

page 1

CSC 220 Object-Oriented Multimedia Programming, Spring 2017
Dr. Dale E. Parson, Assignment 5, Recursive Shape OR MIDI Assignment Extension.
This assignment is due via D2L Dropbox Assignment 5, Final Assignment by 11:59 PM on Saturday
May 6. 10% penalty for each day it is late.

When using Processing on the Kutztown campus Windows computers, make sure to start out every time
by setting your Processing Preferences -> Sketchbook Location to U:\Processing. The U:\ drive is a
networked drive that will save your work and make it accessible across campus. If you save it to your
desktop or the lab PC you are using, you will lose your work when you log out. You must save it to the
U:\ drive. If you do not have a folder called Processing under U:\, you must create one using the Windows
Explorer. Processing Preferences is under the File menu on Windows.

If you will be downloading Processing 3.X and running it using an off-campus computer (do not use
version 2.X for assignments), you can copy your project sketch named ShapePaint3DIntro to a flash
drive on one machine, and then copy it from the flash drive to another Processing sketch folder.

You may choose either to do either Option A Recursive Shape for this assignment, or Option B
Extended MIDI Keyboard, which is an extension of our Assignment 3. You can use either your or my
solution to Assignment 3 as your starting point for Assignment 5, if you decide to do Option B.

page 2

OPTION A: Recursive Shape

The starting point code for RecursiveShape is in the page entitled RecursiveShape.txt linked to the
course page. Copy & paste it into Processing and Save As RecursiveShape. Proceed according to the
following instructions.

Recursion is a programming technique in which a function calls itself, either directly, or indirectly
through another function. Graphical programming often makes use of a recursive function like a “cookie
cutter” with parameters that customize the location and scale of the cookie cutter. In this assignment you
will use recursion to divide the space of one Processing graphical window that is width X height in size
into a number of smaller, adjacent “virtual graphical windows” that typically may maintain the same
width X height aspect ratio, but where the actual width and height have been scaled, and the 0,0 center
location has been translated, to fit each of the smaller virtual windows. The next few illustrations show
my handout solution to the problem. You will create your own shape according to requirements appearing
later in this document. We will go over my handout code and the concepts of recursion in class of April
25 and 26.

Base case showing my custom shape from function drawShape with a recursion depth of 0.

Recursive case with a recursion depth of 1. Each level of recursion subdivides a rectangular region
into 4 adjacent rectangular regions, each with ½ the width and ½ the height of the original “parent”

page 3

region.

Recursive case with a recursion depth of 2 gives 16 sub-regions, or generally, 4depth sub-regions.

I will demonstrate deeper levels of recursion in class, along with a different sketch, CCurve, that is linked
on the course page. The basic strategy is this:

1. Decide whether it is time to draw the shape, based on a depth parameter to function
drawRecursiveShape in the handout code.

2. If it is time to draw the shape:
a. pushMatrix(), then rotate() if the rotate parameter to drawRecursiveShape is non-0.
b. Call drawShape() to draw the shape at the current scale, then popMatrix().

3. Else (not time to draw the shape due to insufficient depth):
a. For each region to be subdivided from this region (Mine is 4; yours will be something

else.)
I. pushMatrix(), set strokeWeight() and stroke()
II. Optionally draw a line from the region center to this sub-region center.
III. translate() to the center of the sub-region.
IV. scale() to the size of the sub-region, relative to the region being divided.
V. Call drawRecursiveShape recursively to subdivide that sub-region.
VI. popMatrix() and return.

Base case function drawShape() simply draws the shape, using width and height to delimit its size. We
will go over the whole thing in class.

REQUIREMENT 1 (25%) is to complete the keyPressed() function according to these instructions in
the function’s comments. You can test using my drawShape() after completing this step.
// You must write keyRessed() as follows:
// UP increments recursionDepth with no limit.
// DOWN decrements recursionDepth, does not take it < 0.
// RIGHT increments rotationIncrement, wrapping from 359 to 0.
// LEFT decrements rotationIncrement, wrapping from 0 to 359.
// key between '0' and '9' sets eraseRate 0..9, use (key - '0') to get an int value 0..9.
// Upper case 'C' sets eraseRate to 100 ('C' for Clear).
// Upper case 'R' sets eraseRate to 100, rotation and rotationIncrement to 0 ('R' for Reset).
// Lower case 'a' to 'f' sets fRate and calls frameRate to value 10..60, just take
// (key - 'a') and multiply by 10 to get a new frameRate.

page 4

REQUREMENT 2 (25%) Replace my code in function drawShape() with your own distinct shape, using
at least two shape-drawing functions different that the line() and ellipse() functions that I used. You can
still use calls to line() and ellipse(), but you must use at least two other shape-drawing functions. Also,
your code should use width a height to help ensure that the shape displays in the currently scaled sub-
region. I found it useful to figure out endpoints for my shape by using s sketch on graph paper.

REQUIREMENT 3 (35%) Change else potion of function drawRecursiveShape so that it subdivides
its width X height region into different sub-regions than mine. Mine divides the region into 4 adjacent,
identically sized sub-regions. The simplest way to satisfy this requirement would be to subdivide the
region into 9 adjacent, identically sized sub-regions, but you could also subdivide it into 3 adjacent, non-
identically sized sub-regions as shown here.

REQUIREMENT 4 (15%) All of the rotation and user interface capabilities that I demo in class, as
supported by your keyPressed() function, must work correctly. Your name must be in the comments at the
top of the code.

OPTION A: Extended MIDI Keyboard (Do either OPTION A or OPTION B, not both.)
Extend either your solution or my solution to assn3 (posted on the course page) to do the following.
REQUIREMENT 1 (25%): Use a scale other than the 12-note chromatic scale of assignment 3. For
example, here are two scales, noting that non-chromatic scales have fewer than 12 notes.

int [] major = {0, 2, 4, 5, 7, 9, 11};
int [] minor = {0, 2, 3, 5, 7, 9, 11};

Use the mouseX position to determine an octave 0..11 via “(mouseX * 127 / width) / 12”, and an offset
into a scale such as major via “mouseX % major.length”. Add 12 X the octave + offset. This places the
“0” note in the key of C; you can add an additional offset that is < major.length to get a different key. I
recommend taking the final note “% 128” in order to avoid InvalidMidiDataException.
REQUIREMENT 2 (25%): Use at least 2 distinct instrument voices (PROGRAMS) on at least 2
different MIDI channels. You can hard code the instruments-to-play if you like, or let the user select.
REQUIREMENT 3 (25%): Use 3 distinct, simultaneous notes on a given channel at least some of the
time, in order to play a chord.
REQUIREMENT 4 (25%): Use whatever user interface enhancements you like to make it playable,
including enhancements to keyPressed(). Keep the same basic mouse UI of increasing pitch as you sweep
from left to right, and volume from bottom to top, but you might want to make a note sustain for more
than 1 call to draw(). Right now there are very rapid noteon-noteoff sequences that make for a very fast
tempo. Feel free to keep a note on across multiple draw() calls, fading it out, or adding
CONTROL_CHANGE effects if you like.

