
A DISTRIBUTED MODEL-VIEW-CONTROLLER DESIGN PATTERN FOR A
GRAPHICAL REMOTE CONTROL OF A MULTI-USER APPLICATION

Author Name(s)
Affiliation

Email addresses

ABSTRACT

The Model-View-Controller (MVC) is an object-oriented
design pattern for architecting the interactions among
human users of graphical computing systems with the
software Controller that manages user input, the Model that
houses system state, and the View that projects the Model
state into intelligible graphical form. The present work
examines extending MVC into a Distributed Model-View-
Controller pattern, starting with a stand-alone MVC system
that is amenable to distribution over a local area network
(LAN). Distribution takes the form of cloning a stand-
alone MVC application into distinct client and server
programs, and then altering each for its purpose while
maintaining the initial graphical compatibility of the
starting, stand-alone system. A graphical client remote
control running on a tablet computer sends its Model
update events to the server’s Controller via the LAN, acting
as a remote input device for the server. The client uses
simple, two-dimensional graphics for efficiency, while the
server’s graphical View can afford to use computationally
expensive three-dimensional animations. Avoiding server-
to-client synchronization avoids congestive LAN traffic
and complicated interaction. The client acts as a one-way
remote control, albeit a remote control with a display that
is a simple version of the server’s display.

KEY WORDS
Android tablet, distributed remote control, graphics.

1. Introduction

This report grows out of a course project in creating a
graphical remote control (the client) on an Android tablet
device [1] to manipulate a graphical application (the
server) running on a PC or laptop, in the context of an
undergraduate course in object-oriented multimedia
programming. In the previous offering of this course, we
used a text-based menu system on the client device to select
and send commands to the server via the wireless local area
network (LAN). While meeting minimum requirements for
a remote control, the client user interface looked nothing
like the graphical server. Its use was cumbersome and
nonintuitive. This report explains how we distributed the
well-known Model-View-Controller (MVC) design
pattern [2] to convert a stand-alone, interactive graphical

application into two programs, a graphical server running
the main application, and multiple graphical clients whose
user interface reflects the graphical nature of the server
while avoiding excessive synchronization traffic on the
LAN.

2. A Stand-alone Graphical Application

Figure 1 illustrates the graphical view of the handout code
for the first, stand-alone assignment. Each rectangle
represents a musical note, similar to a key on a piano
keyboard. Color represents a note’s position in its scale
being played, where a musical scale is a cyclic sequence.
Brightness represents a note’s aural volume. The
application was intended for a circular planetarium
projector, hence the guide circle. The arrangement of notes
was random in the handout code. Pitch and volume are
ambiguous in Figure 1, because there are multiple notes of
a given position in a scale, e.g., multiple “do”, “re”, “mi”,
etc. notes at distinct octaves, just as there are on a piano.

Figure 1: Randomly arranged notes in handout code

Graphical coding for this course is in Processing [3-6],
which is a framework consisting of library classes,
functions, coding conventions, and an integrated

development environment (IDE) in Java. A generated Java
class encapsulates the programmer’s sketch code. A timer-
driven loop calls the programmer’s draw() function
periodically at the frame rate, by default every 60th of a
second. By clearing the display and redrawing graphical
shapes at slightly different locations on each invocation of
draw(), the programmer can create animations.

Processing code can access the full Java class library,
including the Musical Instrument Digital Interface (MIDI)
[7-8] classes in package javax.sound.midi [9]. In this
assignment project, pressing on a mouse button toggles the
Processing mousePressed Boolean variable to true. A loop
within the application’s periodic draw() function finds the
closest graphical note within Figure 1 to the pressed mouse
and invokes its display() function. The note’s display()
function performs two actions: It displays a 3D graphical
shape, centered at the 2D location of the closest note in
Figure 1, and it sends a MIDI noteon message with the
pitch and volume as parameters to a sound synthesizer
selected at program start-up time. For the assignment we
used software sound synthesizers built into the Java MIDI
library. Releasing the mouse re-invokes the note’s
display() function, informing it to silence the sound with a
MIDI noteoff message, and to return to displaying a 2D
rectangle.

Figure 2: Notes arranged using polar geometry

The first assignment requirement was to arrange the notes
in a logical order that would be apparent to a musician
playing this virtual instrument. The author supplied
pseudocode and a library of polar geometry functions for
converting device coordinates to polar coordinates and vice
versa. Polar geometry uses a normalized coordinate
dimension of rotational amount in the radian range [0, 2p)
for longitude around the circle from a reference ray (the
line from the center to the rightmost edge of the circle), and
a normalized dimension of [0.0, 1.0) for the latitude
distance from the center at 0.0 to the perimeter. Using

normalized coordinates is a key design practice for
distributing a graphical design across computer displays
of varying pixel ratios. The first step in interpreting a
mouse location is converting from device coordinates to
normalized polar coordinates; the last step in displaying a
graphical object is converting from normalized coordinates
to device coordinates. The author’s polar geometry library
functions convert using the pixel resolution of the device
running the code. The library also supports normalized
Cartesian geometry with X and Y coordinates in the range
[-1.0, 1.0], and their conversion to device coordinates, for
applications that bound the interaction area with rectangles.

In Figure 2, we mapped the pitch of each note to its
longitudinal location around the circle, and its volume
(MIDI velocity) to its distance from the center, with the
loudest notes in the central ring. Three notes of the same
color along a given ray going out from the center have the
same pitch with decreasing volume. The most bass note is
the red “do” note along the ray from the center to the
rightmost edge of the circle; pitch increases counter
clockwise, with the most treble note also being a “do” note
just before the most bass note.

In this first assignment, students also selected a MIDI
instrument and an audio effect (MIDI controller) to
customize their instrument sounds [7], and they replaced
the author’s 3D box (cuboid) with a custom 3D shape to
display when a note sounded due to a mouse press.

3. Applying Model-View-Controller

Figure 3: Model-View-Controller design pattern

Figure 3 illustrates the Model-View-Controller design
pattern as it applies to the design of graphical user interface
(GUI) based applications [2]. A user triggers input data
events via sensors such as key presses and mouse
manipulation, sending these events and their data to a code
module comprising the Controller. The Controller updates
the state of the application that resides in the Model
module. The Model updates a sensory display that
embodies the View, illustrating the updated state of the
Model for the human user.

Figure 4 illustrates the Model-View-Controller design
pattern as it applies to this application. Mouse movement
updates Processing’s mouseX, mouseY coordinate
variables using device coordinates. Processing supplies
mousePressed and keyPressed boolean variables that are
true whenever these states are entered (the mouse or a
keyboard key is pressed), and it invokes optional,
programmer-supplied mousePressed() and keyPressed()
functions whenever those events occur.

Figure 4: MVC for our stand-alone Processing sketch

The periodic draw() function of this single-process
application finds the closest graphical note to mouseX,
mouseY when mousePressed is true. Originally, we
required a note’s rectangular bounding box to enclose the
mouse location before considering it a match. We later
found that computing the distance from the mouse to the
nearest note using Processing’s dist() function, and
triggering that note when mousePressed is true, makes
manipulation of an Android tablet much easier than
requiring mouse containment in a note’s bounding box. On
the Android tablet, pressing the display surface with a
finger or stylus constitutes a mouse press. The periodic
draw() code to locate and trigger note display when
mousePressed is true is the primary implementation of
Controller code. We also used code in the keyPressed()
function to set global properties in the Model state such as
display versus omission of the guide circle.

As implied by Figure 4, there are actual Musician and Note
classes in this application. There are potentially up to 16
Musician objects, one for each of up to 16 MIDI channels,
where a channel maps to a configurable, typically unique
instrument sound. In the stand-alone program, Controller
code invokes Musician[0].playNote() for every Note
object, using a parameter to inform the Musician whether
that Note object is being played. Musician.playNote()
sends MIDI messages to the sound synthesizer for setting
up its channel’s instrument voice and audio effects, then
invokes Note.display() for each Note object passed to it by
the Controller. Note.display() draws a custom 3D shape
and sends a noteon message to the sound synthesizer when
the Note is first selected. It sends a noteoff message when

the Note is first deselected, and it displays the default 2D
square when the Note is not being played, colored
according the Note’s position in its musical scale, with
brightness according to its MIDI velocity (loudness). The
View in this sketch is both the graphical visual display and
the MIDI sound synthesizer aural display.

3. Distributing Model-View-Controller

There were three very important design constraints for our
distributed system: 1) Make this semester’s Android
remote control client graphical in a way that reflects the
presentation of the server that it controls, 2) Avoid the need
for server-to-client messages to synchronize visual state, in
the interest of efficiency, and 3) Reuse as much of the code
from the Figure 4 system as possible. Support for multiple
client devices readily falls out of our architecture, as we
will see.

Figure 5: MVC for our distributed Processing system

3.1 The server-side design

In the second assignment for this application, the author
supplied the server solution code appearing in the bottom
half of Figure 5 (notice the server subscripts in the bottom
half and the client subscripts in the top), and also supplied
the solution to the previous, stand-alone sketch, along with
instructions for the students to modify this sketch into the
remote-control client.

Both the server and client sides of Figure 5 started out as
identical code from the Figure 4 solution. The primary
design enhancement in the server of Figure 5 is the addition
of oscEvent() to Controller functions mousePressed() and
keyPressed(). This new function is the receiver interface
for Open Sound Control (OSC) [10], a distributed data
transport mechanism that supports the passing of string

commands and an array of data strings, integers, and float
numeric values between applications. Processing’s oscP5
library [11] sends and receives User Datagram Protocol
(UDP) datagrams [12] containing OSC messages with
these data types. The Processing server starts an oscP5
listener thread that receives incoming OSC messages
addressed to the server process; the oscP5 listener thread
invokes oscEvent() when messages arrive. Given the fact
that, like most GUI frameworks, Processing data structures
are not safe for concurrent access, it is necessary for
oscEvent() to insert incoming OSC messages into a thread-
safe queue for later polling and processing from the main
Processing thread’s invocation of draw().

Initially, when a client starts execution, it sends its
identifying OSC client message to the server, which
responds with a server message, confirming receipt.
Thereafter, all messages are remote control commands
from the client to server, via this client-side function:

void sendOSCMessage(String command, int midiChannel,
int pitch, int velocity)

Commands include noteon, noteoff, and a several clear
variations for clearing so-called stuck notes. UDP does not
guarantee message delivery, and very occasionally, the
wireless LAN will drop a noteoff message, leaving a Note
sounding indefinitely on the server. The clear messages can
shut off all sounding Notes from a client, or all Notes on
the server. Playing a Note from a client restarts it, so
clearing is a transient action.

Parameters midiChannel, pitch, and velocity make it clear
that OSC is serving as a proxy transport for messages to the
server’s MIDI synthesizer. An incoming server oscEvent()
invocation supplies the arguments passed by a client via
sendOSCMessage. The server’s oscEvent() Controller
logic identifies the Musician (via the midiChannel) and
Note being played or silenced by an incoming noteon or
noteoff message, and invokes Musician.playNote() with
parameters supplied by the OSC message.
Musician.playNote() deals with Notes played by the local
mouse and by OSC messages identically.

A critical aspect of this distributed design is that it must be
possible to identify a Note object in the server’s Model
without reference to its graphical/geometric location. The
reason is that the server may apply creative graphical
manipulations such as display rotation, scaling, animation,
and 3D effects that are not sent back to the client. The client
maintains a much simpler, 2D representation of the system,
both for efficiency on an Android tablet, and to avoid
congesting the wireless network with server-to-client state
updates. The client sends proxy MIDI commands. The
server does not update the client.

We achieved this critical design aspect by making each
Musician object identifiable by its unique midiChannel in
an array (there are only 16 channels), and each Note object

identifiable by its composite pitch-velocity key in a Java
HashMap. OSC messages trigger function calls in the
appropriate Musician and Note objects, regardless of
graphical locations, via these Musician array indices and
Note HashMap keys. In general, in order to minimize the
processing demand and synchronization overhead that
would be required by server-to-client state updates for
multiple client devices, it must be possible to address state-
bearing objects within the server Model independently
from their graphical locations and other properties in the
server. Of course, Notes in the server still maintain location
for display and spatial correlation with mouse presses in
the server user interface, but these spatial attributes do not
cross the OSC network.

The only other server enhancements beyond Controller
OSC message handling are graphical and musical features
that do not affect the clients. Figure 6 shows that the server
constructs and displays Note objects for all possible scales
– this is the chromatic scale in Western music, comparable
to all the notes on a piano – and adds elaborate 3D graphics.
The apparent pillars on the right side of Figure 6 are single
notes being sustained. The Note.display() function stacks
multiple visual note shapes vertically during play, and it
plots a translucent copy of its note shape across the entire
display area, overlaid with translucent copies of other
sounding note shapes. This server architecture accepts
concurrent messages from multiple clients via oscEvent(),
calling Musician.playNote() indexed by each client’s MIDI
channel, and having those Musician objects concurrently
display/play Note objects keyed by pitch and velocity. The
single-Musician system of Section 2 has become an
ensemble.

Figure 6: A three-dimensional server-side display

3.2 The client-side design

The top half of Figure 5 illustrates the client side of the
design. We developed it on PCs and laptops, and then

cross-compiled for Galaxy S3 Android tablets for testing
and deployment [13]. Processing has an Android mode
built into its IDE that simplifies the job of building for
Android.

Student instructions for porting the Section 2, stand-alone
sketch to the client included the following main points.

A. Convert all 3D graphical display calls in the starting

code to their 2D counterparts. The client uses strictly
2D graphics for efficiency on tablet computers.

B. Take out all of the MIDI library imports and function
calls. The Android device does not support Java’s
javax.sound.midi library, and the goal in the
architecture of Figure 5 is to use the tablets as remote
controls for graphics and music generation on the
server. We commented out MIDI calls in the client
Musician and Note classes in order to document where
noteon and noteoff calls occur.

C. Add a call within the programmer-supplied Processing
setup() function to start an oscP5 listener thread, and
add a call within draw() to manage menu-based user
interfaces and the initial reply receipt from the server.
The user interface steps through a series of menu states
in a state machine, beginning with establishing contact
with the server, through updating various client
configuration parameters. Figure 7 shows the client
GUI for setting the server’s IP address and UDP port
number. While most user interaction is via graphical
manipulation of the Android display, client
configuration parameters are set via menus, as they
were in the previous offering of this course. By using
Processing source code tabs, the author encapsulated
all OSC and menu code in a way that eliminated the
need for students to understand it. A Processing tab is
simply a subset of a Processing sketch’s source code.
A sketch can have one or more tabs. When a
programmer compiles and runs a sketch, the
preprocessor combines all tabs into a single source
class for the sketch, but programmers do not see that
aggregation of source code. Processing’s tab
mechanism provides a means for hiding code that does
not need to be visible to the students, simplifying their
tasks. The single function calls added to student
setup(), draw(), and Note.display() invoke functions
defined within an author-supplied source tab.

D. Within Note.display(), replace commented MIDI

noteon and noteoff function calls with calls to
sendOSCMessage() as discussed in the previous
section. OSC messages bear the same data as MIDI
messages, from each client to the server.
Musician.playNote() code for setting MIDI instrument
types and effects is no longer used in the client. The
server keyPressed() Controller interface supports
configuring Musician objects.

E. Insert a few ancillary lines of code into draw(), for
example “orientation(LANDSCAPE)” to guarantee
stable orientation on a tablet (this runs but has no effect
on a PC), and substitution of a client MIDI channel
variable set by the user interface for the MIDI channel
used as a Musician array index on the server. As in the
previous assignment, there is only one Musician object
on the client, and the user can change its MIDI channel
via a Menu. The server supports up to 16 MIDI
channels, and therefore 16 concurrent Musicians /
instruments.

Figure 7: Client menu for setting server LAN address

To summarize the event and data flow in Figure 5, a user
of a tablet client uses a finger or stylus to configure client
parameters via menus, and then to manipulate Note objects
via the interactive graphical display. The finger or stylus
acts as the mouse. Note.display() invocations arrive at a
client Note object, similarly to the Section 2 code and this
section’s server, but client Note.display() now acts
differently. It turns its 2D rectangle into a circle, but more
importantly, it invokes sendOSCMessage() to send MIDI
noteon and noteoff data to the server. Thus, Note as part of
the client’s MVC Model sends visual function calls to the
client View, and it sends musical function calls via OSC to
the server’s Controller. The server interprets incoming
OSC messages similarly to mousePressed() events,
locating the Musician object via the MIDI channel sent
from the client, and locating the Note object by using the
message’s pitch and velocity as a compound key. The
server invocation of Musician.playNote() and
Note().display is identical for local mouse presses on the
server and for OSC events arriving from one or more
clients.

Figure 8 shows the client-side musical GUI. As in the
server, Notes are arranged in a circular order by pitch, and
outward from the center by velocity. There is one round
note being sounded by a mouse or finger press in Figure 8.
There are fewer Notes in the client’s Figure 8 than there are

in the server’s Figure 6 because the server must support all
possible notes in the Western chromatic scale, i.e., the
white and black piano keys within a five-octave range. The
client must support only a three-octave range for the scale
that it is playing. In performance pieces where all clients
play exactly the same scale, we configure the server via
keyPressed() commands to use exactly the same scale as
the clients. This update to the server’s Model propagates to
the server’s View, and there are then the same number of
notes on the server as on the clients. The general design
constraint is that the server must support the union of all
client configurations, in this case musical scale and octave
range.

Figure 8: A two-dimensional client-side display

On the left side of Figure 8 are text boxes for setting scale
(major here), the tonic “do” note (G), the MIDI channel
(15), and the ability to record and play back loops of note
presses. Mouse-clicking one of those text areas brings up
its menu GUI for user reconfiguration of the client.

When in record mode, each sendOSCMessage() call saves
an object containing its arguments into a timed sequence,
in addition to sending an OSC message to the server. When
in playback mode, a utility function invoked from draw()
sends the saved sequence of notes to the server via
sendOSCMessage() at the recorded times. The author
added this looping enhancement after completion of the
course. There are opportunities for additional
enhancements to the client, such as playing chords
(multiple notes) when a user triggers a note. The system as
described supports multiple client devices used as distinct
musicians, typically using unique MIDI channels mapped
to unique instrument synthesizers on the server.

4. Other possible uses for distributed MVC

The general flow of events and data outlined for Figure 5
can apply to other applications. For example, the author
and two students are in the midst of developing a graphical
gravity simulator for a planetarium dome. A client user
manipulating an Android tablet selects a new planet of a

user-configured planetary type, size, and mass/density, and
then swipes it into a planetary system display on a server.
The server uses orbital mechanics to determine whether the
incoming planetary mass is captured in an orbit by the
server’s star, or falls into the star, or escapes the system
[14]. The final client GUI will include exemplary planets
that are scaled and injected into the system by finger
strokes. We are using OSC messages to send planet
injection data to the server. As in the client of Figure 8,
manipulation within the guide circle interacts with the
server’s graphical state (e.g., stellar system), and
manipulation outside the guide selects configuration
parameters (e.g., planetary properties). For Cartesian
geometry systems, a guide square centered in the display
replaces the guide circle of the current application.

The author also exhibits juried, computer-generated art
videos, and is with working with digital art students. One
problem with creating videos from interaction with stand-
alone graphical applications is that, depending on the mode
of video capture, the user’s mouse cursor shows up.
Distributed painting using tablet devices eliminates that
problem. The painter controls the paintbrush configuration
parameters, brush location, and brush application on a
client tablet, which sends paintbrush data via OSC to a
server that implements the canvas.

Efficient implementation requires that there not be a
plethora of server-to-client messages clogging up the LAN.
The present design avoids that potential problem. The only
server-to-client message is confirmation of the initial client
contact. This requirement is different from that of a
networked graphical game, where distributed client GUIs
must reflect the detailed state of the game server. In the
present approach, clients and servers are all in the same
room using a single LAN. Users can look at the server’s
display to perceive the server’s View of its Model.

5. Conclusions

Lessons learned start with using a modular Model-View-
Controller design as diagrammed in Figure 4, with the
intent to clone-and-enhance it to the distributed MVC
architecture of Figure 5.

Next, use normalized coordinates in the ranges [0, 2p)
longitude and [0.0, 1.0) latitude for polar geometric
arrangements, or the linear range [-1.0, 1.0] for Cartesian
X, Y arrangements, converting them to device coordinates
at the last step before graphical display. This normalization
of geometry saves a lot of conversion coding when
identical or isomorphic Views must appear on server and
client displays with different width-to-height pixel ratios.

Minimize the number of server-to-client communications,
ideally only to confirmation of initial contact. Doing so
avoids congestion on the LAN and overly complex
synchronization code.

In hand with the previous paragraph, keep graphics on a
client tablet as simple and efficient as possible. Comparing
Figure 6 to Figure 8 shows that it is possible to direct
sophisticated graphics on a compute-intensive server from
much simpler graphics on a client tablet.

Design a key-based mechanism for identifying server
objects on the clients, such as the MIDI channel for
identifying Musician objects, and the pitch-velocity
compound key for identifying Note objects in this system.
Doing so decouples the geometric locations of objects on
the server from locations on clients. Given the fact that
there may be multiple layers of nested geometric
translations (moves), rotations, and scales on server and
client graphical devices, communicating via location data
would require multiple geometric transforms. It is much
simpler to avoid the need for keeping track of geometric
transforms at the system level of Figure 5.

6. Acknowledgements

The author would like to thank the Faculty Professional
Development Grant Committee (FPDC) of the PA State
System of Higher Education for funding summer work on
this project, as well as funding the students working on the
graphical gravity simulator outlined in Section 4.

References:

[1] A. Colubri, Processing for Android (New York, NY:
Apress Media, 2017).

[2] G. Krasner & S. Pope, A cookbook for using the Model-
View-Controller user interface paradigm in Smalltalk-80,
Journal of Object-Oriented Programming, 1(3),
August/September 1988, 26-49.

[3] C. Reas & B. Fry, Processing: a programming
handbook for visual designers and artists, Second Edition
(Cambridge, MA: MIT Press, 2014).

[4] D. Shiffman, Learning Processing, a beginner's guide
to programming images, animation, and interaction,
Second Edition (Burlington, MA: Morgan Kaufmann,
2015).

[5] Processing home page, https://processing.org/, link
tested January 2020.

[6] Anonymous reference by the present author.

[7] MIDI Technical Fanatic’s Brainwashing Center,
http://midi.teragonaudio.com/, link tested January 2020.

[8] MIDI Association, the official MIDI specifications,
https://www.midi.org/specifications, link tested January
2020.

[9] Oracle Corporation, package javax.sound.midi,
https://docs.oracle.com/javase/8/docs/api/javax/sound/mid
i/package-summary.html, link tested January 2020.

[10] Open Sound Control (OSC) documents and libraries,
http://opensoundcontrol.org/, link tested January 2020.

[11]. A. Schlegel, The oscP5 Processing library,
http://www.sojamo.de/libraries/oscP5/, link tested January
2020.

[12] E. Harold, Java network programming, 4th Edition
(Sebastopol, CA: O'Reilly Media, 2013).

[13] Samsung, Galaxy Tab S3,
https://www.samsung.com/global/galaxy/galaxy-tab-s3/,
link tested January 2020.

[14] A. Milani, Theory of orbit determination (Cambridge,
UK: Cambridge University Press, 2010).

