56 Chapter . Conposing Objects

@ThreadSafe
public- final c?ass'CountEr {
.@GuardedBy("this") private long value = O

public synchronized long getvalue() {
return value;
}

p.i_.l'b'lic synchronized Tong increment() {
if (value == Long.MAX VALUE)
throw new IllegalStateExcepticn(“counter overflow") ;.
return +4val ue; :

LISTING 4.1. Simple thread-safe counter using the Java monitor pattern.

im_mut'abilit)c_ thread confhﬁemjen_t, and]'ock'ing is used te maitttaih thread safety;
and which variables are.guarded by which locks. To ensure that the class can be
analyzed and maintained, document the synchronization. policy.

411 Gathering synchronization requirements

Making a class thread-safe means ensuring that its invariants bold ander concur-

rent access; this requires reasoning about its state. Objects and variables have a
stite space: the range of possible states: they can take on. The smaller this state
‘Space, the easier it i5 to reason about. By using final fields wherever prdctical; you
make it simpler to analyze the possible states an object can be in. (In the extreme
case, immuutable objects can only be in a single state.)

Many classes have invariarnts that identify certain states as pelid or invalid.
The value field in Counter is. a long. The state space of a long ranges from.
Long .MIN_VALUE to Long.MAX_VALUE, but Counter places constraints on value;
negative values are not.allowed. _

Similatly, operations may have postconditions that identify certain sfafe fransi-
tions as invalid, If the current state of a Counter is 17, the only valid next state is
8. When the next state is derived from the current state, the operation is neces-
sarily a compound action. Not all operations impose sfate transition cong traints;
when updating a variable that holds the current temperature, its previous state
does not affect the computation,

Constraints placed on states:or state i*ra_n'silions.by invariants and postcondi-
tions create additional synchronization or encapsulation requirements. If certain
states are-invalid, then the underlying state variables must be ‘encapsulated, oth-.
erwise client code could put the objéct into an invalid state. TFan opetation has
invalid state transitions, it must be made atomic. On the other hand, if the class
does riot impose. any such constraints, we may be able to relax encapsulation or
serialization requirements to obtain greater flexibility or better petformance,

t
}
i

4i2. [ustance confineniont 59

Enca b‘Llldtht‘l simplifies mal\mo classes thread-safe by p[‘ornotmjr iNstaitce con-
fresient. ST : 2:3.3]. When an object is encapsulated”

“within another object, all' code path:, that have access to the encapsulated object

aré known and can be therefore be analvzed more easily than if that object-were
dccessible to the entire program. Combining confineément wvith an appropriate
locking discipling cas enstce that otherwise non-thiread-safe objects are used ina
thread-safe manner.

Encapsulating data within an abject confines access to-the data to the ob-
ject’s mathods, making it easier to ensure that the data is always accessed

with the apprapriate lock held.

ed scope. An object may be

not esca

confinac to a class instance (Such as a private class member), a lexical scope (such

as a local variable); of a thread (such as.ah object that is passed from method to
methoid within a thread, But not suppoesed to bie shared across threads), Ob;ei_tb
dor’t escape on their own, of course—they need help from the developer, who

assksts by pubii‘:‘"ip the object beyond its intended SCope.

PersonSat in Listing 4.2 ﬂlustm es how confinement and locking can work
Eom.mer o make a da:a thread—aate even when its component state martab as-are
ok, The state of PersonSat is managed by a HashSat, which s not thread-safe,

But because mySat is private’and not allowed to escape, the HashSet is confined

to the PersonSat. The only code paths that can access mySétrare addPersan and
containsPerson, and each of these acquires the lock on the Persondet. All its

state is guarded by its intrinsic lock, making PersonSet thread-safé.

@ThreadSafs

publit c¢lass PérsonSet [

private final Set<Person> mySet = new HashSetr<Person>(};

pubTic syncﬁ?"o_r’.i'zad void addPerson(Person p) {
mySet Aadd{p);
}

public syrchronizaed boolean coritainsPerson(Person p) {
return mySet.contains(p);

}

LISTING 4.2. Using confiriement to ensure thread safety.

This example makes no assumptions about the thread-safety of Person, but if

61 Cliapter 4. Composiig:Objects

@NotThreadSafe
public class MutablePoint {
pubTic int %, v;

public MutablePoint() { x =0; v =0; }
public MutablePoint(MutablePoint p) {
this.x = p.Xj
this.y = p.y;

LISTING 4.5. Mutable point class similar to java.awt . Point.

counter, it is easy to see that CountingFactorizer is thread-safe, We could say
that CountingFactorizar defegates its thread safety re:.ponalbthtles to the Atom-
iclLong: CountingFactorizer is-thread- safa because Atomiclong is.3

431 Example: vehitle tracker using delegation

As o more substantial example of delegation, let's construct a version of the ve-
hicle tracker that deluntt.s toa thrhad safe class. e .stdre the locations ina
Map, so we stm:t with a tmead—aare Map im'ﬂlemn_ntatlon, ConcurrentHashMap. We
also store the location using an 1mmuhble Point class instead of MutablePoint,
showvn it letln_\é._-[_,_ﬁ.

@Immutable
public class Point {
public final int x, y;

public Point(int x, int v) { -
this.x = ¥
this.y = y;

LIsTING 4.6. Immutable Point class used by DelégatingvehicleTracker.

Point is-thread-safe because it is immutable, [mmutable values can be freely

shared and published, so we ho longer need to-copy the locations when returning
them.

5. If count were not. Final, the threal safety analysis of Counti ngFactnm zer would be more com-
phcated, If CounvingFactorizer could modm ‘tount to reference a different Atdmd cLong, we would
then have to ensure that this update was VIb__Ib_IE torall threads that might access the count, and that

e Aot L i e B

4.3 Delogating Huicad safety | 65

DelegatingVehicleTracker in Listing 4.7 does not use any explicit synchro-
nization; all access to state is managed b» ConcurrentHashMap, and all the. Keys
and values of the Map are 1m_mut1ble

@ThreadS4afe’

public class DelegatingvVehicleTracker f
private final ConcurrentMap<String, Point> locations;
private final Map<5tr'mg, Point> unmodifiableMap;

pubTic DelegatingVehicleTracker (Map<String, Point> points) {
locations = new ConcurrentHashMap<String, Point>{points);
unmodifiabteMap = Collections.unmodifiableMap(locations);

}

public Map<String, Point> getlocations() {
return unmodifiableMap;

¥

public Point getLocation(String id) {
return Jocations.get(idy;

}

public void serLocation(String id, int x, int y) {
if (Tocations.replace(id, new Point(x, y)) == nuTl)
throw new ITlegalArgumentExceptioh (
"invalid vehicle name: " % 1d);

LISTING ..7. Delegating thread safety to a ConcurrentHashMap.

If we had used the original MutablePoint clasy instead of Point, we would
be breaking E!ﬂ.CElprﬂ&[‘lOn b} letting getLocations publi:h a reference to muta-
ble state tl’nt is not thread-safe. Notice that we've changed the behavior of the.
vehicle tracker class slightly; while the monitor version returfied a snapshot of
the locations, the delegating version returns an unmodifiable but “live” view of
the vehicle locations, Thjb meéans that if thread: A calls getlocations and thread
B later modifies the location 6f some of the points, those chariges are reflected
it the Map returned to thread A. As we remarked earlier, this can be a benefit
{more up-to-date data) or a liability (potentially incomsistent view of- the fleet),
depending on your requirements,

If an unchangm" view of the fleet is requu:ed getlocations -could instead.
return a shallow copy of the Tocations map. Since the contents of the Map are
immutable, only the structure of the Map, not the contents, must be copied, as

72 Chapter 4. Composfng Objects

@ThreadSafe
public class BetterVector<Es extends Vector<Es i
public synchronized boolean putIfAbsent(E x) {
boalean absent = lcontains (%),
if (absent) '
add{y
return absent;

LISTING 4:13. Extendin g Vector to have a put-if-absent method.

4.4.1 Client-side locking

Foran Arraylist Wrapped with a Cotlect

jens.synch ronizedtist Wrapper, nei-
hes—adding a metho

ther of these approsc <k to-the original class orextending the
class—works: because the client code does. not even know the class of the List
object returned from the synchronized wrapper factories, i

,exfen‘cl__the..ftm;:ti_o_,ugli_fg_of the class without extending the-cl
extension.code in a “helper™ clags- ' '

List’ihg.4.1-4 OWS a failed attempt to create a helpér class with
put.—if—.absent'opei‘;a_t'icm for Operating on a thread-safe List,

an atomic

_@thThi"e_adSaFe
public class ListHalpar<Fs {
* - pubTic List<E> 7ist -

Collectians. synch__roni"z'edu's't'(_n_ew Arraylist<E>()) :
public synchronized boo]ean .pu_'tIfAbs_ent{E X3 4
boolean: absent Mist, contains (x) :
1f (absent) '
Hist.add ()
return absent;
}
}

Listing 4.14. Non-thread

-safe attempt to implement put-if-absent: Dox't dy this,

Why wouldn't this work? After all, ptitTfAbsent is synchroni zed, right? The™
problem is that it synchronizes on the wrotigock, Whatever lock the List uges™

to guard, i_ts stafe, it sure isn’t the lock on the ListHeTpar, ListHalper provides
only the flusion ofsynchmm'zah’o}f;'-the various [ist ope'ra'tions_,_ while all synchprg=
nized, use different locks, which means that putIfAbsent is ot atomic relative to
other Operations on the [ist, Sa there i no guarantee that another thread won't
modify’ the list while.pu-tIFAbsent is executing,

-

gof. Adding functionalit i boexisting Hremd-safo classes

~1
T

Te make this zlpproat.h nmk K that the List uses
buvusing client-side lork axteryn) Jo;.nmﬂ Cl.ent-ﬂlde locking entails guarding
client code that uses ﬁome object X with the lock X uses to sudrd its own state.
In order to use client-side locking; vou mUst Kiow what Tock X uses.

The documentation for- VEC‘tDr‘ and-the synchronized swrapper classes states,
albeit obliquely, that they support client-side locking, by using the intrinsic lock
for the Vecter or the wrapper collection (not the w rapped Lcllu_non} Listing
415 shows a putIfAbsent operation on a thread-safe List that coirectly uses
client-side locking,

fThreadSafe
public class ListHelper<E> {
public Uist<Es 195t = _
Collactiens.synchronizedList(new Arraylist<Es()):

puahc boolean putTfAbsent(E x) {

@E\Emzed ('Im .
oolean absent = 11ist.contains (x);

if (absent)
Tist.add{x);
return ahsant;

LISTING 4.15. Impiementmv put-it-absent with client-side locking.

If exteénding a class to add another atomic opeeation is fragils becguse it dis-
t_u“_lélitf:-_ﬁﬂ OOT code For A class dyver r*"nTtmle (lasses in an ebject hierarchy,
client-side loUcmcr 15 .even more fragile becayse it enkaily. Durhnﬂ_leekﬂ"rﬁ-eﬁt%eﬁ

Tor class C info Li&bb@‘a that-ave totally unrelated to C. Exercise care Whl‘.ﬂ using
client-side lpcking on'classes that do not commit te their locking strategy.

Client-side. Iod\ma has a lot in common withy class extensmnv—thw both cou-
ple the behavior of the derived c[aaq to the: ‘implementation of the base class: Just
A5 extension violates encapsulation of. implementation {Ef Item 14], client- blde
locking violates encapsuiation 6f svnchmmzahon policy.

!

4.4.2 Composition

There is a less fragile alternative for adding an atomic operation to an existing

class: compesition. ImprovedList in Listing 1a6 implements the List opemhons
! Jner
by '—"le:ﬂ__nt” tham to an tinderlving List instance, and adds an atemic put-

[FAbsent method. (Like Collectiens. synchronT rontzedlList and other collections
wrappers, TinprovedList assumes that once-a list is passed to its constructor, the
‘client wﬂL not use the underlying list directly again, accessing it only through the

e

e

74

Chapter 4 Composing Objects

@ThreadSafe

public class ImprovedlisteT> impiements List<Ts {
private final List<Ts Tist;

public .Improvédest(_Listc__B Tist) { this.list = 1ist; }

public synchronjzed booTean putIfAbsent (T x¥ {
booledn contains = tist.contains(x);
if (contains)
Tist.add{x);
retyrn lcontains;

1

p_ubh'c.synch'ron‘i-zed void clear() { Yist.clear(); }
Y7 similarly delegate other list methods
; /)

LISTING";}..Iﬁ. Implementing put—ig-a_bsent using composition,

ImprovedList adds an additional level of
It does not care whether the tnde;

its own consistent locking ¢
thread-safe or changes its locking implementation. Whil
chronizaFfom may a ' i periam nalty7. the implementation in
ImprovedList is less. fragile than attempting to mimic the locking strategy of an-
other object. In effect, we've used the Java monitor pattern o encapsulate an
existing List, and this is guarantesd to provide thread safety so long as our class
holds the only otitstanding reference to the underlying List, :

1St S rot
layer of syn-

& the exira’

1:5 Documenting synchironization policies. T
Deoéumenta tion is one .of the most, powerful (and, sadly, most L_mclerutﬂized) tools
for managing thread safety. Users Tagk to the documentation to find out if a
.class is_'thread—s_afe', and mainfainers look to the documentation to understand
the implementation strategy so they can maintain it without inadvertently com-
promising safety. Unfertuniately, both of these ‘constituencies usually find less
Information in the documentation than they’d like; '

Document a class’s thread safety guarantees for

its' clients; document its
- - 3 a T Y - H -‘-'
synchronization policy for its maintainers.

>

7- The penalty will e small because fhe Synchronization on the underlying List is guaranteed to be
uncantended and therefore fask: see Cha pter.11. '

i

H
3
£
:

S T i

