

page 1

CSC 558 Data Mining and Predictive Analytics II, Spring 2020

Dr. Dale E. Parson, Assignment 1, Classification of audio data samples for waveform class using
decision trees and Bayesian techniques with large training datasets (10-fold cross-validation),
adding to these approaches three instance-based (lazy) approaches with small training datasets.1

DUE By 11:59 PM on Wednesday February 19 via make turnitin on acad. The standard 10% per
day deduction for late assignments applies.

If you are not accustomed to using the Linux acad system, see me during office hours, or an in-class lab
session, or consult a graduate assistant in Old Main 257. I will not accept student work via D2L for this
assignment. You can do all of your work on your own machine or on the campus PCs, obtaining the
starting files via S:\ComputerScience\Parson\Weka. You can also log into acad and perform the following
steps to retrieve the same files. You can use the FileZilla client utility or a similar file transfer program to
copy files from acad and to place your solution files back onto acad.2 Here is what the FileZilla setup for
acad looks like. Just click the “Open the Site Manager” icon at the upper left of the FileZilla window to
access this panel.

Figure 1: Filezilla

There will be one in-class work session for this assignment. You may attend in person or on-line. I
encourage attending the work session in person. Come prepared to ask questions.

Perform the following steps to set up for this project. Start out in your login directory on csit (a.k.a. acad).

cd $HOME
mkdir DataMine # This may already be there from last semester.
cp ~parson/DataMine/lazy558sp2020.problem.zip DataMine/lazy558sp2020.problem.zip

																																																													
1	See	http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html	and	in-class	discussion	on	the	
Zoom	archive	from	February	4.	
2	Download	the	FileZilla	client	at	https://sourceforge.net/projects/filezilla/	.	

page 2

cd ./DataMine
unzip lazy558sp2020.problem.zip
cd ./lazy558sp2020

This is the directory from which you must run make turnitin by the project deadline to avoid a 10% per
day late penalty. If you run out of file space in your account and you took csc458, you can perform rm -rf
FILEORDIRECTORY from within your DataMine/ directory, where FILEORDIRECTORY is any of
the handout zip files or project directories from csc458. Be extremely careful, and do NOT use any file
name wildcards. This will discard your results from csc458 assignments. Do not remove turned-in
directories that you wish to keep.

You will see the following files in this lazy558sp2020	directory:

README.txt Your answers to Q1 through Q20 below go here, in the required format.
csc558lazyraw10005sp2020.arff The handout ARFF file for assignment 1.
makefile Files needed to make turnitin to get your solution to me.
checkfiles.sh
makelib

How can you avoid running out of memory in Weka?

1. Run Weka using a command line or batch script that sets memory size. I run it this way on my Mac:

java -server -Xmx4000M -jar /Applications/weka-3-8-0/weka.jar

That requires having the Java runtime environment (not necessarily the Java compiler) installed on your
machine (true of campus PCs), and locating the path to the weka.jar Java archive that contains the Weka
class libraries and other resources. This line allocates 4,000,000 bytes of storage for Weka. As for
assignment 2, I have created batch file S S:\ComputerScience\WEKA\WekaWith4GBcampus.bat for
campus PCs, with handout data files in S:\ComputerScience\Parson\Weka\. Try using that. It contains this
command line:

java –Xmx4096M -jar "S:\ComputerScience\WEKA\weka.jar"

2. Right-click results buffers in the Weka -> Classify window, or use Alt-click on Mac (control-click on

PC) to Delete result buffer after you are done with one. They take up space. You can also save these
results to text files via this menu. Some of these models take a long time to execute. I have noted that
condition in these instructions. In such cases, it may save time just to exit Weka and restart it via the
command line or a batch file with a large memory limit, rather than just deleting result buffers. I can
give batch execution instructions if needed

page 3

Figure 2: Deleting a Weka result buffer

http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html outlines the application
dataset. We will go over this when preparing for the assignment. It explains the meaning of the attributes
and their relationships.

ALL OF YOUR ANSWERS FOR Q1 through Q12 BELOW MUST GO INTO THE README.txt
file supplied as part of assignment handout directory lazy558sp2020. You will lose an automatic 20% of
the assignment if you do not adhere to this requirement. Q13 through Q15 are the correct ARFF file
contents that you must save following instructions below. Each of Q1 through Q15 is worth 6.6% of the
project, and any glaring bug in ARFF file contents or your procedure can count up to 10%.

1. Open csc558lazyraw10005sp2020.arff in Weka’s Preprocess tab.

Here are the attributes in csc558lazyraw10005sp2020.arff. Other than the 5 zero-noise training instances,
I have generated new data with a similar distribution to 2018’s data for 2020’s assignment 1.

tid Unique ID for each instance except that the 5 noiseless reference samples have ID 0.
tosc Waveform type. This string must become the nominal class (target) attribute.
tfreq Fundamental frequency in Hertz (cycles per second) passed to the audio generator.
toscgn Waveform signal gain passed to the audio generator in the range [0.0, 1.0].
tnoign White noise signal gain passed to the audio generator in the range [0.0, 1.0].
centroid Raw spectral centroid extracted from the audio .wav file.3
rms Raw root-mean-squared measure of signal strength extracted from the audio .wav file.
roll25 Raw frequency where 25% of the energy rolls off, extracted from the audio .wav file.
roll50 Raw frequency where 50% of the energy rolls off, extracted from the audio .wav file.
roll75 Raw frequency where 75% of the energy rolls off, extracted from the audio .wav file.
smprate Rate at which the computer sampled audio, extracted from the audio .wav file.
fftbins Number of raw bins used in frequency analysis, extracted from the audio .wav file.
hrmbins Number of cooked bins used in Parson’s data reduction, extracted from fftbins data.
shftfftfund Number of fftbins used to normalize fundamental frequency, extracted from fftbins.
amplscale Multiplier used to scale fundamental frequency to normalized 1.0, extracted from fftbins.
amplbin0 Normalized amplitude of fundamental frequency as extracted from the audio signal data.
amplbin1 through amplbin19 Normalized amplitudes of 1st through 19th overtones of the fundamental.

																																																													
3	See	http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html	for	signal	processing	term	
definitions.	

page 4

Raw indicates an attribute that you must normalize to the reference fundamental frequency or amplitude.

The first 5 attributes with names starting in “t” do not come from the audio signal. They were parameters
to the audio generator. We are interested in predicting tosc (waveform oscillator type) from several of the
non-“t” attributes. We must remove tfreq, toscgn, and tnoign before analyzing data relationships. We
must get rid of tid after we use it to select the small training sets. We must convert tosc from a string to a
nominal attribute and make it the final attribute in the list; tosc is what we are trying to predict. We will
also get rid of some of the other attributes that impede analysis, as explained in class.

2. Use Weka’s unsupervised -> attribute -> StringToNominal attribute filter to make tosc into a
nominal attribute. Inspect its value set.

3. As directed in http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html , use
Weka’s AddExpression attribute filter to create derived attributes nc, n25, n50, n75 that are
centroid and the rolloff frequencies normalized in terms of the fundamental frequency. We will
discuss this normalization. You will need to create some temporary “helper attributes” such as
nyfreq and funfreq. Create derived attributes in the order from step 1a through step 2 on that
web page. The nc, n25, n50, n75 attributes correlate to the frequency-to-signal-strength
distribution of the tosc waveform, regardless of the actual fundamental frequency funfreq, so
they must be normalized via division by that frequency. Note that funfreq shows some funfreq
fundamental frequencies outside the [100, 2000] Hz range of tfreq, caused by overtones and
noise in some of the instances.

Figure3 : funfreq goes outside of the tfreq range.

Q1. Go into Weka’s Preprocess Edit window and sort on the funfreq attribute in descending order by
holding down the SHIFT key and clicking on the funfreq heading. Look at the tosc classification for
waveforms with a funfreq > 2005 Hz. Do the instances with funfreq > 2005 Hz correlate with a
single category of tosc, and if so, what is the tosc value for these instances? If not, what are the tosc
values for these instances?

Q2. Is it a good idea to keep these instances with funfreq > 2005 Hz in the dataset for classifying
tosc, answer YES or NO (not both). Explain why.

page 5

Note that by inspecting the right side of the Weka Preprocess tab for derived attributes centrfreq,
roll25freq, roll50freq, and roll75freq, they share the same distribution as their raw counterparts
centroid, roll25, roll50, and roll75, because the nyfreq multiplier is a constant. In contrast, the
normalized attributes nc, n25, n50, and n75 have per-instance distributions because the funfreq
divisor varies across instances.

4. As directed in http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html , create

derived attribute normrms that normalizes the rms signal level. The rms is the square root of the
average of the squares of signal amplitude across time for a waveform. The amplscale gives
Parson’s pre-ARFF scaling of the peak signal harmonic (the fundamental frequency) in script
una2csv.py4, while rms gives the raw average signal strength, which correlates to the tosc
waveform; normrms scales the rms similarly to peak signal scaling done by Parson’s
preprocessing. Note that the graphical distribution of normrms as seen in Weka differs from that
of rms because amplscale varies by instance.

5. Remove tfreq, toscgn, and tnoign. The fundamental frequency in the range [100, 2000] Hz does
not determine the tosc waveform type. Also, tfreq does not come from the audio file; it was input
to the generator, as were toscgn and tnoign. Derived attributes funfreq and normrms
approximate the fundamental frequency and the signal strength from other attributes extracted
from the waveform.

6. Use Weka’s Reorder attribute filter to place tosc in the last position, after normrms, without
changing the relative order of any of the other attributes.

7. Use Weka’s RemoveUseless attribute filter to get rid of constant-valued attributes, some of which
have been used temporarily in steps 3 and 4. Take notes on which attributes are removed.

Q3. Which attributes does RemoveUseless remove, including any derived attributes removed? Why?

Q4. Why did we keep some of these attributes until this point? Name the “useless” attribute(s) that we
needed to keep to this point.

8. Save this dataset as csc558lazy10005sp2020.arff, without “raw” in its name. You will turn this
file in to me in your lazy558sp2020/	project directory at the end of the project. Reload this file
using Weka’s Open file button to get around the class identifying bug in the current Weka.

9. Remove the tid attribute, because it pairs directly with tosc for all tid values except 0; the 5
noiseless reference instances all use tid == 0. It is not part of the audio data, and it “gives away”
the result. We will later need to restore it temporarily from the file saved in step 8 or by executing
Undo in the Preprocessor, in order to build some training dataset files.

10. Go to the Weka Classify tab and save the following result line only after running the following
Weka classifiers on this dataset with 10-fold cross-correlation: ZeroR, OneR, J48, RandomTree,
NaiveBayes, BayesNet, and IBk, keeping the default configuration parameters. IBk (a Weka lazy
classifier) is the newcomer since csc458. It is related to K-nearest neighbor5. There is a paper
relating to nearest-neighbor classification on our course page near assignment 1. There are two
other instance-based (lazy) classifiers that run too slowly with this large training dataset that we
will use later. Also, varying the search algorithm and distance weighting parameters for IBk have
no effect on its result, although changing the search algorithm may speed IBK somewhat.

Q5: Copy and paste all of these following results, this line only, with the classifier name in front:
																																																													
4	http://faculty.kutztown.edu/parson/spring2020/una2csv.py.txt			

5	https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm		

page 6

ZeroR: Correctly Classified Instances N N.N %
OneR: Correctly Classified Instances N N.N %
J48: Correctly Classified Instances N N.N %
RandomTree: Correctly Classified Instances N N.N %
NaiveBayes: Correctly Classified Instances N N.N %
BayesNet: Correctly Classified Instances N N.N %
IBk: Correctly Classified Instances N N.N %

11. Restore tid, either by executing Undo or by loading csc558lazy10005sp2020.arff that you
saved.

NOTE: I experimented with removing all remaining attributes (raw or derived) that were used to derive
the normalized attributes of steps 3 and 4. These attributes are redundant with normalized attributes nc,
n25, n50, n75 and normrms, which you are keeping. The ones I removed were centroid, rms, roll25,
roll50, roll75, shftfftfund, amplscale, funfreq, centrfreq, roll25freq, roll50freq, and roll75freq. Results for
re-running Q5 became marginally worse for all classifiers except for ZeroR, which had an insignificant
seeming improvement; essentially, it stayed the same. So, I am not having you remove these attributes.

Q6. Give one reason why removing redundant non-target attributes might have improved results for at
least one machine learning algorithm tested in Q5.

Q7. Why does ZeroR have the result that it has? Relate this result to one of the terms in the Kappa
statistic as explained for csc458 assignment 46.

12. Next you must make two training sets with 5 elements each. Copy your
csc558lazy10005sp2020.arff file into your project’s lazy558sp2020/	directory on acad and run
make train, which performs the following steps.7

echo "making 5 noiseless training instances in csc558lazytrain5sp2020.arff"
making 5 noiseless training instances in csc558lazytrain5sp2020.arff
bash -c "echo '@relation csc558lazytrain5sp2020' > csc558lazytrain5sp2020.arff"
bash -c "grep @ csc558lazy10005sp2020.arff | grep -v @relation >> csc558lazytrain5sp2020.arff"
bash -c "grep ^0, csc558lazy10005sp2020.arff | grep -v @relation >> csc558lazytrain5sp2020.arff"
echo "making 5 noisey training instances in csc558lazynoise5sp2020.arff"
making 5 noisey training instances in csc558lazynoise5sp2020.arff
echo "Sin, Tri, Sqr, Saw, Pulse:"
Sin, Tri, Sqr, Saw, Pulse:
bash -c "echo '@relation csc558lazynoise5sp2020' > csc558lazynoise5sp2020.arff"
bash -c "grep @ csc558lazy10005sp2020.arff | grep -v @relation >> csc558lazynoise5sp2020.arff"
bash -c "grep ^265544, csc558lazy10005sp2020.arff | grep -v @relation >>
csc558lazynoise5sp2020.arff"
bash -c "grep ^657867, csc558lazy10005sp2020.arff | grep -v @relation >>
csc558lazynoise5sp2020.arff"
bash -c "grep ^866860, csc558lazy10005sp2020.arff | grep -v @relation >>
csc558lazynoise5sp2020.arff"

																																																													
6	http://faculty.kutztown.edu/parson/fall2019/Fall2019Kappa.html.	
7	The	TIME	and	FREQ	waveform	graphs	and	the	.wav	audio	files	for	these	two	training	sets	are	linked	at	
http://faculty.kutztown.edu/parson/spring2020/CSC558Audio1_2020.html	.	

page 7

bash -c "grep ^320328, csc558lazy10005sp2020.arff | grep -v @relation >>
csc558lazynoise5sp2020.arff"
bash -c "grep ^296306, csc558lazy10005sp2020.arff | grep -v @relation >>
csc558lazynoise5sp2020.arff"

Running make train gives csc558lazytrain5sp2020.arff a @relation line of csc558lazytrain5sp2020,
and csc558lazynoise5sp2020.arff a @relation name of csc558lazynoise5sp2020. Both files get all of the
@attribute declarations of csc558lazy10005sp2020.arff, along with the ARFF @data line. Training file
csc558lazytrain5sp2020.arff gets the five 0-noise instances with tid == 0, and
csc558lazynoise5sp2020.arff gets five noise-bearing instances with tid values of 265544 (SinOsc),
657867 (TriOsc), 866860 (SqrOsc), 320328 (SawOsc), and 296306 (PulseOsc) with the tid attribute
intact. Verify in Weka that each has one of each tosc type with the specified tids and exactly 5 instances.
Leave these in your project directory when you turn it in.

13. In Weka load training set csc558lazytrain5sp2020.arff and Remove the tid attribute in memory.
Leave it in the file. In the Classify tab of Weka set the Supplied test set to
csc558lazy10005sp2020.arff instead of using cross-validation on the small training set. Figure 1
below shows how to set up a supplied test dataset. This test is similar to the sonic survey and
machine listener research projects previously discussed, in that there is a small training set (a.k.a.
reference set) of 5 instances and a large test of 10,005 instances against which to test it. The 5
redundant training instances in the test dataset are not a significant number of instances for
testing.

Figure 1: Using a Supplied test dataset in Weka’s Classify tab

Q8. Repeat the tests of Q5 with the tid-deleted csc558lazytrain5sp2020.arff, adding lazy classifiers
KStar and LWL into the set below. Give their Correct instances as before. Note that Weka may ask you
to accept attribute-to-attribute mappings from the training set to the test set. The attributes have
the same names and positions in the ARFF files, so this should run OK. You will see
InputMappedClassifier messages. Make sure that you have removed tid from the in-memory training set.
You can leave it in the test set file, since it is not mapped from the training set.

page 8

ZeroR: Correctly Classified Instances N N.N %
OneR: Correctly Classified Instances N N.N %
J48: Correctly Classified Instances N N.N %
RandomTree: Correctly Classified Instances N N.N %
NaiveBayes: Correctly Classified Instances N N.N %
BayesNet: Correctly Classified Instances N N.N %
IBk: Correctly Classified Instances N N.N %
KStar: Correctly Classified Instances N N.N %
LWL: Correctly Classified Instances N N.N %

Q9. Account for the top three classifiers for Q8. Why is their performance substantially better than the
remaining classifiers?

14. In Weka load training set csc558lazynoise5sp2020.arff and delete the tid attribute in memory.
Leave it in the file. In the Classify tab of Weka keep the Supplied test set at
csc558lazy10005sp2020.arff instead of using cross-validation on the small training set. This is a
repeat of the previous test run using a training set that has some noise in the signals.

Q10. Repeat the tests of Q8 with the tid-deleted csc558lazynoise5sp2020.arff, adding lazy classifiers
KStar and LWL into the set below. Give their Correct instances as before. Note that Weka may ask you to
accept attribute-to-attribute mappings from the training set to the test set. The attributes have the same
names and positions in the ARFF files, so this should run OK. You will see InputMappedClassifier
messages. Make sure that you have removed tid from the in-memory training set. You can leave it in the
test set file, since it is not mapped from the training set.

ZeroR: Correctly Classified Instances N N.N %
OneR: Correctly Classified Instances N N.N %
J48: Correctly Classified Instances N N.N %
RandomTree: Correctly Classified Instances N N.N %
NaiveBayes: Correctly Classified Instances N N.N %
BayesNet: Correctly Classified Instances N N.N %
IBk: Correctly Classified Instances N N.N %
KStar: Correctly Classified Instances N N.N %
LWL: Correctly Classified Instances N N.N %

Q11. Account for performance improvements in the top 3 classifiers of Q8&Q9 in going to Q10. What
accounts for the improvements?

Q12. Why does IBk perform significantly better than KStar for Q8 through Q11 for this signal dataset?

Q13 points are for a correctly saved csc558lazy10005sp2020.arff in the project directory.

Q14 points are for a correctly saved csc558lazytrain5sp2020.arff in the project directory.

Q15 points are for a correctly saved csc558lazynoise5sp2020.arff in the project directory.

After making certain that the completed README.txt file and the files required in Q13, Q14, and Q15
are in the project directory, run make turnitin and hit Enter at the prompt by the project deadline. You
will not receive an email.

