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ABSTRACT 
 
The Model-View-Controller (MVC) is an object-oriented 
design pattern for architecting the interactions among 
human users of graphical computing systems with the 
software Controller that manages user input, the Model that 
houses system state, and the View that projects the Model 
state into intelligible graphical form. The present work 
examines extending MVC into a Distributed Model-View-
Controller pattern, starting with a stand-alone MVC system 
that is amenable to distribution over a local area network 
(LAN). Distribution takes the form of cloning a stand-
alone MVC application into distinct client and server 
programs, and then altering each for its purpose while 
maintaining the initial graphical compatibility of the 
starting, stand-alone system. A graphical client remote 
control running on a tablet computer sends its Model 
update events to the server’s Controller via the LAN, acting 
as a remote input device for the server. The client uses 
simple, two-dimensional graphics for efficiency, while the 
server’s graphical View can afford to use computationally 
expensive three-dimensional animations. Avoiding server-
to-client synchronization avoids congestive LAN traffic 
and complicated interaction. The client acts as a one-way 
remote control, albeit a remote control with a display that 
is a simple version of the server’s display. 
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1.  Introduction 
 
This report grows out of a course project in creating a 
graphical remote control (the client) on an Android tablet 
device [1] to manipulate a graphical application (the 
server) running on a PC or laptop, in the context of an 
undergraduate course in object-oriented multimedia 
programming. In the previous offering of this course, we 
used a text-based menu system on the client device to select 
and send commands to the server via the wireless local area 
network (LAN). While meeting minimum requirements for 
a remote control, the client user interface looked nothing 
like the graphical server. Its use was cumbersome and 
nonintuitive. This report explains how we distributed the 
well-known Model-View-Controller (MVC) design 
pattern [2] to convert a stand-alone, interactive graphical 

application into two programs, a graphical server running 
the main application, and multiple graphical clients whose 
user interface reflects the graphical nature of the server 
while avoiding excessive synchronization traffic on the 
LAN. 
 
2.  A Stand-alone Graphical Application 
 
Figure 1 illustrates the graphical view of the handout code 
for the first, stand-alone assignment. Each rectangle 
represents a musical note, similar to a key on a piano 
keyboard. Color represents a note’s position in its scale 
being played, where a musical scale is a cyclic sequence. 
Brightness represents a note’s aural volume. The 
application was intended for a circular planetarium 
projector, hence the guide circle. The arrangement of notes 
was random in the handout code. Pitch and volume are 
ambiguous in Figure 1, because there are multiple notes of 
a given position in a scale, e.g., multiple “do”, “re”, “mi”, 
etc. notes at distinct octaves, just as there are on a piano. 
 

 
 

Figure 1: Randomly arranged notes in handout code 
 
Graphical coding for this course is in Processing [3-6], 
which is a framework consisting of library classes, 
functions, coding conventions, and an integrated 



development environment (IDE) in Java. A generated Java 
class encapsulates the programmer’s sketch code. A timer-
driven loop calls the programmer’s draw() function 
periodically at the frame rate, by default every 60th of a 
second. By clearing the display and redrawing graphical 
shapes at slightly different locations on each invocation of 
draw(), the programmer can create animations. 
 
Processing code can access the full Java class library, 
including the Musical Instrument Digital Interface (MIDI) 
[7-8] classes in package javax.sound.midi [9]. In this 
assignment project, pressing on a mouse button toggles the 
Processing mousePressed Boolean variable to true. A loop 
within the application’s periodic draw() function finds the 
closest graphical note within Figure 1 to the pressed mouse 
and invokes its display() function. The note’s display() 
function performs two actions: It displays a 3D graphical 
shape, centered at the 2D location of the closest note in 
Figure 1, and it sends a MIDI noteon message with the 
pitch and volume as parameters to a sound synthesizer 
selected at program start-up time. For the assignment we 
used software sound synthesizers built into the Java MIDI 
library. Releasing the mouse re-invokes the note’s 
display() function, informing it to silence the sound with a 
MIDI noteoff message, and to return to displaying a 2D 
rectangle. 
 

 
 

Figure 2: Notes arranged using polar geometry 
 
The first assignment requirement was to arrange the notes 
in a logical order that would be apparent to a musician 
playing this virtual instrument. The author supplied 
pseudocode and a library of polar geometry functions for 
converting device coordinates to polar coordinates and vice 
versa. Polar geometry uses a normalized coordinate 
dimension of rotational amount in the radian range [0, 2p) 
for longitude around the circle from a reference ray (the 
line from the center to the rightmost edge of the circle), and 
a normalized dimension of [0.0, 1.0) for the latitude 
distance from the center at 0.0 to the perimeter. Using 

normalized coordinates is a key design practice for 
distributing a graphical design across computer displays 
of varying pixel ratios. The first step in interpreting a 
mouse location is converting from device coordinates to 
normalized polar coordinates; the last step in displaying a 
graphical object is converting from normalized coordinates 
to device coordinates. The author’s polar geometry library 
functions convert using the pixel resolution of the device 
running the code. The library also supports normalized 
Cartesian geometry with X and Y coordinates in the range 
[-1.0, 1.0], and their conversion to device coordinates, for 
applications that bound the interaction area with rectangles. 
 
In Figure 2, we mapped the pitch of each note to its 
longitudinal location around the circle, and its volume 
(MIDI velocity) to its distance from the center, with the 
loudest notes in the central ring. Three notes of the same 
color along a given ray going out from the center have the 
same pitch with decreasing volume. The most bass note is 
the red “do” note along the ray from the center to the 
rightmost edge of the circle; pitch increases counter 
clockwise, with the most treble note also being a “do” note 
just before the most bass note. 
 
In this first assignment, students also selected a MIDI 
instrument and an audio effect (MIDI controller) to 
customize their instrument sounds [7], and they replaced 
the author’s 3D box (cuboid) with a custom 3D shape to 
display when a note sounded due to a mouse press. 
 
3.  Applying Model-View-Controller 
 

 
 

Figure 3: Model-View-Controller design pattern 
 
Figure 3 illustrates the Model-View-Controller design 
pattern as it applies to the design of graphical user interface 
(GUI) based applications [2]. A user triggers input data 
events via sensors such as key presses and mouse 
manipulation, sending these events and their data to a code 
module comprising the Controller. The Controller updates 
the state of the application that resides in the Model 
module. The Model updates a sensory display that 
embodies the View, illustrating the updated state of the 
Model for the human user. 



 
Figure 4 illustrates the Model-View-Controller design 
pattern as it applies to this application. Mouse movement 
updates Processing’s mouseX, mouseY coordinate 
variables using device coordinates. Processing supplies 
mousePressed and keyPressed boolean variables that are 
true whenever these states are entered (the mouse or a 
keyboard key is pressed), and it invokes optional, 
programmer-supplied mousePressed() and keyPressed() 
functions whenever those events occur.  
 

 
 
Figure 4: MVC for our stand-alone Processing sketch 

 
The periodic draw() function of this single-process 
application finds the closest graphical note to mouseX, 
mouseY when mousePressed is true. Originally, we 
required a note’s rectangular bounding box to enclose the 
mouse location before considering it a match. We later 
found that computing the distance from the mouse to the 
nearest note using Processing’s dist() function, and 
triggering that note when mousePressed is true, makes 
manipulation of an Android tablet much easier than 
requiring mouse containment in a note’s bounding box. On 
the Android tablet, pressing the display surface with a 
finger or stylus constitutes a mouse press. The periodic 
draw() code to locate and trigger note display when 
mousePressed is true is the primary implementation of 
Controller code. We also used code in the keyPressed() 
function to set global properties in the Model state such as 
display versus omission of the guide circle. 
 
As implied by Figure 4, there are actual Musician and Note 
classes in this application. There are potentially up to 16 
Musician objects, one for each of up to 16 MIDI channels, 
where a channel maps to a configurable, typically unique 
instrument sound. In the stand-alone program, Controller 
code invokes Musician[0].playNote() for every Note 
object, using a parameter to inform the Musician whether 
that Note object is being played. Musician.playNote() 
sends MIDI messages to the sound synthesizer for setting 
up its channel’s instrument voice and audio effects, then 
invokes Note.display() for each Note object passed to it by 
the Controller. Note.display() draws a custom 3D shape 
and sends a noteon message to the sound synthesizer when 
the Note is first selected. It sends a noteoff message when 

the Note is first deselected, and it displays the default 2D 
square when the Note is not being played, colored 
according the Note’s position in its musical scale, with 
brightness according to its MIDI velocity (loudness). The 
View in this sketch is both the graphical visual display and 
the MIDI sound synthesizer aural display. 
 
3.  Distributing Model-View-Controller 
 
There were three very important design constraints for our 
distributed system: 1) Make this semester’s Android 
remote control client graphical in a way that reflects the 
presentation of the server that it controls, 2) Avoid the need 
for server-to-client messages to synchronize visual state, in 
the interest of efficiency, and 3) Reuse as much of the code 
from the Figure 4 system as possible. Support for multiple 
client devices readily falls out of our architecture, as we 
will see. 
 

 
 

Figure 5: MVC for our distributed Processing system 
 
3.1 The server-side design 
 
In the second assignment for this application, the author 
supplied the server solution code appearing in the bottom 
half of Figure 5 (notice the server subscripts in the bottom 
half and the client subscripts in the top), and also supplied 
the solution to the previous, stand-alone sketch, along with 
instructions for the students to modify this sketch into the 
remote-control client. 
 
Both the server and client sides of Figure 5 started out as 
identical code from the Figure 4 solution. The primary 
design enhancement in the server of Figure 5 is the addition 
of oscEvent() to Controller functions mousePressed() and 
keyPressed(). This new function is the receiver interface 
for Open Sound Control (OSC) [10], a distributed data 
transport mechanism that supports the passing of string 



commands and an array of data strings, integers, and float 
numeric values between applications. Processing’s oscP5 
library [11] sends and receives User Datagram Protocol 
(UDP) datagrams [12] containing OSC messages with 
these data types. The Processing server starts an oscP5 
listener thread that receives incoming OSC messages 
addressed to the server process; the oscP5 listener thread 
invokes oscEvent() when messages arrive. Given the fact 
that, like most GUI frameworks, Processing data structures 
are not safe for concurrent access, it is necessary for 
oscEvent() to insert incoming OSC messages into a thread-
safe queue for later polling and processing from the main 
Processing thread’s invocation of draw(). 
 
Initially, when a client starts execution, it sends its 
identifying OSC client message to the server, which 
responds with a server message, confirming receipt. 
Thereafter, all messages are remote control commands 
from the client to server, via this client-side function: 
 
void sendOSCMessage(String command, int midiChannel, 
int pitch, int velocity) 
 
Commands include noteon, noteoff, and a several clear 
variations for clearing so-called stuck notes. UDP does not 
guarantee message delivery, and very occasionally, the 
wireless LAN will drop a noteoff message, leaving a Note 
sounding indefinitely on the server. The clear messages can 
shut off all sounding Notes from a client, or all Notes on 
the server. Playing a Note from a client restarts it, so 
clearing is a transient action. 
 
Parameters midiChannel, pitch, and velocity make it clear 
that OSC is serving as a proxy transport for messages to the 
server’s MIDI synthesizer. An incoming server oscEvent() 
invocation supplies the arguments passed by a client via 
sendOSCMessage. The server’s oscEvent() Controller 
logic identifies the Musician (via the midiChannel) and 
Note being played or silenced by an incoming noteon or 
noteoff message, and invokes Musician.playNote() with 
parameters supplied by the OSC message. 
Musician.playNote() deals with Notes played by the local 
mouse and by OSC messages identically. 
 
A critical aspect of this distributed design is that it must be 
possible to identify a Note object in the server’s Model 
without reference to its graphical/geometric location. The 
reason is that the server may apply creative graphical 
manipulations such as display rotation, scaling, animation, 
and 3D effects that are not sent back to the client. The client 
maintains a much simpler, 2D representation of the system, 
both for efficiency on an Android tablet, and to avoid 
congesting the wireless network with server-to-client state 
updates. The client sends proxy MIDI commands. The 
server does not update the client. 
 
We achieved this critical design aspect by making each 
Musician object identifiable by its unique midiChannel in 
an array (there are only 16 channels), and each Note object 

identifiable by its composite pitch-velocity key in a Java 
HashMap. OSC messages trigger function calls in the 
appropriate Musician and Note objects, regardless of 
graphical locations, via these Musician array indices and 
Note HashMap keys. In general, in order to minimize the 
processing demand and synchronization overhead that 
would be required by server-to-client state updates for 
multiple client devices, it must be possible to address state-
bearing objects within the server Model independently 
from their graphical locations and other properties in the 
server. Of course, Notes in the server still maintain location 
for display and spatial correlation with mouse presses in 
the server user interface, but these spatial attributes do not 
cross the OSC network. 
 
The only other server enhancements beyond Controller 
OSC message handling are graphical and musical features 
that do not affect the clients. Figure 6 shows that the server 
constructs and displays Note objects for all possible scales 
– this is the chromatic scale in Western music, comparable 
to all the notes on a piano – and adds elaborate 3D graphics. 
The apparent pillars on the right side of Figure 6 are single 
notes being sustained. The Note.display() function stacks 
multiple visual note shapes vertically during play, and it 
plots a translucent copy of its note shape across the entire 
display area, overlaid with translucent copies of other 
sounding note shapes. This server architecture accepts 
concurrent messages from multiple clients via oscEvent(), 
calling Musician.playNote() indexed by each client’s MIDI 
channel, and having those Musician objects concurrently 
display/play Note objects keyed by pitch and velocity. The 
single-Musician system of Section 2 has become an 
ensemble. 
 

 
 

Figure 6: A three-dimensional server-side display 
 
3.2 The client-side design 
 
The top half of Figure 5 illustrates the client side of the 
design. We developed it on PCs and laptops, and then 



cross-compiled for Galaxy S3 Android tablets for testing 
and deployment [13]. Processing has an Android mode 
built into its IDE that simplifies the job of building for 
Android. 
 
Student instructions for porting the Section 2, stand-alone 
sketch to the client included the following main points. 
 
A. Convert all 3D graphical display calls in the starting 

code to their 2D counterparts. The client uses strictly 
2D graphics for efficiency on tablet computers. 
 

B. Take out all of the MIDI library imports and function 
calls. The Android device does not support Java’s 
javax.sound.midi library, and the goal in the 
architecture of Figure 5 is to use the tablets as remote 
controls for graphics and music generation on the 
server. We commented out MIDI calls in the client 
Musician and Note classes in order to document where 
noteon and noteoff calls occur. 
 

C. Add a call within the programmer-supplied Processing 
setup() function to start an oscP5 listener thread, and 
add a call within draw() to manage menu-based user 
interfaces and the initial reply receipt from the server. 
The user interface steps through a series of menu states 
in a state machine, beginning with establishing contact 
with the server, through updating various client 
configuration parameters. Figure 7 shows the client 
GUI for setting the server’s IP address and UDP port 
number. While most user interaction is via graphical 
manipulation of the Android display, client 
configuration parameters are set via menus, as they 
were in the previous offering of this course. By using 
Processing source code tabs, the author encapsulated 
all OSC and menu code in a way that eliminated the 
need for students to understand it. A Processing tab is 
simply a subset of a Processing sketch’s source code. 
A sketch can have one or more tabs. When a 
programmer compiles and runs a sketch, the 
preprocessor combines all tabs into a single source 
class for the sketch, but programmers do not see that 
aggregation of source code. Processing’s tab 
mechanism provides a means for hiding code that does 
not need to be visible to the students, simplifying their 
tasks. The single function calls added to student 
setup(), draw(), and Note.display() invoke functions 
defined within an author-supplied source tab. 

 
D. Within Note.display(), replace commented MIDI 

noteon and noteoff function calls with calls to 
sendOSCMessage() as discussed in the previous 
section. OSC messages bear the same data as MIDI 
messages, from each client to the server. 
Musician.playNote() code for setting MIDI instrument 
types and effects is no longer used in the client. The 
server keyPressed() Controller interface supports 
configuring Musician objects. 

 

E. Insert a few ancillary lines of code into draw(), for 
example “orientation(LANDSCAPE)” to guarantee 
stable orientation on a tablet (this runs but has no effect 
on a PC), and substitution of a client MIDI channel 
variable set by the user interface for the MIDI channel 
used as a Musician array index on the server. As in the 
previous assignment, there is only one Musician object 
on the client, and the user can change its MIDI channel 
via a Menu. The server supports up to 16 MIDI 
channels, and therefore 16 concurrent Musicians / 
instruments. 

  

 
 

Figure 7: Client menu for setting server LAN address 
 
To summarize the event and data flow in Figure 5, a user 
of a tablet client uses a finger or stylus to configure client 
parameters via menus, and then to manipulate Note objects 
via the interactive graphical display. The finger or stylus 
acts as the mouse. Note.display() invocations arrive at a 
client Note object, similarly to the Section 2 code and this 
section’s server, but client Note.display() now acts 
differently. It turns its 2D rectangle into a circle, but more 
importantly, it invokes sendOSCMessage() to send MIDI 
noteon and noteoff data to the server. Thus, Note as part of 
the client’s MVC Model sends visual function calls to the 
client View, and it sends musical function calls via OSC to 
the server’s Controller. The server interprets incoming 
OSC messages similarly to mousePressed() events, 
locating the Musician object via the MIDI channel sent 
from the client, and locating the Note object by using the 
message’s pitch and velocity as a compound key. The 
server invocation of Musician.playNote() and 
Note().display is identical for local mouse presses on the 
server and for OSC events arriving from one or more 
clients. 
 
Figure 8 shows the client-side musical GUI. As in the 
server, Notes are arranged in a circular order by pitch, and 
outward from the center by velocity. There is one round 
note being sounded by a mouse or finger press in Figure 8. 
There are fewer Notes in the client’s Figure 8 than there are 



in the server’s Figure 6 because the server must support all 
possible notes in the Western chromatic scale, i.e., the 
white and black piano keys within a five-octave range. The 
client must support only a three-octave range for the scale 
that it is playing. In performance pieces where all clients 
play exactly the same scale, we configure the server via 
keyPressed() commands to use exactly the same scale as 
the clients. This update to the server’s Model propagates to 
the server’s View, and there are then the same number of 
notes on the server as on the clients. The general design 
constraint is that the server must support the union of all 
client configurations, in this case musical scale and octave 
range. 
 

 
 

Figure 8: A two-dimensional client-side display 
 
On the left side of Figure 8 are text boxes for setting scale 
(major here), the tonic “do” note (G), the MIDI channel 
(15), and the ability to record and play back loops of note 
presses. Mouse-clicking one of those text areas brings up 
its menu GUI for user reconfiguration of the client. 
 
When in record mode, each sendOSCMessage() call saves 
an object containing its arguments into a timed sequence, 
in addition to sending an OSC message to the server. When 
in playback mode, a utility function invoked from draw() 
sends the saved sequence of notes to the server via 
sendOSCMessage() at the recorded times. The author 
added this looping enhancement after completion of the 
course. There are opportunities for additional 
enhancements to the client, such as playing chords 
(multiple notes) when a user triggers a note. The system as 
described supports multiple client devices used as distinct 
musicians, typically using unique MIDI channels mapped 
to unique instrument synthesizers on the server. 
 
4.  Other possible uses for distributed MVC 
 
The general flow of events and data outlined for Figure 5 
can apply to other applications. For example, the author 
and two students are in the midst of developing a graphical 
gravity simulator for a planetarium dome. A client user 
manipulating an Android tablet selects a new planet of a 

user-configured planetary type, size, and mass/density, and 
then swipes it into a planetary system display on a server. 
The server uses orbital mechanics to determine whether the 
incoming planetary mass is captured in an orbit by the 
server’s star, or falls into the star, or escapes the system 
[14]. The final client GUI will include exemplary planets 
that are scaled and injected into the system by finger 
strokes. We are using OSC messages to send planet 
injection data to the server. As in the client of Figure 8, 
manipulation within the guide circle interacts with the 
server’s graphical state (e.g., stellar system), and 
manipulation outside the guide selects configuration 
parameters (e.g., planetary properties). For Cartesian 
geometry systems, a guide square centered in the display 
replaces the guide circle of the current application. 
 
The author also exhibits juried, computer-generated art 
videos, and is with working with digital art students. One 
problem with creating videos from interaction with stand-
alone graphical applications is that, depending on the mode 
of video capture, the user’s mouse cursor shows up. 
Distributed painting using tablet devices eliminates that 
problem. The painter controls the paintbrush configuration 
parameters, brush location, and brush application on a 
client tablet, which sends paintbrush data via OSC to a 
server that implements the canvas. 
 
Efficient implementation requires that there not be a 
plethora of server-to-client messages clogging up the LAN. 
The present design avoids that potential problem. The only 
server-to-client message is confirmation of the initial client 
contact. This requirement is different from that of a 
networked graphical game, where distributed client GUIs 
must reflect the detailed state of the game server. In the 
present approach, clients and servers are all in the same 
room using a single LAN. Users can look at the server’s 
display to perceive the server’s View of its Model. 
 
5.  Conclusions 
 
Lessons learned start with using a modular Model-View-
Controller design as diagrammed in Figure 4, with the 
intent to clone-and-enhance it to the distributed MVC 
architecture of Figure 5. 
 
Next, use normalized coordinates in the ranges [0, 2p) 
longitude and [0.0, 1.0) latitude for polar geometric 
arrangements, or the linear range [-1.0, 1.0] for Cartesian 
X, Y arrangements, converting them to device coordinates 
at the last step before graphical display. This normalization 
of geometry saves a lot of conversion coding when 
identical or isomorphic Views must appear on server and 
client displays with different width-to-height pixel ratios. 
 
Minimize the number of server-to-client communications, 
ideally only to confirmation of initial contact. Doing so 
avoids congestion on the LAN and overly complex 
synchronization code. 
 



In hand with the previous paragraph, keep graphics on a 
client tablet as simple and efficient as possible. Comparing 
Figure 6 to Figure 8 shows that it is possible to direct 
sophisticated graphics on a compute-intensive server from 
much simpler graphics on a client tablet. 
 
Design a key-based mechanism for identifying server 
objects on the clients, such as the MIDI channel for 
identifying Musician objects, and the pitch-velocity 
compound key for identifying Note objects in this system. 
Doing so decouples the geometric locations of objects on 
the server from locations on clients. Given the fact that 
there may be multiple layers of nested geometric 
translations (moves), rotations, and scales on server and 
client graphical devices, communicating via location data 
would require multiple geometric transforms. It is much 
simpler to avoid the need for keeping track of geometric 
transforms at the system level of Figure 5. 
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