
FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

ADVANCES IN SILICON AND PRO-
CESSOR design technologies in the
past few decades have brought enor-
mous computing power to desktop
PCs. For instance, a single-socket Intel

Nehalem can compute more than 100
giga-floating-point-operations per sec-
ond (Gflops) and transfer 32 Gbytes of
data per second between the CPU and
memory. Consequently, we can now de-

ploy many traditional supercomputer
applications such as scientific comput-
ing, server applications, and emerging
applications such as image and video
processing on desktops. We collectively
define these applications as throughput
computing applications.

Nevertheless, harnessing desktops’
raw computing power has become a
significant challenge to software devel-
opers. Limited by power consumption,
recent desktops can no longer increase
performance by increasing the clock
frequency. Instead, they provide more
parallel processing units on the same
die. Figure 1 shows a block diagram
of a dual-socket quad-core Nehalem.
The system offers multiple levels of
programmable parallelism: two sock-
ets each contain a chip with four cores;
each core supports simultaneous multi-
threading with two hardware threads
(T0 and T1); and each core has two sin-
gle instruction, multiple data (SIMD)
units, each of which can execute four
32-bit (or two 64-bit) operations in
parallel. These parallel processing
units are built on top of a deep mem-
ory hierarchy. That is, the two sockets
share the main memory, the four cores
in each socket share an L3 cache, and
each core has a separate instruction
cache (I$) and data cache (D$) and a
unified L2 cache. Software developers
must determine how to exploit both
parallelism and data locality for a given
application.

We advocate a throughput comput-
ing approach that optimizes both par-
allelism and locality in a single frame-
work. We’ve developed a synergetic
approach to throughput computing for
the x86-based multicores. We focus on
x86-based multicore desktops because
they’re the most common computing
platforms today. Overall, our approach
achieves a nearly 20x speedup over the

A Synergetic
Approach
to Throughput
Computing on x86-
Based Multicore
Desktops
Chi-Keung Luk, Ryan Newton, William Hasenplaugh,
Mark Hampton, and Geoff Lowney, Intel

// To exploit the full performance potential of

multicore desktops, the authors propose an approach

that combines cache optimization, parallelization,

simdization, and autotuning in a single framework. //

FOCUS: PARALLELISM ON THE DESKTOP

074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E 	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 39

40	 IEEE SOFTWARE // WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

best serial case on a dual-socket quad-
core Nehalem.

Our Approach
Both the parallel processing units and
caches are organized hierarchically on
x86 multicores (see Figure 1), so the
divide-and-conquer paradigm fits well
with this architecture. In particular,
we advocate using cache-oblivious al-
gorithms to exploit thread-level paral-
lelism.1–3 To exploit SIMD parallel-
ism, we use compiler-based simdization
(also known as short vectorization)
instead of hand-coded simdization.4
Finally, during this whole process, we
rely on autotuning techniques to tune
various program parameters to ensure
they achieve good performance.5,6

Cache-Oblivious Techniques
A cache-oblivious algorithm is designed
to maximize data reuse in caches. Un-
like cache blocking, it doesn’t have the
cache size as an explicit parameter, so
it could perform well across multiple
cache levels in a memory hierarchy
or on machines with different cache
configurations. A cache-oblivious al-
gorithm typically works by dividing
the original problem into smaller sub-

problems until reaching a point where
the data needed by the subproblem is
small enough to fit in any reasonable
cache. This stopping point is called the
base case. When the subproblems are
data independent of each other, we can
compute them in parallel. Hence, we
achieve both parallelism and data lo-
cality at the same time.

Figure 2 illustrates the Strassen ma-
trix-multiplication algorithm, which is
an example cache-oblivious algorithm.7
The original matrix-multiplication
problem is recursively transformed into
multiplications and additions/subtrac-
tions of smaller matrices, which can
eventually fit in the cache. Parallelism
is naturally exploited; P1 to P7 could
be computed in parallel as well as C11
to C22. There are optimal cache-obliv-
ious algorithms that are proved to have
an asymptotically minimum number
of cache misses.1 However, because
our goal is to use cache-oblivious al-
gorithms to improve performance in-
stead of as an algorithm-analysis tool,

we don’t restrict ourselves to optimal
cache-oblivious algorithms. In particu-
lar, in deciding when to stop subdivid-
ing a problem, we use autotuning to de-
termine the base-case sizes for different
architectures and problems.

Compiler-Based Simdization
Simdization is the software step that
extracts parallelism from an applica-
tion that can be exploited by the hard-
ware SIMD units. Figure 3a shows a
loop written in C. Figures 3b and 3c
show the execution traces without and
with simdization, respectively. By exe-
cuting four multiplications in one CPU
cycle, we can potentially achieve a 4x
speed up in the simdized case.

We believe that most developers
should use the compiler to simdize in-
stead of doing it by hand. We use the
Intel compiler (ICC) because it’s widely
regarded as having the best simdiza-
tion support among all x86 compilers.
Figures 3d through 3f illustrate three
methods to simdize using ICC.

Core-0 Core-1

Core-2 Core-3

Core-4 Core-5

Core-6 Core-7

I$ D$

L2 cache

CPU

Core-1
T0 T1

SIMD-0

CPU

Shared L3 cache Shared L3 cache

Main memory

SIMD-1

Socket-0 Socket-1

FIGURE 1. Blocked diagram of a dual-

socket Intel Nehalem. The image doesn’t

show the instruction-level parallelism (ILP),

which is largely exploited by hardware

on the x86 architecture.

(a)

P1 = (A11 + A22) × (B11+ B22)
P2 = (A21 + A22) × B11
P3 = A11 × (B12 – B22)
P4 = A22 × (B21 – B11)
P5 = (A11 + A12) × B22
P6 = (A21 – A11) × (B11+ B12)
P7 = (A12 – A22) × (B21 + B22)
C11 = P1 + P4 – P5 + P7
C12 = P3 + P5
C21 = P2 + P4
C22 = P1 – P2 + P3 + P6

(b)

FIGURE 2. Strassen’s matrix-multiplication algorithm. The Strassen algorithm recursively

transforms (a) the original matrix multiplication problem into smaller subproblems. (b) P1 to

P7 can be computed in parallel. C11 to C22 can be computed in parallel once P1 to P7 are

available.

CC AA BB= ×

= ×
C C
C C

A A
A A

11 12

21 22

11 12

21 22

BB B
B B

11 12

21 22

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 41

The fi rst method is auto-simdization
(see Figure 3d), where the simdization
step is done entirely by the compiler.
Since the compiler can’t statically deter-
mine the data dependencies among the
three arrays, it generates two versions of
the loop (one is simdized and one isn’t)
and inserts a check to select which ver-
sion to use at runtime.

The second method is programmer-
directed simdization (see Figure 3e). The
programmer uses the ICC pragma simd

to communicate to the compiler that it’s
safe and benefi cial to simdize the loop.

The last method is array notation,8 a
new feature introduced in ICC v12. We
rewrite the loop in an array notation,
as shown in Figure 3f. In this notation,
we apply operations to arrays instead of
scalars. Hence, we no longer need the
for loop to iterate over individual array
elements.

In practice, developers should use
auto-simdization whenever possible.

When this isn’t possible, they could
use programmer-directed simdization.
In cases where the program structure
is too complicated for programmer-
directed simdization, developers can
use array notation. We expect that with
such rich support of simdization in the
compiler, developers should rarely need
manual simdization.

Autotuning
Autotuning works by generating many

void Multiply(int N, fl oat* A, fl oat* B, fl oat* C) {
 for (int i=0; i<N; i++)
 C[i] = A[i] * B[i];
}

(a)

Cycle Instruction executed

0 C[0]	=	A[0]	*	B[0]

1 C[1]	=	A[1]	*	B[1]

2 C[2]	=	A[2]	*	B[2]

3 C[3]	=	A[3]	*	B[3]

· ·

· ·

· ·

N-1 C[N-1]	=	A[N-1]	*	B[N-1]

(b)

Cycle Instruction executed

0 C[0..3] = A[0..3] * B[0..3]

1 C[4..7] = A[4..7] * B[4..7]

· ·

· ·

· ·

N/4-1 C[N-4..N-7] = A[N-4..N-7] * B[N-4..N-7]

(c)

void Multiply(int N, fl oat* A, fl oat* B, fl oat* C) {
 // Compiler inserts following runtime check
 if (_OverlappedAddressRanges(N, A, B, C)) {
 // non-SIMDized version of the loop
 for (int i=0; i<N; i++)
 C[i] = A[i] * B[i];
 } else {
 // SIMDized version of the loop
 ...
 }

(d)

void Multiply(int N, fl oat* A, fl oat* B, fl oat* C) {
 #pragma simd
 for (int i=0; i<N; i++)
 C[i] = A[i] * B[i];

}

(e)

void Multiply(int N, fl oat* A, fl oat* B, fl oat* C) {
 // Rewrite the loop in array notation.
 // A[0:N] represents elements A[0] to A[N-1]
 C[0:N] = A[0:N] * B[0:N];
}

(f)

FIGURE 3. Simdization examples. (a) The original loop in C.

(b) Execution trace without simdization and (c) with simdization.

The Intel compiler (ICC) can simdize this loop with one of the

following methods: (d) auto-simdization, (e) programmer-directed

simdization, and (f) simdization with array notation.

42	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

different variants of the same code and
then empirically fi nding the best-per-
forming variant on the target machine.
In our approach, several parameters
could be tuned via autotuning:

• Base-case size in a cache-oblivi-
ous algorithm. We want the base
case to be small enough to fi t in
the cache while at the same time
being big enough that the paral-
lelization overhead doesn’t over-
whelm the benefi t. Analytically

fi nding the right base-case size is
diffi cult, if not impossible.

• Degree of parallelism. In some
situations, using fewer software
threads than the number of hard-
ware threads available might re-
sult in better performance. This
could happen in particular when
two software threads are mapped
to the same CPU core and hence
contending for the same hard-
ware resource. Also, if using all
hardware threads versus just a

subset of them achieves similar
performance, we might want to
use fewer threads to consume
less energy.

• Level of parallelism. In some
cases, a chunk of work is best
parallelized by distributing it
over multiple threads, exploit-
ing thread-level parallelism. In
other cases, it’s best parallelized
by mapping it to a single thread
and exploiting SIMD and in-
struction-level parallelism (ILP)
within the thread instead. This
choice appears to be best made
by autotuning as well.

• Scheduling policy and granular-
ity. Threading APIs such as TBB,9
OpenMP,10 and Cilk11 support nu-
merous scheduling policies for users
to choose, including static schedul-
ing, dynamic scheduling, and com-
binations thereof. Also, the granu-
larity of scheduling—for example,
how big is the unit of scheduling?—
is another parameter that the pro-
grammer can often specify via API.
The optimal policy and granularity
are likely to be problem and ma-
chine dependent and so are possibly
best selected via autotuning.

To perform autotuning, we devel-
oped the Intel Software Autotuning
Tool (ISAT), which can tune the pa-
rameters we’ve mentioned so far, as
well as others. With ISAT, the pro-
grammer adds tuning directives to a
program (in the form of pragmas) to
specify where the program requires
tuning, what parameters need to be
tuned, and how. ISAT then auto-
matically generates code variants ac-
cording to this tuning specifi cation,
empirically determines the best value
for each parameter, and fi nally pro-
duces the tuned version in source
code form. Therefore, ISAT can be
used on top of any compiler.

Finally, our approach isn’t about
auto-parallelization but about helping

void LBM_performStreamCollide(LBM_Grid* src, LBM_Grid* dst) {

x

y

z

Grid of cells

C

B

W

S

N

NT

ST
ETWT

EB
WB

SB

NB

T

SW

NW

SE

NE

E

1 cell (with 19 velocity �elds)

typedef enum {
 C=0, N, S, E, W, T, B,
 NE, NW, SE, SW, NT, NB,
 ST, SB, ET, EB, WT, WB,
 FLAGS, N_CELL_ENTRIES
} CELL_ENTRIES;

typedef LBM_Grid[(PADDING + SIZE_Z * SIZE_Y * SIZE_X) * N_CELL_ENTRIES];

(a)

(b)

void main() {
LBM_Grid* srcGrid, *dstGrid;
srcGrid= AllocateGrid();
dstGrid= AllocateGrid();
…
 for (int t = 1; t <= nTimeSteps; t++) {

LBM_performStreamCollide(*srcGrid, *dstGrid);
LBM_swapGrids(&srcGrid, &dstGrid);

}
}

for (z=0; z<SIZE_Z; z++)
for (y=0; y<SIZE_Y; y++)

for (x=0, x<SIZE_X; x++) {
// Compute dst[]’sas functions of src[]’s

}
}

f

srcGrid dstGrid

Grid of cells de�ned as a C array

FIGURE 4. Lattice-Boltzman method (LBM) in the SPEC CPU2006 Suite. (a) A sweep

through the grid is performed at each time step on (b) the original code.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 43

developers write effi cient parallel pro-
grams using high-level programming
techniques. In our approach, the role
of autotuning is auxiliary because
it’s used to improve the effectiveness
of the fi rst two steps via parameter
searching. In contrast, other research-
ers have been looking at using auto-
tuning more proactively, such as try-
ing different combinations of code

transformations,5,12 which is outside
the scope of our approach. (See the
“Related Work in Throughput Com-
puting” sidebar for more details.)

Putting It All Together
We use three case studies to illus-
trate our approach. First, the Lattice-
Boltzmann method uses the common
stencil computational pattern. Second,

binary-tree search models query search-
ing operations in a database. And the
third performs sorting. In all cases, we
use the Cilk11 and simdization support
in ICC.

Lattice-Boltzman Method
Stencil computation is an important
computational pattern class commonly
used in scientifi c computing, image

LBM_Grid* Toggle[2];
void LBM_performStreamCollide_Vec(LBM_Grid* src, LBM_Grid* dst,
 int x0, int x1, int y0, int y1, int z0, int z1) {
 for (z=z0; z<z1; z++)
 for (y=y0; y<y1; y++)
#pragma simd
 for (x=x0, x<x1; x++) {
 // Compute dst[]’s as functions of src[]’s
 }
}
void BaseCase(int t0, int t1, int x0, int dx0, int x1, int dx1,
 int y0, int dy0, int y1, int dy1,
 int z0, int dz0, int z1, int dz1) {
 LBM_Grid* src = Toggle[(t0+1) & 1];
 LBM_Grid* dst = Toggle[t0 & 1];
 for (int t=t0; t<t1; t++) {
 LBM_performStreamCollide_Vec(*src, *dst,
 x0, x1, y0, y1, z0, z1);
 src = Toggle[t & 1];
 dst = Toggle[(t+1) & 1];
 x0 += dx0; x1 += dx1;
 y0 += dy0; y1 += dy1;
 z0 += dz0; z1 += dz1;
 }
}
int NPIECES=2; int dx_threshold=32; int dy_threshold=2;
int dz_threshold=2; int dt_threshold=3;
#pragma isat tuning measure(start_timing, end_timing)
scope(start_scope, end_scope) variable(NPIECES, range(2, 8, 1))
variable(dx_threshold, range(2, 128, 1))
variable(dy_threshold, range(2, 128, 1))
variable(dz_threshold, range(2, 128, 1))
variable(dt_threshold, range(2, 128, 1))
#pragma isat marker start_scope
void CO(int t0, int t1, int x0, int dx0, int x1, int dx1,
 int y0, int dy0, int y1, int dy1,
 int z0, int dz0, int z1, int dz1) {

 int dt = t1-t0; int dx = x1-x0, int dy = y1-y0; int dz = z1-z0;
 if (dx >= dx_threshold && dx >= dy && dx >= dz &&
 dt >= 1 && dx >= 2 * dt * NPIECES) {
 int chunk = dx / NPIECES; int i;
 for (i=0; i<NPIECES-1; ++i)
 cilk_spawn CO(t0, t1, x0+i*chunk, 1, x0+(i+1)*chunk, -1,
 y0, dy0, y1, dy1, z0, dz0, z1, dz1);
 cilk_spawn CO(t0, t1, x0+i*chunk, 1, x1, -1,
 y0, dy0, y1, dy, z0, dz0, z1, dz1);
 cilk_sync(); …
 } else if (… /* Subdivide in y dimension? */)
 …
 } else if (… /* Subdivide in z dimension? */)
 …
 } else if (… /* Subdivide in t dimension? */)
 …
 } else /* call the basecase */
 BaseCase(t0, t1, x0, dx0, x1, dx1, y0, dy0, y1, dy1,
 z0, dz0, z1, dz1);
}
#pragma isat marker end_scope
void main() {
 LBM_Grid* srcGrid, *dstGrid;
 srcGrid = AllocateGrid(); dstGrid = AllocateGrid();
 Toggle[0] = srcGrid; Toggle[1] = dstGrid;
#pragma isat tuning variable(nWorkers,
 range(1, $NUM_CPU_THREADS, 1))
measure(start_timing, end_timing)
 int nWorkers = GetNumHardwareThreads();
 InitCilk(nWorkers);
 …
#pragma isat marker start_timing
 CO(1, nTimeSteps, 0, 0, SIZE_X, 0, 0, 0, SIZE_Y, 0,
 0, 0, SIZE_Z, 0);
#pragma isat marker end_timing
 …
}

FIGURE 5. Lattice-Boltzman method (LBM) code optimized by our approach. The function CO() recursively divides the 4D iteration space

(x, y, z, and time) into smaller subproblems until the base-case criteria is met.

44	 IEEE SOFTWARE // WWW.COMPUTER.ORG/SOFTWARE

processing, and geometric modeling.
A stencil defines the computation of
an element in an n-dimensional spatial
grid at time t as a function of neigh-
boring grid elements at time t – 1,
 . . . , t – k.13

The particular stencil problem we
study is the Lattice-Boltzman method
(LBM) benchmark drawn from the
SPEC CPU2006 Suite.14 It performs
numerical simulation in computational
fluid dynamics in the 3D space. For the
main data structure, we used the 3D
grid of cells shown in Figure 4a. The
original stencil code performs a sweep
through the grid at each time step.
Figure 4b shows an abstract version
of this sweeping code. Two grids src-
Grid and dstGrid are used throughout
the computation and swapped at the
end of each sweep (by LBM_swapGrids()).
During each sweep, the function LBM_
performStreamCollide() reads 19 floating-
point values from srcGrid, performs
268 floating-point operations, and
writes 19 floating-point values to dst-
Grid. This translates to a ratio of 1.8

flops per byte (flops/byte), suggest-
ing that this function’s performance
(which accounts for 95 percent of the
LBM’s total runtime) is limited by
memory bandwidth.

Figure 5 sketches how we optimize
LBM with our approach. In the new
main(), we first initialize a two-element
array Toggle[] to point to srcGrid and
dstGrid. Our cache-oblivious code
will access both grids via Toggle[]. Sec-
ond, we explicitly set the number of
Cilk worker threads used by calling
InitCilk(nWorkers). Third, we add several
ISAT pragmas for the sake of autotuning.
Finally, we replace the for-each time-
step loop in the original main() with a
call to CO(), which implements the Frigo
and Strumpen cache-oblivious stencil
algorithm.13

Function CO() recursively divides the
4D iteration space (x, y, z, and time)
into smaller subproblems until the
base-case criteria is met. Data-inde-
pendent subproblems are executed in
parallel using cilk_spawn() and cilk_sync().
The function BaseCase() takes the start-

ing and ending points in the four di-
mensions as parameters. It iterates from
time steps t0 to t1. At each time step t,
it determines the source and destina-
tion grids by indexing Toggle[] with t mod
2 and (t+1) mod 2, respectively. It then
invokes LBM_performStreamCollide_Vec() to
sweep through the given ranges of x,
y, and z. Note that #pragma simd is added
to LBM_performStreamCollide_Vec() to simdize
the x loop.

We add two types of ISAT pragmas
to Figure 5. The first type is in the form
of #pragma isat marker ... for marking a re-
gion in the program. In this example,
we mark two regions: (start_scope and
end_scope) and (start_timing and end_timing).
The former region defines the lexical
scope of the variables being tuned. The
latter region defines the timing scope,
where ISAT measures the performance
of code variants. The second type of
ISAT pragma marks tuning variables:
#pragma isat tuning measure(M0, M1) scope(S0,
S1) variable(Var0, Range0) ... variable(VarN, Ran-
geN). It instructs ISAT to tune the vari-
ables specified by the variable clauses

RELATED WORK
IN THROUGHPUT COMPUTING
A recent study by Victor Lee and his colleagues compared the
performance of several computing kernels on a CPU and GPU and
found that the GPU is only 2.5x faster than the CPU on average.1
Their work focuses on performance analysis and the architecture
aspect. In contrast, we focus on the software aspect, advocating
a high-level programming approach and tool-based optimization.

In the past, researchers have mostly studied cache-oblivious
techniques for algorithmic analysis and serial processing.2–4 Our
work shows that cache-oblivious techniques can work well in
practice on multicore processors.

Autotuning has also recently become a hot research topic.5,6
In particular, one study showed that a pure autotuning-based
approach can effectively optimize stencil computation.7 Our ap-
proach differs from theirs by using cache-oblivious techniques
instead of explicit blocking, although we still use autotuning to
tune other parameters and the base case. Using this hybrid ap-
proach, we reduce the amount of tuning needed. In addition, our
work covers both stencil computations and other domains such
as sorting and searching.

References
	 1.	 V.W. Lee et al., “Debunking the 100X GPU vs. CPU Myth: An 	

Evaluation of Throughput Computing on CPU and GPU,” Proc.
37th Ann. Int’l Symp. Computer Architecture (ISCA), ACM Press,
2010, pp. 451–460.

	 2.	 M. Frigo et al., “Cache Oblivious Algorithms,” Proc. 40th Ann. Symp.
Foundations of Computer Science, ACM Press, 1999, pp. 285–298.

	 3.	 M. Frigo and V. Strumpen, “Cache Oblivious Stencil Computations,” 	
Proc. 2005 Int’l Conf. Supercomputing, ACM Press, 2005, pp.
361–366.

	 4.	 P. Kumar, Cache Oblivious Algorithms, LNCS 2625, Springer, 2003,
pp. 193–212.

	 5.	 D. Bailey et al., “PERI Auto-Tuning,” J. Physics: Conference Series
(SciDAC 2008), vol. 125, no. 1, 2008; www.mcs.anl.gov/uploads/	
cels/papers/P1517.pdf.

	 6.	 R.C. Whaley, A. Petitet, and J.J. Dongarra, “Automated Empirical 	
Optimization of Software and the ATLAS Project,” Parallel Computing,
vol. 27, nos. 1–2, 2001, pp. 3–35.

	 7.	 J. Datta et al., “Stencil Computation Optimization and Auto-tuning 	
on State-of-the-Art Multicore Architectures,” Proc. 2008 ACM/IEEE
Conf. Supercomputing, ACM Press, 2008, article no. 4.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 45

within the scope (S0, S1) by measuring
their performance impact on the re-
gion (M0, M1). A variable clause’s fi rst
argument is the variable being tuned,
and the second argument is the range
of values to be tried, which can be
expressed in the form of (startValue, end-
Value, increment) or [startValue .. endValue]. A
value started with the $ symbol is pre-
defi ned by ISAT. For instance, $NUM_
CPU_THREADS is the number of hardware
threads available on the CPU. In this
example, the parameters being tuned
are the number of threads used by
Cilk, and the fi ve parameters (NPIECES,
dx_threshold, dy_threshold, dz_threshold,
and dt_threshold) in the cache-oblivious
algorithm.

Binary-Tree Search
This case study is about searching for
a query based on its key in a database
organized as a packed binary tree. The
tree is originally laid out in memory
in a breadth-fi rst manner (see Figure
6a). Figure 6b shows the correspond-
ing query search code. We use cilk_for,
which is similar to OpenMP’s parallel-
for, to search for independent queries in

parallel.
Figure 6 highlights two optimiza-

tion opportunities. First, as we get
close to the bottom of the tree, the
nodes accessed during the search for
a single query won’t be on the same
cache lines and will therefore cause
many cache misses. Second, we haven’t
taken advantage of the SIMD units.
To reduce cache misses, we can layout
the tree in a cache-oblivious way. The
theoretically optimal method (in terms
of cache misses) to do this is the Van
Emde Boas (VEB) layout.15 Neverthe-
less, we fi nd that the searching code for
the VEB layout isn’t amenable to effi -
cient simdization, so we instead use a
nonoptimal cache-oblivious layout that
enables simdization.

Figure 7a shows the new data lay-
out, where we divide the original tree
into multiple layers of subtrees of height
SUBTREE_HEIGHT. Nodes in each subtree
are laid out breadth fi rst. This layout
ensures that the nodes accessed during
the search for a single query are always
on the same or nearby cache lines, re-
gardless of their tree levels. Figure 7b
shows the corresponding search code.

We divide the input queries into several
bundles, each containing (BUNDLE_WIDTH *
VLEN) queries. The cilk_for schedules bun-
dles to threads. Each thread processes
VLEN queries at a time until all queries in
its bundle are done. We use array nota-
tion to map the VLEN queries to SIMD
hardware. Finally, we use ISAT to tune
the three parameters (SUBTREE_HEIGHT,
BUNDLE_WIDTH, and VLEN). We tune SUB-
TREE_HEIGHT in one pragma and tune BUN-
DLE_WIDTH and VLEN together in another
pragma because BUNDLE_WIDTH and VLEN
are best searched dependently while
SUBTREE_HEIGHT can be searched indepen-
dently. This is an example of tuning
the distribution of work over thread-
level, instruction-level, and SIMD-level
parallelism.

Sorting
Sorting an array is another problem
amenable to a divide-and-conquer,
cache-oblivious approach. For exam-
ple, the merge-sort algorithm recur-
sively sorts both halves of an array in-
dependently before recombining them.
Likewise, quick sort separates elements
into two categories before recursively

7

113

1 5 9 13

0 2 4 6 8 10 12 14

The number shown in each node is the key;
the number in [] is the memory location of the node

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12] [13] [14]

int Keys[numNodes]; // keys organized as a binary tree
int Queries[numQueries]; // input queries
int Answers[numQueries]; // output if the query is found

void ParallelSearchForBreadthFirstLayout() {
 // Search the queries in parallel
 cilk_for (int q=0; q<numQueries; q++) {
 const int searchKey = Queries[q];

 // Look for searchKey in the binary tree
 for (int i=0; i<numNodes;) {
 const int currKey = Key[i];

 if (searchKey == currKey) {
 Answers[q] = 1;
 break; // found
 }
 else if (searchKey < currKey)
 i = 2*i + 1;
 else
 i = 2*i + 2;
 }
 }
}

(a) (b)

FIGURE 6. Packed binary tree. (a) The breadth-fi rst layout in memory and (b) its corresponding query search code.

46	 IEEE SOFTWARE // WWW.COMPUTER.ORG/SOFTWARE

processing them. In fact, independent
portions of a sequence can be sorted
using completely different algorithms,
and the best-performing codes are an
amalgam of distinct algorithms for
different levels of the memory hierar-
chy. One reason to mix different algo-
rithms is that traditional serial sorting
algorithms have data-dependent con-
trol flows that aren’t amenable to au-
tomatic simdization. A solution is to
use sorting networks at smaller sizes
to expose fine-grained parallelism. Our
implementation uses two kinds of sort-
ing networks together with a coarse-
grained parallel merge sort—a subset
of the techniques described in earlier
work16 that we’ve reimplemented using
our synergetic approach.

Merge sort exposes task parallelism
at a coarse granularity.17 We augment
the basic algorithm to make the merge
step (as well as the recursive step) par-
allel. Before merging two sorted sub-
sequences, we search for what will be-
come the median element in the merged
output. The median serves as a pivot
(much like quick sort), allowing inde-
pendent, recursive processing of all ele-
ments under and over the median. We
use cilk_spawn to expose the task paral-
lelism both in the downward sort phase
and in the upward merging phase. The
algorithm switches from parallel to se-
rial at a base-case size determined by
autotuning.

Bitonic merge networks expose ILP
and enable SIMD when merging two
sorted subsequences. A bitonic merge
network of size 2N has N – 1 stages,
each stage comparing and swapping
elements at decreasing distances. The
number of comparisons in each stage
is the same, but to simdize the com-

#pragma isat tuning scope(start_scope, end_scope) measure(start_timing, end_timing)
 variable(SUBTREE_HEIGHT, [4,6,8,12])
#pragma isat tuning scope(start_scope, end_scope) measure(start_timing, end_timing)
 variable(BUNDLE_SIZE, range(8,64,1)) variable(VLEN, range(4,64,4)) search(dependent)

void ParallelSearchForCacheOblivious() {
 int numNodesInSubTree = (1 << SUBTREE_HEIGHT) - 1;
 int bundleSize = BUNDLE_WIDTH * VLEN; int remainder = numQueries % bundleSize;
 int quotient = numQueries / bundleSize; int numBundles = ((remainder==0)? quotient : (quotient+1));

 cilk_for (int b=0; b < numBundles; b++) {
 int q_begin = b * bundleSize; int q_end = MIN(q_begin+bundleSize, numQueries);
 for (int q = q_begin; q < q_end; q += VLEN) {
 int searchKey[VLEN] = Queries[q:VLEN]; int* array[VLEN] = Keys;
 int subTreeIndexInLayout[VLEN] = 0; int localAnswers[VLEN] = 0;
 for (int hTreeLevel=0; hTreeLevel < HierTreeHeight; ++hTreeLevel) {
 int i[VLEN] = 0;
 for (int levelWithSubTree = 0; levelWithSubTree < SUBTREE_HEIGHT; ++levelWithSubTree) {
 int currKey[VLEN];
 for (int k=0; k<VLEN; k++)
 currKey[k] = (array[k])[i[k]];
 bool eq[:] = (searchKey[:] == currKey[:]);
 bool lt[:] = (searchKey[:] < currKey[:]);
 localAnswers[:] = eq[:]? 1: localAnswers[:];
 i[:] = localAnswers[:]? i[:]: ((lt[:])? (2*i[:]+1): (2*i[:]+2));
 }
 int whichChild[VLEN] = i[:] - numNodesInSubTree;
 subTreeIndexInLayout[:] = localAnswers[:]? subTreeIndexInLayout[:] :
 (subTreeIndexInLayout[:]<<SUBTREE_HEIGHT + whichChild[:] + 1);
 array[:] = localAnswers[:]? array[:] :
 (Keys + subTreeIndexInLayout[:] * numNodesInSubTree);
 }
 Answers[q:VLEN] = localAnswers[:];
 }
 }
}

7

113

1 5 9 13

0 2 4 6 8 10 12 14

The number shown in each node is the key;
the number in [] is the memory location of the node

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10] [11] [12] [13] [14](a)

(b)

Subtree

Each thread processes a bundle of queries

Simdized with
array notation;
each SIMD lane
processes a query

Autotune SUBTREE_HEIGHT, BUNDLE_SIZE, and VLEN

FIGURE 7. Optimizing the search with

cache-oblivious layout and array notation.

(a) We divided the cache-oblivious tree

layout into multiple layers of subtrees. (b) The

optimized version parallelizes the search with

a cilk_for loop and then simdizes each loop

iteration using an array notation.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 47

putation, elements must be shuffl ed
into position between stages at smaller
comparison distances. Our merge sort
(1.) invokes a bitonic merge network to
consume CHUNKSIZE elements simultane-
ously. That is, at each step, the chunk
(already internally in order) with a min-
imum leading element is taken from the
head of a sequence being merged. The
chunk is mixed with leftovers from the
previous step by a bitonic merge net-
work of size 2*CHUNKSIZE. The minimum
half of the sorted result is output and
the rest become new leftovers. Chunk
size is autotuned.

The in-register sort via sorting net-
work (fi nest grain) algorithm ensures
that chunks are internally sorted. It
treats CHUNKSIZE chunks to be sorted as
the rows of a square matrix. The ma-
trix is transposed (with shuffl es), turn-
ing rows into columns, and then sorted
with vector operations between rows.
When the matrix is transposed a sec-
ond time, the original rows are inter-
nally sorted. Any fi xed sorting routine
could be used; we choose a Batcher
odd-even sort.

In trying to write a generic and por-
table version of these three algorithms,

several implementation diffi culties
arise. The sorting networks we de-
scribed rely heavily on permuting vec-
tors. Permutation code isn’t currently
amenable to automatic compiler-based
simdization, but array notation allows
arbitrary permutations (automatically
generating shuffl e instructions for the
target machine) if permutations are
known at compile time. Unfortunately,
arbitrarily sized bitonic and odd-even
networks can only be implemented by
recursive functions. In fact, because
these kernels are at the heart of our
computation, eliminating the recursive
function calls is necessary for perfor-
mance. Thus, staged code generation
(or partial evaluation) is appropriate.
(The Intel Array Building Blocks is an
appropriate framework for staged code
generation in this example.) We use a
complementary technique to autotun-
ing that we call lightweight code gener-
ation. Whenever a computation kernel
is needed at different sizes or confi gura-
tions for autotuning or portability pur-
poses, we write a simple program gen-
erator (a script) to produce a large set of
different kernels.

Code generation is usually thought

of as relying on heavyweight infrastruc-
ture—for example, in the context of
large, complex compilers. But we argue
that for limited purposes (kernels), little
work is required to build simple code
generators in any high-level language
(such as Python and Haskell). In this
case, we wrote 86 lines of noncomment,
nonblank Scheme code for manipulat-
ing permutations and another 135 lines
of code that generate arbitrarily sized
bitonic and odd-even kernel functions
and output them to a .c fi le.

Evaluation
For our experiment, we used an In-
tel Nehalem, with eight cores (on two
sockets), a 2.27-GHz core clock, and
12 Gbytes of memory. The architec-
ture also used a 22.6 Gbyte/sec mem-
ory bandwidth; the 64-bit CentOS v4;
and the ICC v12, -fast option complier.
Table 1 shows the details of the bench-
marks we used, which are important
throughput computing kernels also
used by other researchers.18,19

Figure 8 shows our overall perfor-
mance results. We compiled the serial
cases with the -fast option in ICC, which
generally produces the best-performing

3dfd Bilateral LBM MatrixMultiply Search Sort GeoMean

1.
6

0.
4

1.
7

1.
0 1.

5

0.
8

8.
0

3.
5

1.
9

1.
4

0.
2

5.
3

9.
6

3.
9

11
.5

3.
6 5.

2

14
.6

10
.3 14

.2

8.
811

.9

9.
8

5.
1

70
.9

12
.2 15

.7

14
.1

14
.6

9.
9

6.
2

70
.1

14
.8

15
.7

15
.6

Serial

Simple parallel

Cache-oblivious parallel

Cache-oblivious
parallel + simdization

Cache-oblivious parallel +
simdization+ autotuning

0.10

1.00

10.00

100.00

G�
op

s

Machine’s peak G�ops = 145.3

FIGURE 8. Performance results of our approach. The benchmarks plus their average are on the x axis, and the performance in gigafl ops

is on the y axis (in log scale).

48	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

code. For each benchmark, we show
simple loop-based parallelization in
Cilk; cache-oblivious parallelization;
both cache-oblivious parallelization
and compiler-based simdization; and
cache-oblivious parallelization, sim-
dization, and autotuning together.

As Figure 8 shows, simple loop-
based parallelization achieves a 4.8x
speedup on average, which isn’t bad
given an eight-core machine. Never-
theless, cache-oblivious techniques im-
prove the average speedup to 10.7x,
more than doubling the performance.
This apparently superlinear speedup
is a result of improved cache locality.
Their impacts are particularly large in
LBM, Search, and Matrix Multiply.
Adding simdization improves the aver-
age speedup to 17.3x, especially helping
Matrix Multiply and Bilateral. Finally,
autotuning further improves perfor-

mance of 3dfd, LBM, and Search.
Overall, our approach achieves an aver-
age speedup of 19.1x over the best se-
rial case or four times faster than sim-
ple parallelization. Nevertheless, Figure
8 also shows that our best average is
15.6 Gfl ops, which is still far below the
machine’s peak of 145.3 Gfl ops, indi-
cating that we’re largely limited by the
memory latency.

To get an idea of how well our re-
sults compared against highly tuned
codes, Figure 9 compares the perfor-
mance of single-precision matrix mul-
tiplication with our approach and the
Intel Math Kernel Library (MKL v11),
while Figure 10 compares sorting per-
formance with our approach and the
Intel Integrated Performance Primitives

(IPP v7). It’s encouraging that our high-
level approach achieves comparable or
better performance than highly tuned
library codes.

Figure 11 shows the LBM’s perfor-
mance with various optimization strat-
egies. The serial case (fi rst bar) achieves
only 1.7 Gfl ops. Applying simple loop-
based parallelization and simdization
(the second bar) improves performance
by only 17 percent because this applica-
tion is limited by memory bandwidth.
One optimization that is known to be
effective to this application is the Ar-
ray of Structures (AOS) to Structure of
Arrays (SOA) transformation, which is
the third bar. It results in 2.6x speedup
over the serial case. Our approach (the
fourth bar) achieves 3.8x speedup over
serial without changing the data layout
at all.

Figure 12 shows how the execution
time of the Search benchmark changes
as we vary the two parameters VLEN and
BUNDLE_WIDTH. There are a number of lo-
cal minimums, and the best confi gura-
tion is (VLEN=48, BUNDLE_WIDTH=32). This
contrasts with the intuitive choice of
VLEN=4, the number of SIMD lanes. For-
tunately, autotuning enables us to pick
this nonoblivious choice.

F inally, an interesting future
work is to apply our approach
to other architectures such as

GPUs. The Intel compiler is available
for purchase at http://software.intel.
com/en-us/intel-compilers, and the In-

0

20

40

60

80

100

120

70.1

100.2

Our approach MKL

G

op

s

FIGURE 9. Performance of single-

precision matrix multiplication. Our approach

achieves performance comparable to the

Intel Math Kernel Library (MKL v11).

TA
B

L
E

 1 Benchmarks.

Benchmark Description Problem size

3dfd19 3D	fi	nite	difference	computation x	=	1,000,	y	=	1,000,	z	=	1,000,	t	=	20

Bilateral18 Bilateral	image	fi	ltering 8,000	×	8,000	pixels

LBM14 Lattice-Boltzman	method Reference	input

Matrix	Multiply19 Dense	matrix	multiplication 4,000	×	4,000	dimensions

Search18 Searching	a	binary	tree 24-level	tree,	4	million	queries

Sort18 Sorting 16	million	elements

G�
op
s

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1.4

IPP-1T

3.6

Ours-1T

15.7

Ours-16T

FIGURE 10. Sorting performance. IPP-1T

stands for the Intel Integrated Performance

Primitives v7 with one thread, Ours-1T stands

for our approach with one thread, and Ours-

16T shows results for our approach with

16 threads. IPP currently doesn’t support

multithreaded sorting.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 49

tel Software Autotuning Tool is freely
available at http://software.intel.com/
en-us/whatif.

Acknowledgments
We thank Charles Leiserson and the anony-
mous reviewers for their helpful feedbacks,
Matteo Frigo and Yuxiong He for provid-
ing the initial implementations of 3dfd, and
Mark Charney for letting us use the Intel
Software Development Emulator tool.

References
 1. M. Frigo et al., “Cache Oblivious Algo-

rithms,” Proc. 40th Ann. Symp. Foundations
of Computer Science, ACM Press, 1999, pp.
285–298.

 2. P. Kumar, Cache Oblivious Algorithms,
LNCS 2625, Springer, 2003, pp. 193–212.

 3. H. Prokop, “Cache-Oblivious Algorithms,”
master’s thesis, Laboratory for Computer Sci-
ence, Massachusetts Inst. of Technology, June
1999.

 4. A.J. Bik, The Software Vectorization Hand-
book, Intel Press, 2006.

 5. D. Bailey et al., “PERI Auto-Tuning,” J. Phys-
ics: Conference Series (SciDAC 2008), vol.
125, no. 1, 2008; www.mcs.anl.gov/uploads/
cels/papers/P1517.pdf.

 6. R.C. Whaley, A. Petitet, and J.J. Dongarra,
“Automated Empirical Optimization of
Software and the ATLAS Project,” Parallel
Computing, vol. 27, nos. 1–2, 2001, pp. 3–35.

 7. V. Strassen, “Gaussian Elimination Is Not
Optimal,” Numerical Mathematics, vol. 13,
1969, pp. 354–356.

 8. “Using Parallelism: (CEAN) C/C++ Extension
for Array Notation,” Intel, Mar. 2010.

 9. J. Reinders, Intel Threading Building Blocks,
O’Reilly, 2007.

 10. R. Chandra et al., Parallel Programming in
OpenMP, Morgan Kaufmann, 2001.

 11. R.D. Blumofe et al., “Cilk: An Effi cient Mul-
tithreaded Runtime System,” Proc. 5th ACM
SIGPLAN Symp. Principles and Practice of
Parallel Programming (PPoPP), ACM Press,
1995, pp. 207–216.

 12. M. Hall et al, “Autotuning and Specialization:
Speeding up Nek5000 with Compiler Technol-
ogy,” Proc. Int’l Conf. Supercomputing, ACM
Press, 2010, pp. 253–262.

 13. M. Frigo and V. Strumpen, “Cache Oblivi-
ous Stencil Computations,” Proc. 2005 Int’l
Conf. Supercomputing, ACM Press, 2005, pp.
361–366.

 14. J.L. Henning, “SPEC CPU2006 Benchmark
Descriptions,” Computer Architecture News,
vol. 34, no. 4, 2006, pp. 1–17.

 15. M.A. Bender, E.D. Demaine, and M. Farach-
Colton, “Cache-Oblivious B-trees,” Proc.

41st Ann. Symp. Foundations of Computer
Science, ACM Press, 2000, pp. 399–409.

 16. J. Chhugani et al., “Effi cient Implementation
of Sorting on Multi-core SIMD CPU Architec-
ture,” Proc. VLDB Endowment, vol. 1, no. 2,
2008, pp. 1313–1324.

 17. S.G. Akl and N. Santoro, “Optimal Parallel
Merging and Sorting without Memory Con-
fl icts,” IEEE Trans. Computers, vol. 36, no.
11, 1987, pp. 1367–1369.

 18. V.W. Lee et al., “Debunking the 100X GPU
vs. CPU Myth: An Evaluation of Throughput

Computing on CPU and GPU,” Proc. 37th
Ann. Int’l Symp. Computer Architecture
(ISCA), ACM Press, 2010, pp. 451–460.

 19. NVIDIA, “CUDA SDK,” www.nvidia.com/
object/cuda_get.html.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

0

1

2

3

4

5

6

7

1.7

Serial Simple parallel +
simdization with

array of structures

2.0

4.5

Simple parallel +
simdization with

structure of arrays

6.2

Our approach

G�
op

s

FIGURE 11. Performance of the Lattice-Boltzman method. The serial case (fi rst bar)

achieves only 1.7 Gfl ops, while our approach (the last bar) achieves 6.2 Gfl ops.

0.11
0.105

0.1
0.095
0.09

0.085
0.08

0.11
0.105
0.1
0.095
0.09
0.085
0.08

0 10 20 30

VLEN

40 50 60 70 Bundle size

70605040302010

Ti
m

e
(s

ec
.)

View: 71,000, 43.0000 Scalke: 1.00000, 1.00000

FIGURE 12. Performance impact of autotuning on the Search benchmark. The best

confi guration is (VLEN=48, BUNDLE_WIDTH=32).

50	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CHI-KEUNG LUK is	a	senior	staff	engineer	at	Intel.	His	research	inter-
ests	include	parallel	programming	tools	and	techniques,	compilers,	and	
virtualization.	Luk	has	a	PhD	in	computer	science	from	the	University	of	
Toronto.	Contact	him	at	chi-keung.luk@intel.com.

RYAN NEWTON is	a	software	engineer	at	Intel.	His	research	interests	
include	parallel	and	distributed	programming.	Newton	has	a	PhD	in	
computer	science	from	the	Massachusetts	Institute	of	Technology.	
Contact	him	at	ryan.r.newton@intel.com.

WILLIAM HASENPLAUGH is	a	computer	architect	at	Intel.	His	
research	interests	include	memory	system	design	and	performance	op-
timization.	Hasenplaugh	has	an	MS	in	electrical	engineering	and	optics	
from	the	University	of	Arizona.	Contact	him	at	william.c.hasenplaugh@
intel.com.

MARK HAMPTON is	a	software	engineer	at	Intel.	His	research	inter-
ests	include	parallel	programming	and	performance.	Hampton	has	a	
PhD	in	computer	science	from	the	Massachusetts	Institute	of	Technol-
ogy.	Contact	him	at	mark.hampton@intel.com.

GEOFF LOWNEY is	an	Intel	Fellow	and	CTO	of	the	Developer	
Products	Division	at	Intel.	His	research	interests	include	compilers,	
programming	tools,	performance	analysis,	and	parallel	programming.	
Lowney	has	a	PhD	in	computer	science	from	Yale	University.	Contact	
him	at	geoff.lowney@intel.com.

HOW TO
REACH US

WRITERS

For	detailed	information	on	submitting	
articles,	write	for	our	Editorial	Guidelines
(software@computer.org)	or	access	
www.computer.org/software/author.htm.

LETTERS TO THE EDITOR

Send	letters	to

	 Editor,	IEEE Software
	 10662	Los	Vaqueros	Circle
	 Los	Alamitos,	CA	90720
	 software@computer.org

Please	provide	an	email	address	or	
daytime	phone	number	with	your	letter.

ON THE WEB

www.computer.org/software	

SUBSCRIBE

www.computer.org/software/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

Send	change-of-address	
requests	for	magazine	subscriptions	
to	address.change@ieee.org.	
Be	sure	to	specify	IEEE Software.

MEMBERSHIP
CHANGE OF ADDRESS

Send	change-of-address	requests	for	
IEEE	and	Computer	Society	membership	
to	member.services@ieee.org.

MISSING
OR DAMAGED COPIES

If	you	are	missing	an	issue	or	you	
received	a	damaged	copy,	contact	
help@computer.org.

REPRINTS OF ARTICLES

For	price	information	or	to	order	reprints,
send	email	to	software@computer.org	
or	fax	+1	714	821	4010.

REPRINT PERMISSION

To	obtain	permission	to	reprint	an	article,
contact	the	Intellectual	Property	Rights	
Offi	ce	at	copyrights@ieee.org.

www.computer.org/itpro

