makingThreads fork(pid, tid)[@threadsToGo > 0@]/@
threadsToGo -=1 ; fork()@

makingThreads -> doneStartingThreads fork(pid, tid)[@threadsToGo == 0@]/

}

# For all parts of your assignment, half of every ten threads must be 10 bound.
# The others are CPU bound. The 1/0 bound threads must request between
# 1 and 250 ticks using the exponential sampler, with the knee of the curve
# (half of the sampled values) at 25 ticks. The CPU bound threads must
# request between 100 and 1100 ticks using the revexponential sampler,
# with the knee of the curve (half of the sampled values) at 1000 ticks.
# All threads must continue to run until simulation time is >= 100,000.
machine thread {
machineid = -1, pid = -1, tid = -1, iobound = @False@, endtime = 100000 ;
# Python treats 0 as False (not iobound) and 1 as True (iobound).
# The transition out of state init initializes the above variables.
start init, state scheduling, state ready, state running, state waiting,
state rescheduling, accept terminated ;
init -> scheduling init()[J/@machineid, pid, tid = getid();
iobound = True if ((pid % 2) == 1) else False ;
# "N The odd pids are 10 bound.
# The others (50%) are CPU bound. This job mix stresses the scheduling
# algorithms better than a strictly 10-bound or CPU-bound mix.
# Set ticks when going into scheduling.
ticks = sample(1, 250, 'exponential’, 25) if iobound
else sample(100, 1100, 'revexponential’, 1000);
yieldcpu()@
scheduling -> running yieldcpu()[ @processor.contextsFree > 0@]/@
processor.contextsFree -= 1 ;
msg('pid ' + str(pid) + " tid ' + str(tid) + ' about to CPU for '
+ str(ticks) + ' ticks"); cpu(ticks)@
scheduling -> ready yieldcpu()[@processor.contextsFree == 0@]/@
# Put myself in processor's readyq with sjf priority.
msg('pid ' + str(pid) + ' tid ' + str(tid)
+ ' about to wait, ready for CPU ticks ' + str(ticks));

processor.readyq.enq(thread, ticks); waitForEvent('contextReady', False)@

ready -> scheduling contextReady()[]/@yieldcpu()@

# AN Do not set ticks coming out of ready, not used yet.

running -> rescheduling cpu()[}/@
processor.contextsFree +=1;



54 msg('thread ' + str(tid) + ' checking readyq '
55 + str(len(processor.readyq))
56 + ' with contextsFree ' + str(processor.contextsFree));
57 signalEvent(processor.readyq.deq(), ‘contextReady")
58 if len(processor.readyq) > 0 else noop();
59 yieldcpu()@
60 rescheduling -> terminated yieldcpu()[@time() >= endtime@]/
61 rescheduling -> waiting yieldcpu()[@time() < endtime@]/@
62 # iodevice of -1 (process terminal) or one of the fastio devices.
63 iodevice = sample(-1, len(processor.fastio)-1, 'uniform’);
64 msg('thread ' + str(tid) + ' blocking on 10 unit ' + str(iodevice));
65 msg('pid ' + str(pid) + " tid ' + str(tid) + ' about to 10 on dev '
66 + str(iodevice));
67 io(iodevice) @
68 waiting -> scheduling io()[]/@
69 ticks = sample(1, 250, 'exponential’, 25) if iobound
70 else sample(100, 1100, 'revexponential’, 1000);
71 yieldcpu()@
72
74 processor
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rr.stm - Round Robin Preemptive Scheduling

# CSC 343, Fall 2013, STUDENT NAME:

# rr.stm implements a preemptive round-robin scheduler as a
# partial solution of assignment 2. D. Parson.

machine processor {

}

# Use this machine in all of your files in assignment 2 to start threads.
# It starts 10 threads, one every tick. | am starting them quickly so that
# algorithms like FCFS don't get swamped too much an early CPU-bound thread.
threadsToGo =10 ;
start init, state makingThreads, accept doneStaringThreads ;
init -> makingThreads init()[}/@
processor.readyq = Queue(ispriority=False);
threadsToGo -= 1 ; fork()@
makingThreads -> makingThreads fork(pid, tid)[@threadsToGo > 0@]/@
threadsToGo -=1 ; fork()@
makingThreads -> doneStaringThreads fork(pid, tid)[@threadsToGo == 0@]/
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# For all parts of your assignment, half of every ten threads must be 10 bound.
# The others are CPU bound. The 1/0 bound threads must request between
# 1 and 250 ticks using the exponential sampler, with the knee of the curve
# (half of the sampled values) at 25 ticks. The CPU bound threads must
# request between 100 and 1100 ticks using the revexponential sampler,
# with the knee of the curve (half of the sampled values) at 1000 ticks.
# All threads must continue to run until simulation time is >= 100,000.
# STUDENT: The quantum must be 125 ticks. Make sure that a thread never
# calls cpu() with more than quantum ticks; use Python's min(a, b) function.
# Make sure to keep any un-run ticks returns from sample() in a variable,
# and make sure that as long as the remaining ticks from the most
# recent sample() have not reached 0, that your thread gets back to the
# ready state (processor.readyg.enq) WITHOUT doing io(). It should request
#i0() EXACTLY at the point that it has consumed all ticks supplied
# by the most recent sample() call, after which it can sample() a new
# CPU-burst number of ticks. Any given cpu() call must NEVER exceed
# the quantum limit.
machine thread {
quantum = 125, machineid = -1, pid = -1, tid = -1, iobound = @False@,
endtime = 100000 ;
# Python treats 0 as False (not iobound) and 1 as True (iobound).
# The transition out of state init initializes the above variables.
start init, state scheduling, state ready, state running, state waiting,
state rescheduling, accept terminated ;
init -> scheduling init()[]J/@machineid, pid, tid = getid();
iobound = True if ((pid % 2) == 1) else False ;
# ~MA The odd pids are 10 bound.
# The others (50%) are CPU bound. This job mix stresses the scheduling
# algorithms better than a strictly 10-bound or CPU-bound mix.
# Set ticks when going into scheduling.
ticks = sample(1, 250, 'exponential’, 25) if iobound
else sample(100, 1100, 'revexponential’, 1000);
tickstorun = min(ticks, quantum);
tickstodefer = ticks - tickstorun;
yieldcpu()@
# "M pids that give a remainder of 5 for divide-by-10 are CPU bound.
scheduling -> running yieldcpu()[@processor.contextsFree > 0@]/@
processor.contextsFree -= 1 ;
msg('pid ' + str(pid) + " tid ' + str(tid) + ' about to CPU for '
+ str(tickstorun) + ' tickstorun ' + ' out of ' + str(ticks)
+ ' ticks, tickstodefer = ' + str(tickstodefer));
cpu(tickstorun)@
scheduling -> ready yieldcpu()[@processor.contextsFree == 0@]/@
# Put myself in processor's readyq with rr priority.
msg('pid " + str(pid) + "tid ' + str(tid)
+ " about to wait, ready for CPU tickstorun ' + str(tickstorun)
+ 'out of ' + str(ticks) + ' ticks, tickstodefer ="
+ str(tickstodefer));
processor.readyq.enq(thread); waitForEvent(‘contextReady', False) @
ready -> scheduling contextReady()[[/@yieldcpu()@
# A Do not set ticks; they have not all been used.
running -> scheduling cpu()[@tickstodefer > 0@]/@
processor.contextsFree +=1;
signalEvent(processor.readyq.deq(), ‘contextReady")
if len(processor.readyq) > 0 else noop();
tickstorun = min(tickstodefer, quantum);
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tickstodefer = tickstodefer - tickstorun;
yieldcpu()@
running -> rescheduling cpu()[@tickstodefer < 1@]/@
processor.contextsFree +=1 ;
signalEvent(processor.readyq.deq(), ‘contextReady")
if len(processor.readyq) > 0 else noop();
yieldcpu()@
rescheduling -> terminated yieldcpu()[@time() >= endtime@]/
rescheduling -> waiting yieldcpu()[J/@
# Pick an iodevice of -1 (process terminal) or one of the fastio devices.
iodevice = sample(-1, len(processor.fastio)-1, 'uniform’);
msg('thread ' + str(tid) + ' blocking on 10 unit ' + str(iodevice));
msg('pid ' + str(pid) + " tid ' + str(tid) + ' about to 10 on dev'
+ str(iodevice));
io(iodevice) @
waiting -> scheduling io()[1/@
ticks = sample(1, 250, 'exponential’, 25) if iobound
else sample(100, 1100, 'revexponential’, 1000);
tickstorun = min(ticks, quantum);
tickstodefer = ticks - tickstorun;
yieldcpu()@

processor



