

page 1

CSC 343 Operating Systems, Spring 2020
Dr. Dale E. Parson, Assignment 2, modeling an atomic spin lock, a mutex, and a condition variable.
This assignment is due via make turnitin from the criticalSection2020 directory by 11:59 PM on Fridat
March 27 (was: Wednesday March 25 (rescheduled from March 18 due to school shutdown)).
Please use the allotted time wisely. Start early. This is a meaty project. There is a 10% per day late
penalty, and any assignment turned in after I go over the solution is worth 0%. You must document any
code you write/change with documentation comments. I will deduct 10% for missing
documentation, and will deduct points if your name is missing from the top of each of your source
files.

The goal of this assignment is to compare performance characteristics of using an atomic spin lock, a
mutex, and finally a condition variable in synchronizing multiple Producer and Consumer threads. In
addition to a STM simulation, you will explain measurements for one of the performance metrics of a set
of concurrent Producer / Consumer state machines.

Perform the following steps to get my handout. You will need to test on machine mcgonagall as
previously explained (ssh mcgonagall from acad). I usually edit in one window on acad and test I another
on mcgonagall, so I can run make graphs on acad after my program compiles on mcgonagall to generate
one or more graphical image files for the project state machine(s).

cd $HOME # or start out in your login directory
cd ./OpSys

 cp ~parson/OpSys/criticalSection2020.problem.zip criticalSection2020.problem.zip
 unzip criticalSection2020.problem.zip
 cd ./criticalSection2020
 make test

1. Understand the workings of Unsafe.stm

The handout includes file Unsafe.stm that attempts to solve the critical section problem for a Producer /
Consumer simulation, but it has a race condition. Running make testUnsafe tries to simulate Unsafe.stm
twice, once with 1 thread each for a Producer process and a Consumer process, and again with 10 threads
for each process. I have created a race condition in Unsafe.stm by having the Consumer states get ahead
of the Producer states in the simulation, consuming messages before they are produced. That situation can
arise in real systems when the relative timing of production and consumption are not synchronized. I have
forced it with cpu(N) timing on transitions so you can test and get the same results on each run. I
considered making the relative timing of Producer and Consumer threads probabilistic as they normally
would be, but doing so would lead to a different test run timing each time, making debugging difficult.

Here is how make testUnsafe works. First it runs testUnsafe.stm with 1 thread in each of the two
processes, based on this variable built into the STM architecture.

 numThreadsToSpawn = processor.contextCount - 1 ;

Field processor.contextCount is set here by the makefile’s simulation command line.

/bin/bash -c "PYTHONPATH=/home/KUTZTOWN/parson/OpSys:.:.. STMLOGDIR=/tmp time
/opt/csw/bin/python Unsafe.py 1 4 100000 12345 2"
MSG cmd line: ['Unsafe.py', '1', '4', '100000', '12345', '2'], usage USAGE: python THISFILE.py

page 2

NUMCONTEXTS NUMFASTIO SIMTIME SEED|None LOGLEVEL

Since the processor’s fork() call always starts thread 0 in the forked process, the line above sets
numThreadsToSpawn to 0 because thread 0 is the only thread running in the first pass. However, this
command line in the second simulation run allocates 10 into processor.contextCount.

/bin/bash -c "PYTHONPATH=/home/KUTZTOWN/parson/OpSys:.:.. STMLOGDIR=/tmp time
/opt/csw/bin/python Unsafe.py 10 4 100000 12345 2"
MSG cmd line: ['Unsafe.py', '10', '4', '100000', '12345', '2'], usage USAGE: python THISFILE.py
NUMCONTEXTS NUMFASTIO SIMTIME SEED|None LOGLEVEL

Thread 0 spawns 9 additional threads in each of the Producer and Consumer processes (1 process each),
for a total of 10 threads in the Producer process, and 10 threads in the Consumer process. This mix of
threads runs into the race condition. Here is the test that previously fails on make testUnsafe.

$ diff Unsafe1.msg.out Safe1.msg.ref
1c1,2
< 97

> 100
> 0
3,6d3
< 3
< None product value CONSUMED
< None product value CONSUMED
< None product value CONSUMED
103a101,103
> 98 product value CONSUMED
> 99 product value CONSUMED
> 100 product value CONSUMED
make: *** [testUnsafe] Error 1

The Producer produces threadcount x 100 consecutive integers that the Consumer reports via msg calls.
The makefile inspects for the number of valid msg statements, the number of invalid msg statement due to
an incorrect value (caused by the race condition), and then it sorts and saves the lines themselves in
Unsafe10.msg.out for the failed test. There is one Safe1.msg.ref file that shows the correct output when
the Producer and Consumer synchronize their message exchanges. Here is the start of Safe1.msg.ref.

$ head Safe1.msg.ref
100
0
0
1 product value CONSUMED
2 product value CONSUMED
3 product value CONSUMED
4 product value CONSUMED
5 product value CONSUMED
6 product value CONSUMED
7 product value CONSUMED

There is a grand total of 100 consecutive values in order. Here is the start of Unsafe1.msg.out in the

page 3

failed test.

$ head Unsafe1.msg.out
97 THIS IS THE COUNT OF CORRECT VALUES
0 COUNTS ERRORS IN RE-ASSIGNING THE “product”
3 COUNTS None VALUES CAUSED BY RACE COND.
None product value CONSUMED
None product value CONSUMED
None product value CONSUMED
1 product value CONSUMED
2 product value CONSUMED
3 product value CONSUMED
4 product value CONSUMED

The None values are Python’s equivalent of NULL pointers in C++. The race condition that we will solve
writes NULL values because the Consumer threads do not test the validity of data passed from the
Producer threads via a shared variable processor.messageBuffer in the processor object. Your respective
solutions will use an atomic spin lock, a mutex lock, and a condition variable to synchronize access to this
shared processor.messageBuffer.

Testing also checks state times within very loose tolerances, 20% and 100%. If any test fails, its log file
will be in the directory, which you can find using ls *.log. Testing deletes the lengthy log file when a test
passes or when you run make clean or make turnitin. If you get an error on one of these crunchlog %
differences, check with me to see if we should loosen the tolerances. The diff of the msg.out to msg.ref
file as seen at the top of this page, on the other hand, must be an exactly match.

Unsafe.stm is the handout state machine. We will go over its working in class.
See http://acad.kutztown.edu/~parson/Unsafe.jpg

page 4

I have labeled the transitions in the generated diagram above with labels #1A through #18A to correspond
with comments in Unsafe.stm as an aid to explanation. Here is what each of the transitions in Unsafe.stm
does.

#1A Initializes some variables. Each state machine gets its own local variables, even when they share the
same name, just like regular threads or separately executing processes. The fields in the processor object
model kernel data structures; they are accessible to every thread in every process in the simulation. The
fields in the pcb are available to all threads in a process; there is one unique pcb per process; this project
does not use the pcb, but it does use the processor object to store the data buffer and synchronization lock
and Queue fields. All threads in the distinct Producer and Consumer processes exchange data via global
shared memory in the simulated kernel. Run the manual-printing commands man shmat, man shmdt,
and man shmctl on acad or mcgonagall to see the C-language system calls for Unix shared memory.

#2A Thread 0 runs in this loopback transition to spawn additional thread.

#3A Sends all threads in an even-numbered process ID (process 0 here) to the makeProduct state as
Producers. I have used cpu(10) on this transition to force the Producer to reach its makeProduct state after
the Consumer has reached recvFromProducer via #4A.

 #4A Sends all threads in an odd-numbered process ID (process 1 here) to the recvFromProducer state as
Consumers. I have used cpu(1) on this transition to force the Producer to reach its makeProduct state via
#3A after the Consumer has reached recvFromProducer via #4A.

#5A Sends Producer threads to spinProducer after creating a new product.

#6A A Producer stores its product into processor.messageBuffer[0] and cycles back to make another or
terminate.

 #7A In Unsafe.stm this loopback does nothing and never runs. See its guard condition. In your three
solutions it will loop while waiting to acquire a lock and also for other test conditions.

 #8A and #9A are dummy stubs in Unsafe.stm. They never run. Mutex.stm and Condvar.stm use the
stallProducer state for a Producer thread that stalls itself in a Queue in the kernel (processor object) while
waiting for a lock (Mutex.stm) or a lock and a condition (Condvar.stm).

#10A and #11A make the decision of whether to continue making products (#10A) versus terminating the
Producer thread after making numMessagesPerThread (100) products (#11A).

#12A just goes to spinConsumer, which is the Consumer counterpart of spinProducer. In your solutions
spinConsumer spins waiting to acquire a lock. In Mutex.stm and Condvar.stm, spinConsumer transitions
to stallConsumer for a Consumer thread that stalls itself in a Queue in the kernel (processor object) while
waiting for a lock (Mutex.stm) or a lock and a condition (Condvar.stm). Transitions #14A, #15A and
#16A, designed for Consumer spinning and stalling, do nothing in Unsafe.stm.

#13A Removes the product sent by a Producer thread via processor.messageBuffer[0], nulls
processor.messageBuffer[0] with a None value, reports the product value in an msg() statement that you
must not change, and goes on to consumeProduct.

#17A and #18A make the decision of whether to continue consuming products (#17A) versus terminating
the Consumer thread after consuming numMessagesPerThread (100) products (#18A).

page 5

See file Unsafe.stm in the handout code. We will go over it in class.

Unsafe.stm is unsafe because it does nothing to synchronize communication of Producer and Consumer
threads using the processor.messageBuffer shared data. (NOTE: Always assign into and out of
processor.messageBuffer[0], which is a one-element buffer in this assignment. It never gets any bigger.)
You will fix that in your parts of the project by accessing shared data processor.messageBuffer only when
the thread wanting to access processor.messageBuffer holds the lock in field processor.thelock.

2. 60% of project grade: Write Atomic.stm to use an atomic spin lock to serialize access to data

shared across threads.

In the STM programs that follow, your code must maintain the following restrictions. Violating any of
these restrictions leads to deductions in points.

• First cp Unsafe.stm Atomic.stm and then edit changes into Atomic.stm.

• Update documentation comments at the top with your name, the file name, and an outline of how the

algorithm differs from its predecessor.

• Every access to thread-shared data in the processor object must be serialized by setting the lock
variable processor.thelock from False to True (Python uses capital False and True as boolean
values), if and only if processor.thelock is False (not locked) at the time a thread STM wants to set it
to True. The thread should also set local variable haveLock to True at the same time. Every thread
STM has a haveLock variable, but there is only one processor.thelock variable shared by all threads.
Every access to critical section data processor.messageBuffer[0] (assignment or access to its value)
must take place only when the accessing thread has set both processor.thelock and haveLock to
True, and it may set these true only when it detects them both as == False within a guard condition.
Violation of the requirements of this paragraph violates the critical section constraints and leads to
race conditions that testing may or may not detect. If I find violations while testing, I will insert a
msg() statement to verify the fact of accessing processor.messageBuffer without holding the lock,
and will deduct 10% per violation in the source code. You can treat the actions of a single STM
transition as being atomic – a sequence of actions cannot be preempted by another thread – but you
must use processor.thelock to serialize access to data across multiple transitions as specified in detail
below.

If code get a run-time error during testing that just reports an index into the Python byte code table like
this:

Traceback (most recent call last):
 File "Unsafe.py", line 769, in <module>
 main()
 File "Unsafe.py", line 713, in main
 scheduler.__run__()
 File "/home/KUTZTOWN/parson/OpSys/state2codeV15/CSC343Sim.py", line 138, in __run__
 waitingObject.__generator__.next() # run() the model
 File "Unsafe.py", line 152, in run
 exec(__codeTable__[4],globals,locals)
 File "nofile", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
0.11user 0.05system 0:00.28elapsed 58%CPU (0avgtext+0avgdata 15856maxresident)k
0inputs+8outputs (0major+8813minor)pagefaults 0swaps

page 6

make: *** [testUnsafe] Error 1

Just run this utility from within your project directory, with the name of the STM’s .py file and the
reported line number into __codeTable__[N] as the command line arguments, like this:
$./decode.py Unsafe.py 4

__codeTable__[4] = compile('processesToGo -= 1/0','nofile','exec'),

Here are detailed instructions for writing Atomic.stm that simulates using an atomic boolean variable
processor.thelock as a spin lock. These are precise changes to make to a copy of Unsafe.stm. The
diagram of my Atomic.stm appears below. Yours may differ in incidental details, although if you
follow my instructions carefully, they will have the same topology.

Atomic.stm shows my solution.
See http://acad.kutztown.edu/~parson/Atomic.jpg

• At transition #6A from spinProducer -> produceProduct, add a guard that allows the transition only

when the thread holds the lock (see above) and processor.messageBuffer[0] == None (i.e.,
processor.messageBuffer[0] is empty). This guard prohibits setting processor.messageBuffer[0] when
the lock is not held or when the buffer has contents, thereby avoid over-writing a previous product.
Release the lock by setting both haveLock and processor.thelock to False after storing
processor.messageBuffer[0] = product.

• At transition #7A spinProducer -> spinProducer, make the following changes. I made two additional
transitions #7B and #7C spinProducer -> spinProducer. See the above diagram.

• #7A loops when haveLock is False but processor.thelock is True, meaning that a different thread

holds the lock. This is spinning on the spin lock. There is no change in the action.

page 7

• #7B loops when no thread holds the lock (haveLock and processor.thelock are False). Its action grabs
the lock by setting both to True, and loops back with cpu(1). Any cpu() call you add to the STM must
be cpu(1) for 1 tick to maintain reference file timing comparisons.

• #7C loops when this thread holds the lock (haveLock is True) but processor.messageBuffer[0] !=

None, meaning that processor.messageBuffer[0] has contents that it must not over-write. Its action
releases the lock (haveLock and processor.thelock) and loops back with cpu(1).

• #13A has changes that are Consumer counterparts to #6a above. Add a guard that allows the

transition only when the thread holds the lock and processor.messageBuffer[0] != None (i.e.,
processor.messageBuffer[0] has contents to consume). Release the lock by setting both haveLock and
processor.thelock to False immediately after fetching the product and then setting
processor.messageBuffer[0] = None. Leave my msg statement and the remaining code as it is in order
to avoid a formatting diff on output.

• #14A extends spinConsumer -> spinConsumer into three transitions similar to the extension of #7A

above. See the diagram.

• #14A loops when haveLock is False but processor.thelock is True, meaning that a different thread

holds the lock. This is spinning on the spin lock. There is no change in the action.

• #14B loops when no thread holds the lock. Its action grabs the lock by setting both to True, and loops

back with cpu(1).

• #14C loops when this thread holds the lock but processor.messageBuffer[0] == None, meaning that

processor.messageBuffer[0] is empty, with nothing to consume. Its action releases the lock and loops
back with cpu(1).

• After making any edit changes, run make clean testAtomic to test this part of the project. The 1-

thread test takes 0.17 (previously 1.4 on harry and an older version of the STM) seconds to complete
and the 10-thread test takes 3.15 (previously 43.4) seconds in my preparation tests. Anything running
over 30 seconds likely indicates a bug. Hit control-C and debug the log file. I found searching for the
CONSUMED messages useful. If your test simulation gets stuck in a loop, look near the bottom of
the log file for a fruitless loop through states. Run ls *.log to see the log file name.

3. 15% of project grade: Write Mutex.stm to simulate a mutex for serializing access to data shared across

threads. The mutex uses a queue to hold threads that are waiting for lock access.

• After make testAtomic is working correctly, cp Atomic.stm Mutex.stm then edit Mutex.stm,

making the following changes.

• Update the documentation comments at the top of Mutex.stm as before. Feel free to add comments at

transitions if they help you to keep track of the logic.

• EVERY transition that releases the lock must add this line of code immediately after setting
haveLock and processor.thelock from True to False. There are more than 1 such transitions.

if len(processor.mqueue): signalEvent(processor.mqueue.deq(), 'unlocked') ;

That line checks to see whether a stalled thread is waiting in Queue processor.mqueue to run. If

page 8

there is at least one thread, that line dequeues it (see STM.doc.txt for the Queue operations) and
sends it an unlocked event. Python’s “if” is available for conditionally running a single command;
do not place blocking function calls within an “if” statement. We are extending the simulation
framework with an unlocked event type by using waitForEvent and signalEvent. STM.doc.txt
documents those functions. The declaration of an empty FIFO queue mqueue is in processor.

processor.mqueue = Queue(False) ; NOTE – False for a FIFO queue, True for priority Queue.

Mutex.stm shows my solution. Note the spin states cut back to two self-transitions each.
See http://acad.kutztown.edu/~parson/Mutex.jpg

• Replace #7A that transits spinProducer -> spinProducer with a transition spinProducer ->

stallProducer with an identical guard condition (haveLock is False and processor.thelock is True)
and action that sequence as follows.

processor.mqueue.enq(thread); NOTE – This is now #8A spinProducer -> stallProducer
waitForEvent('unlocked', True)@

When a thread enters either stall state, it enqueues itself into processor.mqueue (the mutex queue),
then blocks until another thread signals it via signalEvent as given above.

Note that #7A is deleted from my Mutex.stm diagram.

• The replacement of #7A in the previous bullet covers the case of the spinProducer -> stallProducer
transition #8A. Next, there is a new stallProducer -> stallProducer unlocked() transition in the
diagram with the following guard and actions.

The guard tests that haveLock is False and processor.thelock is True. It covers a race condition in
which a thread awakened by a signalEvent cannot get the lock because another thread has come in
and taken the lock after this thread was signaled, but before this transition got a change to run.

page 9

The actions are as follows.

processor.mqueue.enq(thread);
waitForEvent('unlocked', True)@

The stalled thread simply goes back into processor.mqueue and waits.

• #9A is now stallProducer -> spinProducer unlocked(). Note the change in event type from cpu() to

unlocked(). Its guard is on haveLock and processor.thelock being False (the lock is available), and
its action is cpu(0). Do not change the tick count from 0. I had a race condition in Condvar.stm
caused by the fact that a thread releasing another thread from the stalled state would reacquire the
lock faster than the unstalled thread could acquire it, leading to starvation of unstalled Producer
threads. Using cpu(0) ensures the unstalled thread moves to the front of the simulated scheduling
queue in the simulator. My first solution was to use cpu(2) for the thread sending the signal to the
unstalled thread. That worked, but it threw the tick counts off from the preceding solutions.

• Replace #14A that transits spinConsumer -> spinConsumer with a transition spinConsumer ->
stallConsumer with an identical guard condition (haveLock is False and processor.thelock is True)
and action that sequence as follows.

processor.mqueue.enq(thread); NOTE – This is now #8A spinConsumer -> stallConsumer
waitForEvent('unlocked', True)@

When a thread enters either stall state, it enqueues itself into processor.mqueue (the mutex queue),
then blocks until another thread signals it via signalEvent as given above.

Note that #14A is deleted from my Mutex.stm diagram.

• The replacement of #14A in the previous bullet covers the case of the spinConsumer ->
stallConsumer transition #15A. Next, there is a new stallConsumer -> stallConsumer unlocked()
transition in the diagram with the following guard and actions.

The guard tests that haveLock is False and processor.thelock is True. It covers a race condition in
which a thread awakened by a signalEvent cannot get the lock because another thread has come in
and taken the lock after this thread was signaled, but before this transition got a change to run.

The actions are as follows.

processor.mqueue.enq(thread);
waitForEvent('unlocked', True)@

The stalled thread simply goes back into processor.mqueue and waits.

• #16A is now stallConsumer -> spinConsumer unlocked(). Note the change in event type from cpu()

to unlocked(). Its guard is on haveLock and processor.thelock being False (the lock is available),
and its action is cpu(0). It is symmetric to the Producer #9A transition in Mutex.stm.

• After making any edit changes, run make clean testMutex to test this part of the project. The 1-

thread test takes 0.17 (previously) 1.6 seconds to complete and the 10-thread test takes 0.64
(previously 41.8) seconds in my preparation tests. Anything running over 30 seconds likely indicates

page 10

a bug. Hit control-C and debug the log file. I found searching for the CONSUMED messages useful.
If you test simulation gets stuck in a loop, look near the bottom of the log file for a fruitless loop
through states. Run ls *.log to see the log file name.

4. 10% of project grade: Write Condvar.stm to simulate a condition variable for signaling Producer or

Consumer threads only at the appropriate time for their jobs. The condition variable uses two distinct
queues to hold threads that are waiting for lock access.

• First cp Mutex.stm Condvar.stm after make testMutex works without errors. Your changes go into

Condvar.stm, starting with documentation comments as usual. Update the documentation comments
at the top of Condvar.stm as before. Feel free to add comments at transitions if they help you to keep
track of the logic.

• Remove the declaration of processor.mqueue from the processor state machine and replace it with
two new FIFO queues, processor.pqueue and processor.cqueue.

• In Condvar.stm, always enqueue a Producer thread into processor.pqueue, and always enqueue a

Consumer thread into processor.cqueue. Simply change all existing mqueue.enq() calls to use the
appropriate queue.

• Producer threads always signal Consumer threads like this.

if len(processor.cqueue): signalEvent(processor.cqueue.deq(), 'unlocked') ;

These are not new calls. They replace prior calls using processor.mqueue with processor.cqueue.

• Consumer threads always signal Producer threads like this.

if len(processor.pqueue): signalEvent(processor.pqueue.deq(), 'unlocked') ;

These are not new calls. They replace prior calls using processor.mqueue with processor.pqueue.

• There are two additional transitions as follows. See the diagram below.

 spinProducer -> stallProducer cpu()[@haveLock == True
 and processor.messageBuffer[0] != None@]/@
 processor.thelock = False ;
 haveLock = False ;
 if len(processor.cqueue): signalEvent(processor.cqueue.deq(), 'unlocked') ;
 processor.pqueue.enq(thread);
 waitForEvent('unlocked', True)@

 spinConsumer -> stallConsumer cpu()[@haveLock == True
 and processor.messageBuffer[0] == None@]/@
 processor.thelock = False ;
 haveLock = False ;
 if len(processor.pqueue): signalEvent(processor.pqueue.deq(), 'unlocked') ;
 processor.cqueue.enq(thread);
 waitForEvent('unlocked', True)@

These stall their respective threads when they have the lock, but cannot proceed because of the state of the

page 11

message buffer.

NOTE that the above two transitions replace the spinProducer -> spinProducer and spinConsumer ->
spinConsumer transitions with identical guards from Mutex.stm. There is only one spinProducer ->
spinProducer transition and one spinConsumer -> spinConsumer transition in the Condvar.stm state
diagram. This is the remaining spin where the haveLock and processor.thelock are both available (False).
The action in each case is to grab the lock and run cpu(1).

Condvar.stm shows my solution. Note the spin states cut back to one self-transition each.
See http://acad.kutztown.edu/~parson/Condvar.jpg

• After making any edit changes, run make clean testCondvar to test this part of the project. The 1-

thread test takes 0.17 (previously 1.6) seconds to complete and the 10-thread test takes 0.57
(previously 17.2) seconds in my preparation tests. This test runs faster than its predecessors because
only threads in the appropriate queue (pqueue or cqueue) awaken to test their conditions at a time
when the correct condition has just been satisfied. Anything running over 30 seconds likely indicates
a bug. Hit control-C and debug the log file. I found searching for the CONSUMED messages useful.
If you test simulation gets stuck in a loop, look near the bottom of the log file for a fruitless loop
through states. Run ls *.log to see the log file name.

5. 15% of project grade: Answer the 3 questions in the README.txt file in the handout directory. Make

sure to have your answer README.txt file in the directory when you make turnitin.

README.txt
STUDENT NAME:
Answer the following 3 questions (5% each for the assignment grade)
in one short paragraph each about the following
simulated test times, taken from the test runs.
See criticalSection2020.time.txt for the full set of reference simulation times.
--
Q1: In going from 1 Producer-Consumer pair to 10 Producer-Consumer pairs
using a single global buffer in processor shared memory, why does this

page 12

maximum slow-down of 11 times slower going from Unsafe (synchronized)
to an atomic spin lock:
Unsafe1.crunch.ref:MAX_spinConsumer=1
Unsafe1.crunch.ref:MAX_spinProducer=1
Atomic1.crunch.ref:MAX_spinConsumer=11
Atomic1.crunch.ref:MAX_spinProducer=2

change to a max slow-down of over 11,000 times slower when there are 10 pairs:

Unsafe10.crunch.ref:MAX_spinConsumer=1
Unsafe10.crunch.ref:MAX_spinProducer=1
Atomic10.crunch.ref:MAX_spinConsumer=11706
Atomic10.crunch.ref:MAX_spinProducer=11705

Given the fact that there are only 10X Producer/Consumer thread pairs,
why is there a 11706/11 = a greater than 1000X slow-down?
YOUR ANSWER GOES HERE:

--
Q2: In contrast, why is the spinning time for the Mutex with either
1 or 10 Producer-Consumer pairs only marginally longer than the
Unsafe pairs?

Unsafe1.crunch.ref:MAX_spinConsumer=1
Unsafe1.crunch.ref:MAX_spinProducer=1
Mutex1.crunch.ref:MAX_spinConsumer=9
Mutex1.crunch.ref:MAX_spinProducer=2

Unsafe10.crunch.ref:MAX_spinConsumer=1
Unsafe10.crunch.ref:MAX_spinProducer=1
Mutex10.crunch.ref:MAX_spinConsumer=3
Mutex10.crunch.ref:MAX_spinProducer=2
YOUR ANSWER GOES HERE:

--
Q3: Why would be expect the spinning times for the Condvar (condition
variable) test to be somewhat less than the Mutex times, as shown here?

Mutex1.crunch.ref:MAX_spinConsumer=9
Mutex1.crunch.ref:MAX_spinProducer=2
Condvar1.crunch.ref:MAX_spinConsumer=2
Condvar1.crunch.ref:MAX_spinProducer=2

Mutex10.crunch.ref:MAX_spinConsumer=3
Mutex10.crunch.ref:MAX_spinProducer=2
Condvar10.crunch.ref:MAX_spinConsumer=2
Condvar10.crunch.ref:MAX_spinProducer=1
YOUR ANSWER GOES HERE:

Run make turnitin by the due date. There is a 10% per day late penalty, and any assignment turned in
after I go over the solution is worth 0%.

