

page 1

CSC 458 Data Mining and Predictive Analytics I, Final Exam Mini-Project, Fall 2018, Answer Sheet

Dr. Dale E. Parson, Final Assignment 5, Comprehensive Assignment/Exam. Due by 9 AM on

Thursday December 13 via make turnitin. I will not accept late solutions; I need to grade these in a

timely manner. Assignments coming in any amount after 9 AM on December 13 earn 0%.

Our final exam class is scheduled for Tuesday, December 11, 6-8 PM. I will post this assignment and the

necessary files by noon on that Tuesday I will answer questions only in Tuesday’s class between 6-8 PM,

so come prepared to ask questions. Your make turnitin is due by 9 AM on Thursday and no later.

Perform the following steps to set up for this project. Start out in your login directory on csit (a.k.a. acad).

cd $HOME

mkdir DataMine # This should already be there from earlier assignments.

cp ~parson/DataMine/finalexam458fall2018.problem.zip

DataMine/finalexam458fall2018.problem.zip

cd ./DataMine

unzip finalexam458fall2018.problem.zip

cd ./finalexam458fall2018

This is the directory from which you must run make turnitin by the project deadline to avoid an exam

grade of 0%. If you run out of file space in your account, you can perform the following steps from within

your DataMine/ directory. Be extremely careful, and do NOT use any file name wildcards. This will

discard your results from previous assignments. If you wish to keep those, do not remove directories

csc458fall2018assn1, csc458fall2018assn2, linear458fall2018, or bayes458fall2018.

rm -rf csc458fall2018assn1.problem.zip csc458fall2018assn1

rm -rf csc458fall2018assn2.problem.zip csc458fall2018assn2

rm -rf linear458fall2018.problem.zip linear458fall2018

rm -rf bayes458fall2018.problem.zip bayes458fall2018

You will see the following files in this finalexam458fall2018 directory:

readme.txt Your answers to Q1 through Q15 below go here, in the required format.

 Each of Q1..Q15 is worth 6.66% of the exam.

Q1before.arff & Q7before.arff The ARFF files that are the handout datasets for this exam.

makefile Files needed to make turnitin to get your solution to me.

checkfiles.sh

makelib

How can you avoid running out of memory in Weka?

1. Run Weka using a command line or batch script that sets memory size. I run it this way on my Mac:

java -server -Xmx4000M -jar /Applications/weka-3-8-0/weka.jar

That requires having the Java runtime environment (not necessarily the Java compiler) installed on your

machine (true of campus PCs), and locating the path to the weka.jar Java archive that contains the Weka

page 2

class libraries and other resources. This line allocates 4,000,000 bytes of storage for Weka. As for

assignment 2, I have created batch file S:\ComputerScience\WEKA\WekaWith2GBcampus.bat for

campus PCs, with handout data files in S:\ComputerScience\Parson\Weka\. I plan to create a 4Gb. Byte

script S:\ComputerScience\WEKA\WekaWith4GBcampus.bat after I return to campus on November 8.

Try using that. It will contain this command line:

java –Xmx4096M -jar "S:\ComputerScience\WEKA\weka.jar"

2. Right-click results buffers in the Weka -> Classify window, or use Alt-click on Mac (control-click on

PC) to Delete result buffer after you are done with one. They take up space. You can also save these

results to text files via this menu.

3. Some of these models take a long time to execute. I have noted that condition in these instructions. In

such cases, it may save time just to exit Weka and restart it via the command line or a batch file with

a large memory limit, rather than just deleting result buffers.

STEPS

1. Open file Q1before.arff as the training and test set in Weka.

2. Reorder attributes to make targetAttribute the last attribute (as usual) without changing the

relative order of the non-class attributes.

3. Run the LinearRegression model after setting its attributeSelectionMethod parameter to No

Attribute Selection, and run the M5P model tree with its default configuration parameters on

this data; use 10-fold cross correlation, and compare their formulas, tree, Correlation coefficients,

and error measures. (Note: If setting attributeSelectionMethod parameter to No attribute

selection is not supported on your version of Weka, just report the attributeSelectionMethod

value in your Q1 answer.)

Q1: Which one, LinearRegression or M5P, gives the Minimum Description Length formula, considering

both formula length and prediction accuracy, for this dataset? Explain your answer.

Answer: M5P. It is just as accurate as LinearRegression for this data, but with a much smaller

formula:

Linear Regression Model

targetAttribute =

page 3

 2 * uniform +

 -0 * gaussian +

 0 * noisygau +

 0 * exponential +

 0 * revexponential +

 -0 * angle +

 -0.0001 * sinwave +

 -0 * coswave +

 0 * logcurve +

 0 * expcurve +

 9.9995

Correlation coefficient 1

Mean absolute error 0.0003

Root mean squared error 0.0167

Relative absolute error 0 %

Root relative squared error 0.0003 %

Total Number of Instances 50000

M5 pruned model tree:

(using smoothed linear models)

LM1 (50000/0%)

LM num: 1

targetAttribute =

 2 * uniform

 + 9.9998

Correlation coefficient 1

Mean absolute error 0.0002

Root mean squared error 0.0167

Relative absolute error 0 %

Root relative squared error 0.0003 %

Total Number of Instances 50000

4. Discretize only this targetAttribute into 10 nominal bins. Leave useEqualFrequency at False in

order to maintain the statistical distribution of the values.

Q2: Save this file as Q1after.arff and turn it in using make turnitin from the project directory after

completing all steps in this exam.

5. Run the ZeroR, OneR, J48, BayesNet, and NaiveBayes classifiers on this dataset. Compare their

“Correctly Classified Instances” and all error measures.

2017:

ZeroR:

Correctly Classified Instances 5130 10.26 % (SAME FOR 2018)

Incorrectly Classified Instances 44870 89.74 %

Kappa statistic 0

Mean absolute error 0.18

Root mean squared error 0.3

Relative absolute error 100 %

Root relative squared error 100 %

page 4

Total Number of Instances 50000

OneR:

Correctly Classified Instances 49994 99.988 %

Incorrectly Classified Instances 6 0.012 %

Kappa statistic 0.9999

Mean absolute error 0

Root mean squared error 0.0049

Relative absolute error 0.0133 %

Root relative squared error 1.633 %

Total Number of Instances 50000

J48:

Correctly Classified Instances 49991 99.982 %

Incorrectly Classified Instances 9 0.018 %

Kappa statistic 0.9998

Mean absolute error 0

Root mean squared error 0.006

Relative absolute error 0.02 %

Root relative squared error 2 %

Total Number of Instances 50000

BayesNet:

Correctly Classified Instances 49994 99.988 %

Incorrectly Classified Instances 6 0.012 %

Kappa statistic 0.9999

Mean absolute error 0.0002

Root mean squared error 0.0049

Relative absolute error 0.1243 %

Root relative squared error 1.6359 %

Total Number of Instances 50000

NaiveBayes:

Correctly Classified Instances 49562 99.124 %

Incorrectly Classified Instances 438 0.876 %

Kappa statistic 0.9903

Mean absolute error 0.0209

Root mean squared error 0.0768

Relative absolute error 11.6139 %

Root relative squared error 25.5869 %

Total Number of Instances 50000

2018 has OneR and BayesNet tied:

OneR 2018:

Correctly Classified Instances 49994 99.988 %

Incorrectly Classified Instances 6 0.012 %

Kappa statistic 0.9999

Mean absolute error 0

Root mean squared error 0.0049

Relative absolute error 0.0133 %

page 5

Root relative squared error 1.633 %

Total Number of Instances 50000

J48 2018:

Correctly Classified Instances 49991 99.982 %

Incorrectly Classified Instances 9 0.018 %

Kappa statistic 0.9998

Mean absolute error 0

Root mean squared error 0.006

Relative absolute error 0.02 %

Root relative squared error 2 %

Total Number of Instances 50000

NaiveBayes 2018:

Correctly Classified Instances 49562 99.124 %

Incorrectly Classified Instances 438 0.876 %

Kappa statistic 0.9903

Mean absolute error 0.0209

Root mean squared error 0.0768

Relative absolute error 11.6138 %

Root relative squared error 25.5868 %

Total Number of Instances 50000

BayesNet 2018:

Correctly Classified Instances 49994 99.988 %

Incorrectly Classified Instances 6 0.012 %

Kappa statistic 0.9999

Mean absolute error 0.0002

Root mean squared error 0.0049

Relative absolute error 0.1243 %

Root relative squared error 1.6359 %

Total Number of Instances 50000

Q3: Is there an unconditional winner from among the above classifiers in terms of “Correctly Classified

Instances” and error measures? If so, which one, and give its “Correctly Classified Instances” and error

measures. If not, give the “Correctly Classified Instances” and error measures for the contending

approaches, and explain why there is no clear winner. Explain the reasoning behind your answer, showing

model structure and/or “Correctly Classified Instances”/error measures as needed.

OneR is winner because some of its error measures, underlined above, are smaller than BayesNet in

second place. (2018 BayesNet ties OneR.)

Q4: Which approach from Q2 represents the “Minimal Description Length” (MDL) model? Explain the

reasoning behind your answer, showing model structure and/or “Correctly Classified Instances”/error

measures as needed.

I give it to OneR.n

OneR:

uniform:

 < 1000.317242 -> '(-inf-2010.607418]'

page 6

 < 2000.1581434999998 -> '(2010.607418-4010.507342]'

 < 3000.0774300000003 -> '(4010.507342-6010.407265]'

 < 4000.124552 -> '(6010.407265-8010.307189]'

 < 5000.0880985 -> '(8010.307189-10010.207112]'

 < 6000.145431999999 -> '(10010.207112-12010.107035]'

 < 7000.0288255 -> '(12010.107035-14010.006959]'

 < 7999.8571885 -> '(14010.006959-16009.906882]'

 < 8999.2698815 -> '(16009.906882-18009.806806]'

 >= 8999.2698815 -> '(18009.806806-inf)'

(50000/50000 instances correct)

Correctly Classified Instances 49994 99.988 %

Incorrectly Classified Instances 6 0.012 %

Kappa statistic 0.9999

Mean absolute error 0

Root mean squared error 0.0049

Relative absolute error 0.0133 %

Root relative squared error 1.633 %

Total Number of Instances 50000

BayesNet is a contender after you throw away the useless nodes in the graph with constant probabilities

of 1.

J48 is more complicated than OneR with less accuracy:

uniform <= 4999.982539

| uniform <= 1999.853854

| | uniform <= 1000.303289: '(-inf-2010.607418]' (5015.0)

| | uniform > 1000.303289: '(2010.607418-4010.507342]' (5054.0)

| uniform > 1999.853854

| | uniform <= 4000.0147

| | | uniform <= 2999.907739: '(4010.507342-6010.407265]' (4938.0)

| | | uniform > 2999.907739: '(6010.407265-8010.307189]' (5061.0)

| | uniform > 4000.0147: '(8010.307189-10010.207112]' (4994.0)

uniform > 4999.982539

| uniform <= 7000.002567

| | uniform <= 5999.877829: '(10010.207112-12010.107035]' (4969.0)

| | uniform > 5999.877829: '(12010.107035-14010.006959]' (5130.0)

| uniform > 7000.002567

| | uniform <= 8998.280291

| | | uniform <= 7999.748943: '(14010.006959-16009.906882]' (4886.0)

| | | uniform > 7999.748943: '(16009.906882-18009.806806]' (4988.0)

| | uniform > 8998.280291: '(18009.806806-inf)' (4965.0)

NaiveBayes is much more complicated to read.

page 7

Q5: Based on your analysis of this ARFF file’s dataset up to this point, how can you get NaiveBayes to

maximize its performance in terms of perform “Correctly Classified Instances” without any degradation

to BayesNet’s “Correctly Classified Instances”? Describe how you achieved this result and why your

change or changes to the data make this improvement in NaiveBayes. Explain the reasoning behind your

answer, showing model structure and/or “Correctly Classified Instances”/error measures as needed.

Drop all attributes except uniform and targetAttribute. This gives shortest NaiveBayes description and

greatest accuracy:

NaiveBayes:

Correctly Classified Instances 49832 99.664 %

Incorrectly Classified Instances 168 0.336 %

Kappa statistic 0.9963

Mean absolute error 0.0208

Root mean squared error 0.0762

Relative absolute error 11.5702 %

Root relative squared error 25.4028 %

Total Number of Instances 50000

with no impact on BayesNet:

BayesNet:

Correctly Classified Instances 49994 99.988 %

Incorrectly Classified Instances 6 0.012 %

Kappa statistic 0.9999

Mean absolute error 0.0002

Root mean squared error 0.0049

Relative absolute error 0.1243 %

Root relative squared error 1.6359 %

Total Number of Instances 50000

The removed attributes are either uncorrelated with targetAttribute, or statistically interdependent with

each other. Both of those conditions violate NaiveBayes’ need for statistical independence of non-class

attributes. In this case some attributes exhibit both condition. Also, BayesNet’s graph shows that all

attributes except uniform are statistically uncorrelated with the targetAttribute.

Q6: What formula did I use to derive Q1before.arff’s targetAttribute from the remaining attributes?

targetAttribute = 2 * uniform + 10

FROM M5P. NOTE PYTHON CODE:

derv1 = genDerived(lambda i, l : l[0][i] * 2.0 + 10, datarecords)

WHERE l[0] is the uniform distribution attribute.

LinearRegression is a valid answer with this formula:

Linear Regression Model

targetAttribute =

 2 * uniform +

 0 * noisygau +

 -0 * angle +

 -0 * sinwave +

 0 * logcurve +

page 8

 0 * expcurve +

 10

There is also a rule-structured variant of M5P called M5rules.

I don't use it much because M5P tends to be more accurate, but

in some cases M5rules gives a better MDL with little or no loss

in accuracy:

M5 pruned model rules

Number of Rules : 1

Rule: 1

targetAttribute =

 2 * uniform

 + 10 [50000/0%]

Correlation coefficient 1

Mean absolute error 0

Root mean squared error 0

Relative absolute error 0 %

Root relative squared error 0 %

Total Number of Instances 50000

6. Open file Q7before.arff as the training and test set in Weka.

7. Run the LinearRegression model and the M5P model on this data, with 10-fold cross

correlation, and compare their formulas, tree, Correlation coefficients, and error measures.

Q7: Which one, LinearRegression or M5P, gives the Minimum Description Length formula, considering

both formula length and prediction accuracy, for this dataset? Explain your answer.

M5P has shorter, clearer formulas and better accuracy.

Linear Regression Model

targetAttribute =

 -0.0124 * uniform +

 -3.6598 * gaussian +

 0.0146 * noisygau +

 -3.991 * angle +

 -161.509 * sinwave +

 -151.2686 * coswave +

 49.857 * logcurve +

 32.8475 * expcurve +

 16037.9959

Correlation coefficient 0.7859

Mean absolute error 3998.2323

Root mean squared error 4731.9904

Relative absolute error 53.2491 %

Root relative squared error 61.8344 %

Total Number of Instances 50000

M5 pruned model tree:

gaussian <= 4999.98 : LM1 (25060/0%)

gaussian > 4999.98 : LM2 (24940/0%)

page 9

LM num: 1

targetAttribute =

 1.4969 * gaussian

 + 9.7696

LM num: 2

targetAttribute =

 -1.5013 * gaussian

 + 9.8165

Number of Rules : 2

Correlation coefficient 1

Mean absolute error 2.9618

Root mean squared error 67.1281

Relative absolute error 0.0394 %

Root relative squared error 0.8772 %

Total Number of Instances 50000

8. Remove the attributes except for those that appear in the more accurate of LinearRegression and

M5P for this dataset. Keep only the attributes appearing in the more accurate model.

Q8: What attributes remain?

targetAttribute & gaussian

Q9: Re-run LinearRegression and M5P on these attributes. Do the results differ from the full-attribute set

of Q7before.arff? If so, summarize what has changed.

Slight, insignificant change in LinearRegression, none in M5P.

Linear Regression Model

targetAttribute =

 -3.656 * gaussian +

 16331.4506

Correlation coefficient 0.7859 same

Mean absolute error 3997.8913 slightly better

Root mean squared error 4731.6702 slightly better

Relative absolute error 53.2446 % slightly better

Root relative squared error 61.8302 % slightly better

Total Number of Instances 50000

M5 pruned model tree: same

gaussian <= 4999.98 : LM1 (25060/0%)

gaussian > 4999.98 : LM2 (24940/0%)

LM num: 1

targetAttribute =

 1.4969 * gaussian

 + 9.7696

LM num: 2

targetAttribute =

 -1.5013 * gaussian

page 10

 + 9.8165

Correlation coefficient 1 same

Mean absolute error 2.9618 same

Root mean squared error 67.1281 same

Relative absolute error 0.0394 % same

Root relative squared error 0.8772 % same

Total Number of Instances 50000

9. Discretize only this targetAttribute into 2 nominal bins. Leave useEqualFrequency at False in

order to maintain the statistical distribution of the values.

Q10: Save this file as Q7after.arff and turn it in using make turnitin from the project directory after

completing all steps in this exam.

Q11: Run the OneR, J48, and RandomTree classifiers on this dataset. Copy & paste the actual rule and

trees, along with the following accuracy measures in your answer. Which of the above numeric-

targetAttribute classifiers (LinearRegression or M5P) do these rule & trees most closely resemble, in

terms of structure? Which is most accurate, OneR, J48, or RandomTree? Explain your answer.

OneR

INSERT RULE HERE

Correctly Classified Instances N N %

Kappa statistic N

Mean absolute error N

Root mean squared error N

Relative absolute error N %

Root relative squared error N %

Total Number of Instances N

J48 pruned tree

INSERT TREE HERE

Correctly Classified Instances N N %

Kappa statistic N

Mean absolute error N

Root mean squared error N

Relative absolute error N %

Root relative squared error N %

Total Number of Instances N

RandomTree

INSERT TREE HERE

Correctly Classified Instances N N %

Kappa statistic N

Mean absolute error N

Root mean squared error N

Relative absolute error N %

Root relative squared error N %

Total Number of Instances 50000

Which of the above numeric-targetAttribute classifiers (LinearRegression or M5P) do these trees most

closely resemble, in terms of structure? M5P. M5P splits attribute gaussian’s range identically to

page 11

RandomTree. Which is most accurate, OneR, J48, or RandomTree? OneR & RandomTree. See bold in

RandomTree below for illustration of better accuracy than J48.

OneR:

gaussian:

 < 4999.9798835 -> '(-3745.172703-inf)'

 >= 4999.9798835 -> '(-inf--3745.172703]'

Correctly Classified Instances 50000 100 %

Kappa statistic 1

Mean absolute error 0

Root mean squared error 0

Relative absolute error 0 %

Root relative squared error 0 %

Total Number of Instances 50000

J48 pruned tree

gaussian <= 4999.940849: '(-3745.172703-inf)' (25060.0)

gaussian > 4999.940849: '(-inf--3745.172703]' (24940.0)

Correctly Classified Instances 49999 99.998 %

Kappa statistic 1

Mean absolute error 0

Root mean squared error 0.0045

Relative absolute error 0.004 %

Root relative squared error 0.8944 %

Total Number of Instances 50000

RandomTree

gaussian < 4999.98 : '(-3745.172703-inf)' (25060/0)

gaussian >= 4999.98 : '(-inf--3745.172703]' (24940/0)

Correctly Classified Instances 50000 100 %

Kappa statistic 1

Mean absolute error 0

Root mean squared error 0

Relative absolute error 0 %

Root relative squared error 0 %

Total Number of Instances 50000

 Q12: Run the NaiveBayes and BayesNet statistical classifiers on this dataset. Copy & paste the actual

tables and BayesNet graph (manually type the BayesNet graph per instructions below), along with the

following accuracy measures in your answer. Which is more accurate, NaiveBayes or BayesNet? Explain

your answer.

BayesNet is more accurate in all measures. See below.

Naive Bayes Classifier

 Class

Attribute '(-inf--3745.172703]' '(-3745.172703-inf)'

 (0.5) (0.5)

===

gaussian

 mean 6322.9886 3688.3679

page 12

 std. dev. 987.9011 983.0047

Correctly Classified Instances 49925 99.85 %

Kappa statistic 0.997

Mean absolute error 0.1162

Root mean squared error 0.1833

Relative absolute error 23.2444 %

Root relative squared error 36.6532 %

Total Number of Instances 50000

BayesNet GRAPH

GRAPH: targetAttribute Gaussian

targetAttribute TABLE:

Gaussian TABLE:

Correctly Classified Instances 50000 100 %

Kappa statistic 1

Mean absolute error 0

Root mean squared error 0

Relative absolute error 0.0044 %

Root relative squared error 0.0044 %

Total Number of Instances 50000

Naive Bayes Classifier (STUDENT – PASTE THE ACTUAL VALUES FOR NaiveBayes results)

 Class

Attribute 'LOWER-NOMINAL-RANGE' '(UPPER-NOMINAL-RANGE)'

 (fraction-in-range) (fraction-in-range)

===

non-target-attribute

 mean N N

 std. dev. N N

Correctly Classified Instances N N %

Kappa statistic N

Mean absolute error N

Root mean squared error N

Relative absolute error N %

BayesNet GRAPH – STUDENT – TYPE IN BOTH THE GRAPH STRUCTURE AND THE TABLES

WITHIN THE BAYESNET GRAPH HERE AFTER INSPECTING IT IN WEKA.

Correctly Classified Instances N N %

Kappa statistic N

Mean absolute error N

Root mean squared error N

Relative absolute error N %

Q13: The formula to find the Kappa statistic is

Kappa = (observed accuracy - expected accuracy)/(1 - expected accuracy).

page 13

What is the expected accuracy for the targetAttribute as a percentage for the dataset of Q12? How did

you arrive at this answer?

expected accuracy = 50.12%. 25060/50000 = .5012 for the larger of two targetAttribute bins. This is the

random guess of ZeroR.

ZeroR predicts class value: '(-3745.172703-inf)'

Correctly Classified Instances 25060 50.12 %

Incorrectly Classified Instances 24940 49.88 %

Kappa statistic 0

Mean absolute error 0.5

Root mean squared error 0.5

Relative absolute error 100 %

Root relative squared error 100 %

Total Number of Instances 50000

Q14: Run Simple K-means clustering using 2 clusters for this dataset. Copy & paste the table below,

showing the actual data:

kMeans

======

…

Final cluster centroids:

 Cluster#

Attribute Full Data 0 1

 (N) (N) (N)

===

===============

non-target-attribute N N N

targetAttribute RANGE RANGE RANGE

Clustered Instances

0 REMAINDER OF THIS LINE

1

0 REMAINDER OF THIS LINE

kMeans

======

…

Cluster 0: 4793.837155,'\'(-3745.172703-inf)\''

Cluster 1: 4649.303971,'\'(-3745.172703-inf)\''

Missing values globally replaced with mean/mode

Final cluster centroids:

 Cluster#

Attribute Full Data 0 1

 (50000.0) (24940.0) (25060.0)

===

===============

gaussian 5002.5168 6322.989 3688.3678

targetAttribute '(-3745.172703-inf)' '(-inf--3745.172703]' '(-3745.172703-inf)'

Clustered Instances

page 14

0 24940 (50%)

1 25060 (50%)

Setup for Q15: Use Weka’s Preprocess tab to consult the Mean and the value-distribution curve

(histogram) for the non-target attribute (NOT targetAttribute). Note how the colors of the two-bin

targetAttribute distribute across the non-target attribute curve in the lower right part of the Preprocess tab.

Use the Weka Preprocess filter Unsupervised -> Instance -> RemoveWithValues to remove one of the

targetAttribute bins. (NOTE: RemoveWithValues’ attributeIndex refers to the attribute with values-to-

remove, such as first or last, just like other filters you have used; nominalIndicies is a value of 1 or 2,

depending on which targetAttribute bin you want to remove; you may have to change invertSelection to

true to remove the other bin; use Undo after each step to get back to the full dataset.)

After removing one of the targetAttribute bins, note the following:

Which targetAttribute bin did you remove?

What is the mean of the non-target-attribute?

What is the minimum of the non-target-attribute?

What is the maximum of the non-target-attribute?

Removed bin 1 (kept 2).

Mean 3688.368

Minimum 0.422

Maximum 4999.941

Execute UNDO, then remove the OTHER targetAttribute bin.

Which targetAttribute bin did you remove?

What is the mean of the non-target-attribute?

What is the minimum of the non-target-attribute?

What is the maximum of the non-target-attribute?

Removed bin 2 (kept 1).

Mean 6322.989

Minimum 5000.019

Maximum 9993.504

Q15: Relate these non-target-attribute mean, min, and max values back to the values that appear in J48,

RandomTree, NaiveBayes, BayesNet, and Simple K-means clustering in Q11, Q12, and Q14. Where do

these values show up? What is the significance of that fact?

Means show up in NaiveBayes and K-means, and central split point show up in OneR and all of the trees.

Significance is that the lower non-target-attribute values (Gaussian) show up in the upper targetAttribute

range, and vice versa. For example:

M5 pruned model tree: same

gaussian <= 4999.98 : LM1 (25060/0%)

gaussian > 4999.98 : LM2 (24940/0%)

LM num: 1

page 15

targetAttribute =

 1.4969 * gaussian

 + 9.7696

LM num: 2

targetAttribute =

 -1.5013 * gaussian

 + 9.8165

OR

RandomTree

gaussian < 4999.98 : '(-3745.172703-inf)' (25060/0)

gaussian >= 4999.98 : '(-inf--3745.172703]' (24940/0)

OR

Make sure to run make turnitin in directory finalexam458fall2018 that contains your saved files

readme.txt, Q1after.arff and Q7after.arff as instructed above.

BONUS EXTRA credit question. Add this sequence of answers tagged as BONUS at the bottom of

readme.txt if you decide to do it. It is worth 10 bonus points on the exam if it is exactly correct. I will not

award any points to incorrect or partially correct solutions to this BONUS problem. It is all or none,

although you cannot lose points by attempting it. Read all steps below before starting.

A. Open Q1before.arff as you did before. Do NOT save any changes that you make to the ARFF file.

page 16

B. Remove attribute targetAttribute.

C. Create a new derived attribute called derivedAttribute using the appropriate Weka filter.

derivedAttribute will serve as your class attribute (target attribute). Attribute derivedAttribute

must satisfy the following constraints:

C.1 It must derive from one or more attributes in this dataset.

C.2 It must correlate exactly linearly with one attribute in this dataset that does not appear in C.1.

In other words, you cannot derive it in part or entirely from attribute A and then assert that it

correlates linearly with that same attribute A.

C.3 By correlating exactly in step C.2 I mean that this derivation must give the highest correlation

coefficient and the lowest error measures possible for a linear classifier.

D. Type into readme.txt the Weka formula that appears in the filter line panel after you Apply it.

E. Repeat step D, using the Weka attribute Name in place of its Position number for each original

attribute used in the derivation. I need to be able to tell the attribute or attributes from which

derivedAttribute derives.

F. Find the most accurate classifier that also exhibits the minimum description length (MDL) in

predicting derivedAttribute. Remove any attribute that increases the description length

without increasing accuracy, but be careful. Do NOT remove derivedAttribute or the

attribute with which it correlates exactly linearly per step C.2 above. Also, the derivation

formula of steps C through E must give the highest correlation coefficient and the lowest

error measures possible for this dataset.

G. Copy and paste the classifier’s rule, rules, formula, formulas, tree, or other structure that

establishes its standing as the MDL classifier, along with the following measure of accuracy.

Correlation coefficient N

Mean absolute error N

Root mean squared error N

Relative absolute error N %

Root relative squared error N %

Total Number of Instances 50000

D: AddExpression –E sin(a6 / 360.0 * 6.28318530717959)” –N derivedAttribute

NOTE: 6.28318530717959 is 2.0 * PI. “/ 360.0 * 6.28318530717959” converts degrees to radians.

“6.28318530717959” came from multiplying 2 X PI on a calculator.

E: AddExpression –E sin(angle / 360.0 * 6.28318530717959)” –N derivedAttribute

Attributes: 2

 sinwave

 derivedAttribute

Linear Regression Model

derivedAttribute =

 1 * sinwave +

 0

Correlation coefficient 1

Mean absolute error 0

Root mean squared error 0

Relative absolute error 0 %

Root relative squared error 0 %

Total Number of Instances 50000

OR

M5 pruned model tree:

page 17

LM num: 1

derivedAttribute =

 1 * sinwave

 + 0

Correlation coefficient 1

Mean absolute error 0

Root mean squared error 0

Relative absolute error 0 %

Root relative squared error 0 %

Total Number of Instances 50000

OR (next page)

page 18

D: AddExpression –E cos(a6 / 360.0 * 6.28318530717959)” –N derivedAttribute

E: AddExpression –E cos(angle / 360.0 * 6.28318530717959)” –N derivedAttribute

Attributes: 2

 coswave

 derivedAttribute

Linear Regression Model: derivedAttribute = 1 * coswave + 0

M5 pruned model tree: derivedAttribute = 1 * coswave + 0

Simple Linear regression on coswave: 1 * coswave + 0

Correlation coefficient 1

Mean absolute error 0

Root mean squared error 0

Relative absolute error 0 %

Root relative squared error 0 %

Total Number of Instances 50000

