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CSC 343 Operating Systems, Spring 2020  
Dr. Dale E. Parson, Assignment 2, modeling an atomic spin lock, a mutex, and a condition variable. 
This assignment is due via make turnitin from the criticalSection2020 directory by 11:59 PM on Fridat 
March 27 (was: Wednesday March 25 (rescheduled from March 18 due to school shutdown)). 
Please use the allotted time wisely. Start early. This is a meaty project. There is a 10% per day late 
penalty, and any assignment turned in after I go over the solution is worth 0%. You must document any 
code you write/change with documentation comments. I will deduct 10% for missing 
documentation, and will deduct points if your name is missing from the top of each of your source 
files. 
 
The goal of this assignment is to compare performance characteristics of using an atomic spin lock, a 
mutex, and finally a condition variable in synchronizing multiple Producer and Consumer threads. In 
addition to a STM simulation, you will explain measurements for one of the performance metrics of a set 
of concurrent Producer / Consumer state machines. 
 
Perform the following steps to get my handout. You will need to test on machine mcgonagall as 
previously explained (ssh mcgonagall from acad). I usually edit in one window on acad and test I another 
on mcgonagall, so I can run make graphs on acad after my program compiles on mcgonagall to generate 
one or more graphical image files for the project state machine(s). 
 

cd  $HOME  # or start out in your login directory 
cd  ./OpSys 

 cp  ~parson/OpSys/criticalSection2020.problem.zip  criticalSection2020.problem.zip 
 unzip criticalSection2020.problem.zip 
 cd ./criticalSection2020 
 make test 
 
1. Understand the workings of Unsafe.stm 
 
The handout includes file Unsafe.stm that attempts to solve the critical section problem for a Producer / 
Consumer simulation, but it has a race condition. Running make testUnsafe tries to simulate Unsafe.stm 
twice, once with 1 thread each for a Producer process and a Consumer process, and again with 10 threads 
for each process. I have created a race condition in Unsafe.stm by having the Consumer states get ahead 
of the Producer states in the simulation, consuming messages before they are produced. That situation can 
arise in real systems when the relative timing of production and consumption are not synchronized. I have 
forced it with cpu(N) timing on transitions so you can test and get the same results on each run. I 
considered making the relative timing of Producer and Consumer threads probabilistic as they normally 
would be, but doing so would lead to a different test run timing each time, making debugging difficult. 
 
Here is how make testUnsafe works. First it runs testUnsafe.stm with 1 thread in each of the two 
processes, based on this variable built into the STM architecture. 
 
              numThreadsToSpawn = processor.contextCount - 1 ; 

Field processor.contextCount is set here by the makefile’s simulation command line. 
 
/bin/bash -c "PYTHONPATH=/home/KUTZTOWN/parson/OpSys:.:.. STMLOGDIR=/tmp time 
/opt/csw/bin/python Unsafe.py 1 4 100000 12345 2" 
MSG cmd line: ['Unsafe.py', '1', '4', '100000', '12345', '2'], usage USAGE: python THISFILE.py 
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NUMCONTEXTS NUMFASTIO SIMTIME SEED|None LOGLEVEL 
 
Since the processor’s fork() call always starts thread 0 in the forked process, the line above sets 
numThreadsToSpawn to 0 because thread 0 is the only thread running in the first pass. However, this 
command line in the second simulation run allocates 10 into processor.contextCount. 
 
/bin/bash -c "PYTHONPATH=/home/KUTZTOWN/parson/OpSys:.:.. STMLOGDIR=/tmp time 
/opt/csw/bin/python Unsafe.py 10 4 100000 12345 2" 
MSG cmd line: ['Unsafe.py', '10', '4', '100000', '12345', '2'], usage USAGE: python THISFILE.py 
NUMCONTEXTS NUMFASTIO SIMTIME SEED|None LOGLEVEL 

 
Thread 0 spawns 9 additional threads in each of the Producer and Consumer processes (1 process each), 
for a total of 10 threads in the Producer process, and 10 threads in the Consumer process. This mix of 
threads runs into the race condition. Here is the test that previously fails on make testUnsafe. 
 
$ diff Unsafe1.msg.out Safe1.msg.ref  
1c1,2 
< 97 
--- 
> 100 
> 0 
3,6d3 
< 3 
< None product value CONSUMED 
< None product value CONSUMED 
< None product value CONSUMED 
103a101,103 
> 98 product value CONSUMED 
> 99 product value CONSUMED 
> 100 product value CONSUMED 
make: *** [testUnsafe] Error 1 
 
The Producer produces threadcount x 100 consecutive integers that the Consumer reports via msg calls. 
The makefile inspects for the number of valid msg statements, the number of invalid msg statement due to 
an incorrect value (caused by the race condition), and then it sorts and saves the lines themselves in 
Unsafe10.msg.out for the failed test. There is one Safe1.msg.ref file that shows the correct output when 
the Producer and Consumer synchronize their message exchanges. Here is the start of Safe1.msg.ref. 
 
$ head Safe1.msg.ref 
100 
0 
0 
1 product value CONSUMED 
2 product value CONSUMED 
3 product value CONSUMED 
4 product value CONSUMED 
5 product value CONSUMED 
6 product value CONSUMED 
7 product value CONSUMED 
 
There is a grand total of 100 consecutive values in order. Here is the start of Unsafe1.msg.out in the 
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failed test. 
 
$ head Unsafe1.msg.out 
97     THIS IS THE COUNT OF CORRECT VALUES 
0     COUNTS ERRORS IN RE-ASSIGNING THE “product” 
3     COUNTS None VALUES CAUSED BY RACE COND. 
None product value CONSUMED 
None product value CONSUMED 
None product value CONSUMED 
1 product value CONSUMED 
2 product value CONSUMED 
3 product value CONSUMED 
4 product value CONSUMED      
 
The None values are Python’s equivalent of NULL pointers in C++. The race condition that we will solve 
writes NULL values because the Consumer threads do not test the validity of data passed from the 
Producer threads via a shared variable processor.messageBuffer in the processor object. Your respective 
solutions will use an atomic spin lock, a mutex lock, and a condition variable to synchronize access to this 
shared processor.messageBuffer. 
 
Testing also checks state times within very loose tolerances, 20% and 100%. If any test fails, its log file 
will be in the directory, which you can find using ls *.log. Testing deletes the lengthy log file when a test 
passes or when you run make clean or make turnitin. If you get an error on one of these crunchlog % 
differences, check with me to see if we should loosen the tolerances. The diff of the msg.out to msg.ref 
file as seen at the top of this page, on the other hand, must be an exactly match. 
 

 
 

Unsafe.stm is the handout state machine. We will go over its working in class. 
See http://acad.kutztown.edu/~parson/Unsafe.jpg 
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I have labeled the transitions in the generated diagram above with labels #1A through #18A to correspond 
with comments in Unsafe.stm as an aid to explanation.  Here is what each of the transitions in Unsafe.stm 
does. 
 
#1A Initializes some variables. Each state machine gets its own local variables, even when they share the 
same name, just like regular threads or separately executing processes. The fields in the processor object 
model kernel data structures; they are accessible to every thread in every process in the simulation. The 
fields in the pcb are available to all threads in a process; there is one unique pcb per process; this project 
does not use the pcb, but it does use the processor object to store the data buffer and synchronization lock 
and Queue fields. All threads in the distinct Producer and Consumer processes exchange data via global 
shared memory in the simulated kernel. Run the manual-printing commands man shmat, man shmdt, 
and man shmctl on acad or mcgonagall to see the C-language system calls for Unix shared memory. 
 
#2A Thread 0 runs in this loopback transition to spawn additional thread. 
 
#3A Sends all threads in an even-numbered process ID (process 0 here) to the makeProduct state as 
Producers. I have used cpu(10) on this transition to force the Producer to reach its makeProduct state after 
the Consumer has reached recvFromProducer via #4A. 
 
 #4A Sends all threads in an odd-numbered process ID (process 1 here) to the recvFromProducer state as 
Consumers. I have used cpu(1) on this transition to force the Producer to reach its makeProduct state via 
#3A after the Consumer has reached recvFromProducer via #4A. 
 
#5A Sends Producer threads to spinProducer after creating a new product. 
 
#6A A Producer stores its product into processor.messageBuffer[0] and cycles back to make another or 
terminate. 
 
 #7A In Unsafe.stm this loopback does nothing and never runs. See its guard condition. In your three 
solutions it will loop while waiting to acquire a lock and also for other test conditions. 
 
 #8A and #9A are dummy stubs in Unsafe.stm. They never run. Mutex.stm and Condvar.stm use the 
stallProducer state for a Producer thread that stalls itself in a Queue in the kernel (processor object) while 
waiting for a lock (Mutex.stm) or a lock and a condition (Condvar.stm). 
 
#10A and #11A make the decision of whether to continue making products (#10A) versus terminating the 
Producer thread after making numMessagesPerThread (100) products (#11A). 
 
#12A just goes to spinConsumer, which is the Consumer counterpart of spinProducer. In your solutions 
spinConsumer spins waiting to acquire a lock. In Mutex.stm and Condvar.stm, spinConsumer transitions 
to stallConsumer for a Consumer thread that stalls itself in a Queue in the kernel (processor object) while 
waiting for a lock (Mutex.stm) or a lock and a condition (Condvar.stm). Transitions #14A, #15A and 
#16A, designed for Consumer spinning and stalling, do nothing in Unsafe.stm. 
 
#13A Removes the product sent by a Producer thread via processor.messageBuffer[0], nulls 
processor.messageBuffer[0] with a None value, reports the product value in an msg() statement that you 
must not change, and goes on to consumeProduct. 
 
#17A and #18A make the decision of whether to continue consuming products (#17A) versus terminating 
the Consumer thread after consuming numMessagesPerThread (100) products (#18A). 
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See file Unsafe.stm in the handout code. We will go over it in class. 
 
Unsafe.stm is unsafe because it does nothing to synchronize communication of Producer and Consumer 
threads using the processor.messageBuffer shared data. (NOTE: Always assign into and out of 
processor.messageBuffer[0], which is a one-element buffer in this assignment. It never gets any bigger.) 
You will fix that in your parts of the project by accessing shared data processor.messageBuffer only when 
the thread wanting to access processor.messageBuffer holds the lock in field processor.thelock. 
 
2. 60% of project grade: Write Atomic.stm to use an atomic spin lock to serialize access to data 

shared across threads. 
 
In the STM programs that follow, your code must maintain the following restrictions. Violating any of 
these restrictions leads to deductions in points. 
 
• First cp Unsafe.stm Atomic.stm and then edit changes into Atomic.stm. 

 
• Update documentation comments at the top with your name, the file name, and an outline of how the 

algorithm differs from its predecessor. 
 

• Every access to thread-shared data in the processor object must be serialized by setting the lock 
variable processor.thelock from False to True (Python uses capital False and True as boolean 
values), if and only if processor.thelock is False (not locked) at the time a thread STM wants to set it 
to True. The thread should also set local variable haveLock to True at the same time. Every thread 
STM has a haveLock variable, but there is only one processor.thelock variable shared by all threads. 
Every access to critical section data processor.messageBuffer[0] (assignment or access to its value) 
must take place only when the accessing thread has set both processor.thelock and haveLock to 
True, and it may set these true only when it detects them both as == False within a guard condition. 
Violation of the requirements of this paragraph violates the critical section constraints and leads to 
race conditions that testing may or may not detect. If I find violations while testing, I will insert a 
msg() statement to verify the fact of accessing processor.messageBuffer without holding the lock, 
and will deduct 10% per violation in the source code. You can treat the actions of a single STM 
transition as being atomic – a sequence of actions cannot be preempted by another thread – but you 
must use processor.thelock to serialize access to data across multiple transitions as specified in detail 
below. 

 
If code get a run-time error during testing that just reports an index into the Python byte code table like 
this: 
 
Traceback (most recent call last): 
  File "Unsafe.py", line 769, in <module> 
    main() 
  File "Unsafe.py", line 713, in main 
    scheduler.__run__() 
  File "/home/KUTZTOWN/parson/OpSys/state2codeV15/CSC343Sim.py", line 138, in __run__ 
    waitingObject.__generator__.next()  # run() the model 
  File "Unsafe.py", line 152, in run 
    exec(__codeTable__[4],globals,locals) 
  File "nofile", line 1, in <module> 
ZeroDivisionError: integer division or modulo by zero 
0.11user 0.05system 0:00.28elapsed 58%CPU (0avgtext+0avgdata 15856maxresident)k 
0inputs+8outputs (0major+8813minor)pagefaults 0swaps 
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make: *** [testUnsafe] Error 1 
 
Just run this utility from within your project directory, with the name of the STM’s .py file and the 
reported line number into __codeTable__[N] as the command line arguments, like this: 
$ ./decode.py  Unsafe.py 4 
 
__codeTable__[4] = compile('processesToGo -= 1/0','nofile','exec'), 

 
Here are detailed instructions for writing Atomic.stm that simulates using an atomic boolean variable 
processor.thelock as a spin lock. These are precise changes to make to a copy of Unsafe.stm. The 
diagram of my Atomic.stm appears below. Yours may differ in incidental details, although if you 
follow my instructions carefully, they will have the same topology. 
 

 
 

Atomic.stm shows my solution. 
See http://acad.kutztown.edu/~parson/Atomic.jpg 

 
• At transition #6A from spinProducer -> produceProduct, add a guard that allows the transition only 

when the thread holds the lock (see above) and processor.messageBuffer[0] == None (i.e., 
processor.messageBuffer[0] is empty). This guard prohibits setting processor.messageBuffer[0] when 
the lock is not held or when the buffer has contents, thereby avoid over-writing a previous product. 
Release the lock by setting both haveLock and processor.thelock to False after storing 
processor.messageBuffer[0] = product. 
 

• At transition #7A spinProducer -> spinProducer, make the following changes. I made two additional 
transitions #7B and #7C spinProducer -> spinProducer. See the above diagram.  

 
• #7A loops when haveLock is False but processor.thelock is True, meaning that a different thread 

holds the lock. This is spinning on the spin lock. There is no change in the action. 
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• #7B loops when no thread holds the lock (haveLock and processor.thelock are False). Its action grabs 
the lock by setting both to True, and loops back with cpu(1). Any cpu() call you add to the STM must 
be cpu(1) for 1 tick to maintain reference file timing comparisons. 

 
• #7C loops when this thread holds the lock (haveLock is True) but processor.messageBuffer[0] != 

None, meaning that processor.messageBuffer[0] has contents that it must not over-write. Its action 
releases the lock (haveLock and processor.thelock) and loops back with cpu(1). 

 
• #13A has changes that are Consumer counterparts to #6a above. Add a guard that allows the 

transition only when the thread holds the lock and processor.messageBuffer[0] != None (i.e., 
processor.messageBuffer[0] has contents to consume). Release the lock by setting both haveLock and 
processor.thelock to False immediately after fetching the product and then setting 
processor.messageBuffer[0] = None. Leave my msg statement and the remaining code as it is in order 
to avoid a formatting diff on output. 

 
• #14A extends spinConsumer -> spinConsumer into three transitions similar to the extension of #7A 

above. See the diagram. 
 
• #14A loops when haveLock is False but processor.thelock is True, meaning that a different thread 

holds the lock. This is spinning on the spin lock. There is no change in the action. 
 
• #14B loops when no thread holds the lock. Its action grabs the lock by setting both to True, and loops 

back with cpu(1). 
 
• #14C loops when this thread holds the lock but processor.messageBuffer[0] == None, meaning that 

processor.messageBuffer[0] is empty, with nothing to consume. Its action releases the lock and loops 
back with cpu(1). 

 
• After making any edit changes, run make clean testAtomic to test this part of the project. The 1-

thread test takes 0.17 (previously 1.4 on harry and an older version of the STM) seconds to complete 
and the 10-thread test takes 3.15 (previously 43.4) seconds in my preparation tests. Anything running 
over 30 seconds likely indicates a bug. Hit control-C and debug the log file. I found searching for the 
CONSUMED messages useful. If your test simulation gets stuck in a loop, look near the bottom of 
the log file for a fruitless loop through states. Run ls *.log to see the log file name.  

 
3. 15% of project grade: Write Mutex.stm to simulate a mutex for serializing access to data shared across 

threads. The mutex uses a queue to hold threads that are waiting for lock access. 
 
• After make testAtomic is working correctly, cp Atomic.stm Mutex.stm then edit Mutex.stm, 

making the following changes. 
 
• Update the documentation comments at the top of Mutex.stm as before. Feel free to add comments at 

transitions if they help you to keep track of the logic. 
 

• EVERY transition that releases the lock must add this line of code immediately after setting 
haveLock and processor.thelock from True to False. There are more than 1 such transitions. 

 
if len(processor.mqueue): signalEvent(processor.mqueue.deq(), 'unlocked') ; 

That line checks to see whether a stalled thread is waiting in Queue processor.mqueue to run. If 
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there is at least one thread, that line dequeues it (see STM.doc.txt for the Queue operations) and 
sends it an unlocked event. Python’s “if” is available for conditionally running a single command; 
do not place blocking function calls within an “if” statement. We are extending the simulation 
framework with an unlocked event type by using waitForEvent and signalEvent. STM.doc.txt 
documents those functions. The declaration of an empty FIFO queue mqueue is in processor. 
 
processor.mqueue = Queue(False) ; NOTE – False for a FIFO queue, True for priority Queue. 

 

 
 

Mutex.stm shows my solution. Note the spin states cut back to two self-transitions each. 
See http://acad.kutztown.edu/~parson/Mutex.jpg 

 
• Replace #7A that transits spinProducer -> spinProducer with a transition spinProducer -> 

stallProducer with an identical guard condition (haveLock is False and processor.thelock is True) 
and action that sequence as follows. 
 
processor.mqueue.enq(thread); NOTE – This is now #8A spinProducer -> stallProducer 
waitForEvent('unlocked', True)@ 
 
When a thread enters either stall state, it enqueues itself into processor.mqueue (the mutex queue), 
then blocks until another thread signals it via signalEvent as given above. 
 
Note that #7A is deleted from my Mutex.stm diagram. 
 

• The replacement of #7A in the previous bullet covers the case of the spinProducer -> stallProducer 
transition #8A. Next, there is a new stallProducer -> stallProducer unlocked() transition in the 
diagram with the following guard and actions. 
 
The guard tests that haveLock is False and processor.thelock is True. It covers a race condition in 
which a thread awakened by a signalEvent cannot get the lock because another thread has come in 
and taken the lock after this thread was signaled, but before this transition got a change to run. 
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The actions are as follows. 
 
processor.mqueue.enq(thread); 
waitForEvent('unlocked', True)@ 
 
The stalled thread simply goes back into processor.mqueue and waits. 

 
• #9A is now stallProducer -> spinProducer unlocked(). Note the change in event type from cpu() to 

unlocked(). Its guard is on haveLock and processor.thelock being False (the lock is available), and 
its action is cpu(0). Do not change the tick count from 0. I had a race condition in Condvar.stm 
caused by the fact that a thread releasing another thread from the stalled state would reacquire the 
lock faster than the unstalled thread could acquire it, leading to starvation of unstalled Producer 
threads. Using cpu(0) ensures the unstalled thread moves to the front of the simulated scheduling 
queue in the simulator. My first solution was to use cpu(2) for the thread sending the signal to the 
unstalled thread. That worked, but it threw the tick counts off from the preceding solutions. 
 

• Replace #14A that transits spinConsumer -> spinConsumer with a transition spinConsumer -> 
stallConsumer with an identical guard condition (haveLock is False and processor.thelock is True) 
and action that sequence as follows. 
 
processor.mqueue.enq(thread); NOTE – This is now #8A spinConsumer -> stallConsumer 
waitForEvent('unlocked', True)@ 
 
When a thread enters either stall state, it enqueues itself into processor.mqueue (the mutex queue), 
then blocks until another thread signals it via signalEvent as given above. 
 
Note that #14A is deleted from my Mutex.stm diagram. 
 

• The replacement of #14A in the previous bullet covers the case of the spinConsumer -> 
stallConsumer transition #15A. Next, there is a new stallConsumer -> stallConsumer unlocked() 
transition in the diagram with the following guard and actions. 
 
The guard tests that haveLock is False and processor.thelock is True. It covers a race condition in 
which a thread awakened by a signalEvent cannot get the lock because another thread has come in 
and taken the lock after this thread was signaled, but before this transition got a change to run. 
 
The actions are as follows. 
 
processor.mqueue.enq(thread); 
waitForEvent('unlocked', True)@ 
 
The stalled thread simply goes back into processor.mqueue and waits. 

 
• #16A is now stallConsumer -> spinConsumer unlocked(). Note the change in event type from cpu() 

to unlocked(). Its guard is on haveLock and processor.thelock being False (the lock is available), 
and its action is cpu(0). It is symmetric to the Producer #9A transition in Mutex.stm. 

 
• After making any edit changes, run make clean testMutex to test this part of the project. The 1-

thread test takes 0.17 (previously) 1.6 seconds to complete and the 10-thread test takes 0.64 
(previously 41.8) seconds in my preparation tests. Anything running over 30 seconds likely indicates 
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a bug. Hit control-C and debug the log file. I found searching for the CONSUMED messages useful. 
If you test simulation gets stuck in a loop, look near the bottom of the log file for a fruitless loop 
through states. Run ls *.log to see the log file name.  

 
4. 10% of project grade: Write Condvar.stm to simulate a condition variable for signaling Producer or 

Consumer threads only at the appropriate time for their jobs. The condition variable uses two distinct 
queues to hold threads that are waiting for lock access. 

 
• First cp Mutex.stm Condvar.stm after make testMutex works without errors. Your changes go into 

Condvar.stm, starting with documentation comments as usual. Update the documentation comments 
at the top of Condvar.stm as before. Feel free to add comments at transitions if they help you to keep 
track of the logic. 
 

• Remove the declaration of processor.mqueue from the processor state machine and replace it with 
two new FIFO queues, processor.pqueue and processor.cqueue.  

 
• In Condvar.stm, always enqueue a Producer thread into processor.pqueue, and always enqueue a 

Consumer thread into processor.cqueue. Simply change all existing mqueue.enq() calls to use the 
appropriate queue. 

 
• Producer threads always signal Consumer threads like this. 
 

if len(processor.cqueue): signalEvent(processor.cqueue.deq(), 'unlocked') ; 
 
These are not new calls. They replace prior calls using processor.mqueue with processor.cqueue. 
 

• Consumer threads always signal Producer threads like this. 
 

if len(processor.pqueue): signalEvent(processor.pqueue.deq(), 'unlocked') ; 
 
These are not new calls. They replace prior calls using processor.mqueue with processor.pqueue. 
 

• There are two additional transitions as follows. See the diagram below. 
 
    spinProducer -> stallProducer cpu()[@haveLock == True 
                and processor.messageBuffer[0] != None@]/@ 
        processor.thelock = False ; 
        haveLock = False ; 
        if len(processor.cqueue): signalEvent(processor.cqueue.deq(), 'unlocked') ; 
        processor.pqueue.enq(thread); 
        waitForEvent('unlocked', True)@ 
 
    spinConsumer -> stallConsumer cpu()[@haveLock == True 
                and processor.messageBuffer[0] == None@]/@ 
        processor.thelock = False ; 
        haveLock = False ; 
        if len(processor.pqueue): signalEvent(processor.pqueue.deq(), 'unlocked') ; 
        processor.cqueue.enq(thread); 
        waitForEvent('unlocked', True)@ 
 
These stall their respective threads when they have the lock, but cannot proceed because of the state of the 
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message buffer. 
 
NOTE that the above two transitions replace the spinProducer -> spinProducer and spinConsumer -> 
spinConsumer transitions with identical guards from Mutex.stm. There is only one spinProducer -> 
spinProducer transition and one spinConsumer -> spinConsumer transition in the Condvar.stm state 
diagram. This is the remaining spin where the haveLock and processor.thelock are both available (False). 
The action in each case is to grab the lock and run cpu(1). 

 
 

Condvar.stm shows my solution. Note the spin states cut back to one self-transition each. 
See http://acad.kutztown.edu/~parson/Condvar.jpg 

 
• After making any edit changes, run make clean testCondvar to test this part of the project. The 1-

thread test takes 0.17 (previously 1.6) seconds to complete and the 10-thread test takes 0.57 
(previously 17.2) seconds in my preparation tests. This test runs faster than its predecessors because 
only threads in the appropriate queue (pqueue or cqueue) awaken to test their conditions at a time 
when the correct condition has just been satisfied. Anything running over 30 seconds likely indicates 
a bug. Hit control-C and debug the log file. I found searching for the CONSUMED messages useful. 
If you test simulation gets stuck in a loop, look near the bottom of the log file for a fruitless loop 
through states. Run ls *.log to see the log file name. 

 
5. 15% of project grade: Answer the 3 questions in the README.txt file in the handout directory. Make 

sure to have your answer README.txt file in the directory when you make turnitin. 
 
README.txt 
STUDENT NAME:  
Answer the following 3 questions (5% each for the assignment grade) 
in one short paragraph each about the following 
simulated test times, taken from the test runs. 
See criticalSection2020.time.txt for the full set of reference simulation times. 
-------------------------------------------------------- 
Q1: In going from 1 Producer-Consumer pair to 10 Producer-Consumer pairs 
using a single global buffer in processor shared memory, why does this 
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maximum slow-down of 11 times slower going from Unsafe (synchronized) 
to an atomic spin lock: 
Unsafe1.crunch.ref:MAX_spinConsumer=1 
Unsafe1.crunch.ref:MAX_spinProducer=1 
Atomic1.crunch.ref:MAX_spinConsumer=11 
Atomic1.crunch.ref:MAX_spinProducer=2 
 
change to a max slow-down of over 11,000 times slower when there are 10 pairs: 
 
Unsafe10.crunch.ref:MAX_spinConsumer=1 
Unsafe10.crunch.ref:MAX_spinProducer=1 
Atomic10.crunch.ref:MAX_spinConsumer=11706 
Atomic10.crunch.ref:MAX_spinProducer=11705 
 
Given the fact that there are only 10X Producer/Consumer thread pairs, 
why is there a 11706/11 = a greater than 1000X slow-down? 
YOUR ANSWER GOES HERE: 
 
-------------------------------------------------------- 
Q2: In contrast, why is the spinning time for the Mutex with either 
1 or 10 Producer-Consumer pairs only marginally longer than the 
Unsafe pairs? 
 
Unsafe1.crunch.ref:MAX_spinConsumer=1 
Unsafe1.crunch.ref:MAX_spinProducer=1 
Mutex1.crunch.ref:MAX_spinConsumer=9 
Mutex1.crunch.ref:MAX_spinProducer=2 
 
Unsafe10.crunch.ref:MAX_spinConsumer=1 
Unsafe10.crunch.ref:MAX_spinProducer=1 
Mutex10.crunch.ref:MAX_spinConsumer=3 
Mutex10.crunch.ref:MAX_spinProducer=2 
YOUR ANSWER GOES HERE: 
 
-------------------------------------------------------- 
Q3: Why would be expect the spinning times for the Condvar (condition 
variable) test to be somewhat less than the Mutex times, as shown here? 
 
Mutex1.crunch.ref:MAX_spinConsumer=9 
Mutex1.crunch.ref:MAX_spinProducer=2 
Condvar1.crunch.ref:MAX_spinConsumer=2 
Condvar1.crunch.ref:MAX_spinProducer=2 
 
Mutex10.crunch.ref:MAX_spinConsumer=3 
Mutex10.crunch.ref:MAX_spinProducer=2 
Condvar10.crunch.ref:MAX_spinConsumer=2 
Condvar10.crunch.ref:MAX_spinProducer=1 
YOUR ANSWER GOES HERE: 
 
Run make turnitin by the due date. There is a 10% per day late penalty, and any assignment turned in 
after I go over the solution is worth 0%. 


