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ADVANCES IN SILICON AND PRO-
CESSOR design technologies in the 
past few decades have brought enor-
mous computing power to desktop 
PCs. For instance, a single-socket Intel 

Nehalem can compute more than 100 
giga-floating-point-operations per sec-
ond (Gflops) and transfer 32 Gbytes of 
data per second between the CPU and 
memory. Consequently, we can now de-

ploy many traditional supercomputer 
applications such as scientific comput-
ing, server applications, and emerging 
applications such as image and video 
processing on desktops. We collectively 
define these applications as throughput 
computing applications.

Nevertheless, harnessing desktops’ 
raw computing power has become a 
significant challenge to software devel-
opers. Limited by power consumption, 
recent desktops can no longer increase 
performance by increasing the clock 
frequency. Instead, they provide more 
parallel processing units on the same 
die. Figure 1 shows a block diagram 
of a dual-socket quad-core Nehalem. 
The system offers multiple levels of 
programmable parallelism: two sock-
ets each contain a chip with four cores; 
each core supports simultaneous multi-
threading with two hardware threads 
(T0 and T1); and each core has two sin-
gle instruction, multiple data (SIMD) 
units, each of which can execute four 
32-bit (or two 64-bit) operations in 
parallel. These parallel processing 
units are built on top of a deep mem-
ory hierarchy. That is, the two sockets 
share the main memory, the four cores 
in each socket share an L3 cache, and 
each core has a separate instruction 
cache (I$) and data cache (D$) and a 
unified L2 cache. Software developers 
must determine how to exploit both 
parallelism and data locality for a given 
application.

We advocate a throughput comput-
ing approach that optimizes both par-
allelism and locality in a single frame-
work. We’ve developed a synergetic 
approach to throughput computing for 
the x86-based multicores. We focus on 
x86-based multicore desktops because 
they’re the most common computing 
platforms today. Overall, our approach 
achieves a nearly 20x speedup over the 
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best serial case on a dual-socket quad-
core Nehalem.

Our Approach
Both the parallel processing units and 
caches are organized hierarchically on 
x86 multicores (see Figure 1), so the 
divide-and-conquer paradigm fits well 
with this architecture. In particular, 
we advocate using cache-oblivious al-
gorithms to exploit thread-level paral-
lelism.1–3 To exploit SIMD parallel-
ism, we use compiler-based simdization 
(also known as short vectorization) 
instead of hand-coded simdization.4 
Finally, during this whole process, we 
rely on autotuning techniques to tune 
various program parameters to ensure 
they achieve good performance.5,6

Cache-Oblivious Techniques
A cache-oblivious algorithm is designed 
to maximize data reuse in caches. Un-
like cache blocking, it doesn’t have the 
cache size as an explicit parameter, so 
it could perform well across multiple 
cache levels in a memory hierarchy 
or on machines with different cache 
configurations. A cache-oblivious al-
gorithm typically works by dividing 
the original problem into smaller sub-

problems until reaching a point where 
the data needed by the subproblem is 
small enough to fit in any reasonable 
cache. This stopping point is called the 
base case. When the subproblems are 
data independent of each other, we can 
compute them in parallel. Hence, we 
achieve both parallelism and data lo-
cality at the same time.

Figure 2 illustrates the Strassen ma-
trix-multiplication algorithm, which is 
an example cache-oblivious algorithm.7 
The original matrix-multiplication 
problem is recursively transformed into 
multiplications and additions/subtrac-
tions of smaller matrices, which can 
eventually fit in the cache. Parallelism 
is naturally exploited; P1 to P7 could 
be computed in parallel as well as C11 
to C22. There are optimal cache-obliv-
ious algorithms that are proved to have 
an asymptotically minimum number 
of cache misses.1 However, because 
our goal is to use cache-oblivious al-
gorithms to improve performance in-
stead of as an algorithm-analysis tool, 

we don’t restrict ourselves to optimal 
cache-oblivious algorithms. In particu-
lar, in deciding when to stop subdivid-
ing a problem, we use autotuning to de-
termine the base-case sizes for different 
architectures and problems.

Compiler-Based Simdization
Simdization is the software step that 
extracts parallelism from an applica-
tion that can be exploited by the hard-
ware SIMD units. Figure 3a shows a 
loop written in C. Figures 3b and 3c 
show the execution traces without and 
with simdization, respectively. By exe-
cuting four multiplications in one CPU 
cycle, we can potentially achieve a 4x 
speed up in the simdized case.

We believe that most developers 
should use the compiler to simdize in-
stead of doing it by hand. We use the 
Intel compiler (ICC) because it’s widely 
regarded as having the best simdiza-
tion support among all x86 compilers. 
Figures 3d through 3f illustrate three 
methods to simdize using ICC.
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FIGURE 1. Blocked diagram of a dual-

socket Intel Nehalem. The image doesn’t 

show the instruction-level parallelism (ILP), 

which is largely exploited by hardware  

on the x86 architecture.

 
(a)

P1 = ( A11 + A22) × (B11+ B22)
P2 = (A21 + A22) × B11
P3 = A11 × (B12 – B22)
P4 = A22 × (B21 – B11)
P5 = (A11 + A12) × B22
P6 = (A21 – A11) × (B11+ B12)
P7 = (A12 – A22) × (B21 + B22)
C11 = P1 + P4 – P5 + P7
C12 = P3 + P5
C21 = P2 + P4
C22 = P1 – P2 + P3 + P6

(b)

FIGURE 2. Strassen’s matrix-multiplication algorithm. The Strassen algorithm recursively 

transforms (a) the original matrix multiplication problem into smaller subproblems. (b) P1 to 

P7 can be computed in parallel. C11 to C22 can be computed in parallel once P1 to P7 are 

available.

CC AA BB= ×

= ×
C C
C C

A A
A A

11 12

21 22

11 12

21 22

BB B
B B

11 12

21 22



	 JANUARY/FEBRUARY 2011  \\ IEEE SOFTWARE � 41

The fi rst method is auto-simdization 
(see Figure 3d), where the simdization 
step is done entirely by the compiler. 
Since the compiler can’t statically deter-
mine the data dependencies among the 
three arrays, it generates two versions of 
the loop (one is simdized and one isn’t) 
and inserts a check to select which ver-
sion to use at runtime.

The second method is programmer-
directed simdization (see Figure 3e). The 
programmer uses the ICC pragma simd 

to communicate to the compiler that it’s 
safe and benefi cial to simdize the loop.

The last method is array notation,8 a 
new feature introduced in ICC v12. We 
rewrite the loop in an array notation, 
as shown in Figure 3f. In this notation, 
we apply operations to arrays instead of 
scalars. Hence, we no longer need the 
for loop to iterate over individual array 
elements.

In practice, developers should use 
auto-simdization whenever possible. 

When this isn’t possible, they could 
use programmer-directed simdization. 
In cases where the program structure 
is too complicated for programmer-
directed simdization, developers can 
use array notation. We expect that with 
such rich support of simdization in the 
compiler, developers should rarely need 
manual simdization.

Autotuning
Autotuning works by generating many 

void Multiply(int N, fl oat* A, fl oat* B, fl oat* C) {
      for (int i=0; i<N; i++)
            C[i] = A[i] * B[i];
}

(a)

Cycle Instruction executed

0 C[0]	=	A[0]	*	B[0]

1 C[1]	=	A[1]	*	B[1]

2 C[2]	=	A[2]	*	B[2]

3 C[3]	=	A[3]	*	B[3]

· ·

· ·

· ·

N-1 C[N-1]	=	A[N-1]	*	B[N-1]

(b)

Cycle Instruction executed

0 C[0..3] = A[0..3] * B[0..3]

1 C[4..7] = A[4..7] * B[4..7]

· ·

· ·

· ·

N/4-1 C[N-4..N-7] = A[N-4..N-7] * B[N-4..N-7]

(c)

void Multiply(int N, fl oat* A, fl oat* B, fl oat* C) {
      // Compiler inserts following runtime check
      if (_OverlappedAddressRanges(N, A, B, C)) {
            // non-SIMDized version of the loop
            for (int i=0; i<N; i++)
                  C[i] = A[i] * B[i];
      } else {
            // SIMDized version of the loop
            ...
      }

(d)

void Multiply(int N, fl oat* A, fl oat* B, fl oat* C) {
      #pragma simd
      for (int i=0; i<N; i++)
            C[i] = A[i] * B[i];

}

(e)

void Multiply(int N, fl oat* A, fl oat* B, fl oat* C) {
      // Rewrite the loop in array notation.
      // A[0:N] represents elements A[0] to A[N-1]
      C[0:N] = A[0:N] * B[0:N];
}

(f)

FIGURE 3. Simdization examples. (a) The original loop in C. 

(b) Execution trace without simdization and (c) with simdization. 

The Intel compiler (ICC) can simdize this loop with one of the 

following methods: (d) auto-simdization, (e) programmer-directed 

simdization, and (f) simdization with array notation.
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different variants of the same code and 
then empirically fi nding the best-per-
forming variant on the target machine. 
In our approach, several parameters 
could be tuned via autotuning:

• Base-case size in a cache-oblivi-
ous algorithm. We want the base 
case to be small enough to fi t in 
the cache while at the same time 
being big enough that the paral-
lelization overhead doesn’t over-
whelm the benefi t. Analytically 

fi nding the right base-case size is 
diffi cult, if not impossible.

• Degree of parallelism. In some 
situations, using fewer software 
threads than the number of hard-
ware threads available might re-
sult in better performance. This 
could happen in particular when 
two software threads are mapped 
to the same CPU core and hence 
contending for the same hard-
ware resource. Also, if using all 
hardware threads versus just a 

subset of them achieves similar 
performance, we might want to 
use fewer threads to consume 
less energy.

• Level of parallelism. In some 
cases, a chunk of work is best 
parallelized by distributing it 
over multiple threads, exploit-
ing thread-level parallelism. In 
other cases, it’s best parallelized 
by mapping it to a single thread 
and exploiting SIMD and in-
struction-level parallelism (ILP) 
within the thread instead. This 
choice appears to be best made 
by autotuning as well.

• Scheduling policy and granular-
ity. Threading APIs such as TBB,9 
OpenMP,10 and Cilk11 support nu-
merous scheduling policies for users 
to choose, including static schedul-
ing, dynamic scheduling, and com-
binations thereof. Also, the granu-
larity of scheduling—for example, 
how big is the unit of scheduling?—
is another parameter that the pro-
grammer can often specify via API. 
The optimal policy and granularity 
are likely to be problem and ma-
chine dependent and so are possibly 
best selected via autotuning.

To perform autotuning, we devel-
oped the Intel Software Autotuning 
Tool (ISAT), which can tune the pa-
rameters we’ve mentioned so far, as 
well as others. With ISAT, the pro-
grammer adds tuning directives to a 
program (in the form of pragmas) to 
specify where the program requires 
tuning, what parameters need to be 
tuned, and how. ISAT then auto-
matically generates code variants ac-
cording to this tuning specifi cation, 
empirically determines the best value 
for each parameter, and fi nally pro-
duces the tuned version in source 
code form. Therefore, ISAT can be 
used on top of any compiler. 

Finally, our approach isn’t about 
auto-parallelization but about helping 

void LBM_performStreamCollide(LBM_Grid* src, LBM_Grid* dst) {

x

y

z

Grid of cells

C

B

W

S

N

NT

ST
ETWT

EB
WB

SB

NB

T

SW

NW

SE

NE

E

1 cell (with 19 velocity �elds)

typedef enum { 
   C=0, N, S, E, W, T, B,
   NE, NW, SE, SW, NT, NB,
   ST, SB, ET, EB, WT, WB,
   FLAGS, N_CELL_ENTRIES
} CELL_ENTRIES;

typedef LBM_Grid[(PADDING  + SIZE_Z * SIZE_Y * SIZE_X) * N_CELL_ENTRIES];

(a)

(b)

void main() {
LBM_Grid* srcGrid, *dstGrid;
srcGrid= AllocateGrid(); 
dstGrid= AllocateGrid();
…
 for (int t = 1; t <= nTimeSteps; t++) {

LBM_performStreamCollide(*srcGrid, *dstGrid);
LBM_swapGrids(&srcGrid, &dstGrid);

}
}

for (z=0; z<SIZE_Z; z++)
for (y=0; y<SIZE_Y; y++)

for (x=0, x<SIZE_X; x++) {
// Compute dst[]’sas functions of src[]’s

}
}

f

srcGrid dstGrid

Grid of cells de�ned as a C array

FIGURE 4. Lattice-Boltzman method (LBM) in the SPEC CPU2006 Suite. (a) A sweep 

through the grid is performed at each time step on (b) the original code.
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developers write effi cient parallel pro-
grams using high-level programming 
techniques. In our approach, the role 
of autotuning is auxiliary because 
it’s used to improve the effectiveness 
of the fi rst two steps via parameter 
searching. In contrast, other research-
ers have been looking at using auto-
tuning more proactively, such as try-
ing different combinations of code 

transformations,5,12 which is outside 
the scope of our approach. (See the 
“Related Work in Throughput Com-
puting” sidebar for more details.)

Putting It All Together
We use three case studies to illus-
trate our approach. First, the Lattice-
Boltzmann method uses the common 
stencil computational pattern. Second, 

binary-tree search models query search-
ing operations in a database. And the 
third performs sorting. In all cases, we 
use the Cilk11 and simdization support 
in ICC.

Lattice-Boltzman Method
Stencil computation is an important 
computational pattern class commonly 
used in scientifi c computing, image 

LBM_Grid* Toggle[2];
void LBM_performStreamCollide_Vec(LBM_Grid* src, LBM_Grid* dst,
                              int x0, int x1, int y0, int y1, int z0, int z1) {
      for (z=z0; z<z1; z++)
         for (y=y0; y<y1; y++)
#pragma simd
            for (x=x0, x<x1; x++) {
                  // Compute dst[]’s as functions of src[]’s
            }
}
void BaseCase(int t0, int t1, int x0, int dx0, int x1, int dx1,
                              int y0, int dy0, int y1, int dy1,
                              int z0, int dz0, int z1, int dz1) {
      LBM_Grid* src = Toggle[(t0+1) & 1];
      LBM_Grid* dst = Toggle[t0 & 1];
      for (int t=t0; t<t1; t++) {
            LBM_performStreamCollide_Vec(*src, *dst,
                                                                 x0, x1, y0, y1, z0, z1);
            src = Toggle[t & 1];
            dst = Toggle[(t+1) & 1];
            x0 += dx0; x1 += dx1;
            y0 += dy0; y1 += dy1;
            z0 += dz0; z1 += dz1;
      }
}
int NPIECES=2; int dx_threshold=32; int dy_threshold=2;
int dz_threshold=2; int dt_threshold=3;
#pragma isat tuning measure(start_timing, end_timing)
scope(start_scope, end_scope) variable(NPIECES, range(2, 8, 1)) 
variable(dx_threshold, range(2, 128, 1))
variable(dy_threshold, range(2, 128, 1))
variable(dz_threshold, range(2, 128, 1))
variable(dt_threshold, range(2, 128, 1))
#pragma isat marker start_scope
void CO(int t0, int t1, int x0, int dx0, int x1, int dx1,
              int y0, int dy0, int y1, int dy1,
              int z0, int dz0, int z1, int dz1) {

      int dt = t1-t0; int dx = x1-x0, int dy = y1-y0; int dz = z1-z0;
      if (dx >= dx_threshold && dx >= dy && dx >= dz &&
          dt >= 1 && dx >= 2 * dt * NPIECES) {
          int chunk = dx / NPIECES; int i;
          for (i=0; i<NPIECES-1; ++i)
              cilk_spawn CO(t0, t1, x0+i*chunk, 1, x0+(i+1)*chunk, -1,
                                       y0, dy0, y1, dy1, z0, dz0, z1, dz1);
          cilk_spawn CO(t0, t1, x0+i*chunk, 1, x1, -1,
                                   y0, dy0, y1, dy, z0, dz0, z1, dz1);
          cilk_sync(); …
      } else if (… /* Subdivide in y dimension? */)
      …
      } else if (… /* Subdivide in z dimension? */)
      …
      } else if (… /* Subdivide in t dimension? */)
      …
      } else /* call the basecase */
        BaseCase(t0, t1, x0, dx0, x1, dx1, y0, dy0, y1, dy1,
                         z0, dz0, z1, dz1);
}
#pragma isat marker end_scope
void main() {
     LBM_Grid* srcGrid, *dstGrid;
     srcGrid = AllocateGrid(); dstGrid = AllocateGrid();
     Toggle[0] = srcGrid; Toggle[1] = dstGrid;
#pragma isat  tuning variable(nWorkers, 
 range(1, $NUM_CPU_THREADS, 1))
measure(start_timing, end_timing)
     int nWorkers = GetNumHardwareThreads();
     InitCilk(nWorkers);
     …
#pragma isat marker start_timing
   CO(1, nTimeSteps, 0, 0, SIZE_X, 0, 0, 0, SIZE_Y, 0,
          0, 0, SIZE_Z, 0);
#pragma isat marker end_timing
   …
}

FIGURE 5. Lattice-Boltzman method (LBM) code optimized by our approach. The function CO() recursively divides the 4D iteration space 

(x, y, z, and time) into smaller subproblems until the base-case criteria is met.
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processing, and geometric modeling. 
A stencil defines the computation of 
an element in an n-dimensional spatial 
grid at time t as a function of neigh-
boring grid elements at time t – 1,
 . . . , t – k.13

The particular stencil problem we 
study is the Lattice-Boltzman method 
(LBM) benchmark drawn from the 
SPEC CPU2006 Suite.14 It performs 
numerical simulation in computational 
fluid dynamics in the 3D space. For the 
main data structure, we used the 3D 
grid of cells shown in Figure 4a. The 
original stencil code performs a sweep 
through the grid at each time step. 
Figure 4b shows an abstract version 
of this sweeping code. Two grids src-
Grid and dstGrid are used throughout 
the computation and swapped at the 
end of each sweep (by LBM_swapGrids()). 
During each sweep, the function LBM_
performStreamCollide() reads 19 floating-
point values from srcGrid, performs 
268 floating-point operations, and 
writes 19 floating-point values to dst-
Grid. This translates to a ratio of 1.8 

flops per byte (flops/byte), suggest-
ing that this function’s performance 
(which accounts for 95 percent of the 
LBM’s total runtime) is limited by 
memory bandwidth.

Figure 5 sketches how we optimize 
LBM with our approach. In the new 
main(), we first initialize a two-element 
array Toggle[] to point to srcGrid and 
dstGrid. Our cache-oblivious code 
will access both grids via Toggle[]. Sec-
ond, we explicitly set the number of 
Cilk worker threads used by calling 
InitCilk(nWorkers). Third, we add several 
ISAT pragmas for the sake of autotuning. 
Finally, we replace the for-each time-
step loop in the original main() with a 
call to CO(), which implements the Frigo 
and Strumpen cache-oblivious stencil 
algorithm.13

Function CO() recursively divides the 
4D iteration space (x, y, z, and time) 
into smaller subproblems until the 
base-case criteria is met. Data-inde-
pendent subproblems are executed in  
parallel using cilk_spawn() and cilk_sync(). 
The function BaseCase() takes the start-

ing and ending points in the four di-
mensions as parameters. It iterates from 
time steps t0 to t1. At each time step t, 
it determines the source and destina-
tion grids by indexing Toggle[] with t mod 
2 and (t+1) mod 2, respectively. It then 
invokes LBM_performStreamCollide_Vec() to 
sweep through the given ranges of x, 
y, and z. Note that #pragma simd is added 
to LBM_performStreamCollide_Vec() to simdize 
the x loop.

We add two types of ISAT pragmas 
to Figure 5. The first type is in the form 
of #pragma isat marker ... for marking a re-
gion in the program. In this example, 
we mark two regions: (start_scope and 
end_scope) and (start_timing and end_timing). 
The former region defines the lexical 
scope of the variables being tuned. The 
latter region defines the timing scope, 
where ISAT measures the performance 
of code variants. The second type of 
ISAT pragma marks tuning variables: 
#pragma isat tuning measure(M0, M1) scope(S0, 
S1) variable(Var0, Range0) ... variable(VarN, Ran-
geN). It instructs ISAT to tune the vari-
ables specified by the variable clauses 

RELATED WORK  
IN THROUGHPUT COMPUTING
A recent study by Victor Lee and his colleagues compared the 
performance of several computing kernels on a CPU and GPU and 
found that the GPU is only 2.5x faster than the CPU on average.1 
Their work focuses on performance analysis and the architecture 
aspect. In contrast, we focus on the software aspect, advocating 
a high-level programming approach and tool-based optimization.

In the past, researchers have mostly studied cache-oblivious 
techniques for algorithmic analysis and serial processing.2–4 Our 
work shows that cache-oblivious techniques can work well in 
practice on multicore processors.

Autotuning has also recently become a hot research topic.5,6 
In particular, one study showed that a pure autotuning-based 
approach can effectively optimize stencil computation.7 Our ap-
proach differs from theirs by using cache-oblivious techniques 
instead of explicit blocking, although we still use autotuning to 
tune other parameters and the base case. Using this hybrid ap-
proach, we reduce the amount of tuning needed. In addition, our 
work covers both stencil computations and other domains such 
as sorting and searching.
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within the scope (S0, S1) by measuring 
their performance impact on the re-
gion (M0, M1). A variable clause’s fi rst 
argument is the variable being tuned, 
and the second argument is the range 
of values to be tried, which can be 
expressed in the form of (startValue, end-
Value, increment) or [startValue .. endValue]. A 
value started with the $ symbol is pre-
defi ned by ISAT. For instance, $NUM_
CPU_THREADS is the number of hardware 
threads available on the CPU. In this 
example, the parameters being tuned 
are the number of threads used by 
Cilk, and the fi ve parameters (NPIECES, 
dx_threshold, dy_threshold, dz_threshold, 
and dt_threshold) in the cache-oblivious 
algorithm.

Binary-Tree Search
This case study is about searching for 
a query based on its key in a database 
organized as a packed binary tree. The 
tree is originally laid out in memory 
in a breadth-fi rst manner (see Figure 
6a). Figure 6b shows the correspond-
ing query search code. We use cilk_for, 
which is similar to OpenMP’s parallel-
for, to search for independent queries in 

parallel.
Figure 6 highlights two optimiza-

tion opportunities. First, as we get 
close to the bottom of the tree, the 
nodes accessed during the search for 
a single query won’t be on the same 
cache lines and will therefore cause 
many cache misses. Second, we haven’t 
taken advantage of the SIMD units. 
To reduce cache misses, we can layout 
the tree in a cache-oblivious way. The 
theoretically optimal method (in terms 
of cache misses) to do this is the Van 
Emde Boas (VEB) layout.15 Neverthe-
less, we fi nd that the searching code for 
the VEB layout isn’t amenable to effi -
cient simdization, so we instead use a 
nonoptimal cache-oblivious layout that 
enables simdization.

Figure 7a shows the new data lay-
out, where we divide the original tree 
into multiple layers of subtrees of height 
SUBTREE_HEIGHT. Nodes in each subtree 
are laid out breadth fi rst. This layout 
ensures that the nodes accessed during 
the search for a single query are always 
on the same or nearby cache lines, re-
gardless of their tree levels. Figure 7b 
shows the corresponding search code. 

We divide the input queries into several 
bundles, each containing (BUNDLE_WIDTH * 
VLEN) queries. The cilk_for schedules bun-
dles to threads. Each thread processes 
VLEN queries at a time until all queries in 
its bundle are done. We use array nota-
tion to map the VLEN queries to SIMD 
hardware. Finally, we use ISAT to tune 
the three parameters (SUBTREE_HEIGHT, 
BUNDLE_WIDTH, and VLEN). We tune SUB-
TREE_HEIGHT in one pragma and tune BUN-
DLE_WIDTH and VLEN together in another 
pragma because BUNDLE_WIDTH and VLEN 
are best searched dependently while 
SUBTREE_HEIGHT can be searched indepen-
dently. This is an example of tuning 
the distribution of work over thread-
level, instruction-level, and SIMD-level 
parallelism.

Sorting
Sorting an array is another problem 
amenable to a divide-and-conquer, 
cache-oblivious approach. For exam-
ple, the merge-sort algorithm recur-
sively sorts both halves of an array in-
dependently before recombining them. 
Likewise, quick sort separates elements 
into two categories before recursively 
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int Keys[numNodes]; // keys organized as a binary tree 
int Queries[numQueries]; // input queries
int Answers[numQueries]; // output if the query is found

void ParallelSearchForBreadthFirstLayout() {
    // Search the queries in parallel
    cilk_for (int q=0; q<numQueries; q++) {
        const int searchKey = Queries[q];

        // Look for searchKey in the binary tree
        for (int i=0; i<numNodes; ) {
            const int currKey = Key[i];
            
            if (searchKey == currKey) {
                Answers[q] = 1;
                break; // found
            }
            else if (searchKey < currKey)
                i = 2*i + 1;
            else
                i = 2*i + 2;
        }
    }
}

(a) (b)

FIGURE 6. Packed binary tree. (a) The breadth-fi rst layout in memory and (b) its corresponding query search code.
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processing them. In fact, independent 
portions of a sequence can be sorted 
using completely different algorithms, 
and the best-performing codes are an 
amalgam of distinct algorithms for 
different levels of the memory hierar-
chy. One reason to mix different algo-
rithms is that traditional serial sorting 
algorithms have data-dependent con-
trol flows that aren’t amenable to au-
tomatic simdization. A solution is to 
use sorting networks at smaller sizes 
to expose fine-grained parallelism. Our 
implementation uses two kinds of sort-
ing networks together with a coarse-
grained parallel merge sort—a subset 
of the techniques described in earlier 
work16 that we’ve reimplemented using 
our synergetic approach.

Merge sort exposes task parallelism 
at a coarse granularity.17 We augment 
the basic algorithm to make the merge 
step (as well as the recursive step) par-
allel. Before merging two sorted sub-
sequences, we search for what will be-
come the median element in the merged 
output. The median serves as a pivot 
(much like quick sort), allowing inde-
pendent, recursive processing of all ele-
ments under and over the median. We 
use cilk_spawn to expose the task paral-
lelism both in the downward sort phase 
and in the upward merging phase. The 
algorithm switches from parallel to se-
rial at a base-case size determined by 
autotuning.

Bitonic merge networks expose ILP 
and enable SIMD when merging two 
sorted subsequences. A bitonic merge 
network of size 2N has N – 1 stages, 
each stage comparing and swapping 
elements at decreasing distances. The 
number of comparisons in each stage 
is the same, but to simdize the com-

#pragma isat tuning scope(start_scope, end_scope) measure(start_timing, end_timing) 
                    variable(SUBTREE_HEIGHT, [4,6,8,12]) 
#pragma isat tuning scope(start_scope, end_scope) measure(start_timing, end_timing) 
                    variable(BUNDLE_SIZE, range(8,64,1)) variable(VLEN, range(4,64,4)) search(dependent) 

void ParallelSearchForCacheOblivious() {
    int numNodesInSubTree = (1 << SUBTREE_HEIGHT) - 1;
    int bundleSize = BUNDLE_WIDTH * VLEN; int remainder = numQueries % bundleSize;
    int quotient = numQueries / bundleSize; int numBundles = ((remainder==0)? quotient : (quotient+1));
    
    cilk_for (int b=0; b < numBundles; b++) {
        int q_begin = b * bundleSize; int q_end = MIN(q_begin+bundleSize, numQueries);
        for (int q = q_begin; q < q_end; q += VLEN) {        
            int searchKey[VLEN] = Queries[q:VLEN]; int* array[VLEN] = Keys;        
            int subTreeIndexInLayout[VLEN] = 0; int localAnswers[VLEN] = 0;                    
            for (int hTreeLevel=0; hTreeLevel < HierTreeHeight; ++hTreeLevel) { 
      int i[VLEN] = 0;
                for (int levelWithSubTree = 0; levelWithSubTree < SUBTREE_HEIGHT; ++levelWithSubTree) {
           int currKey[VLEN];
                     for (int k=0; k<VLEN; k++)
                         currKey[k] = (array[k])[i[k]];
                     bool eq[:] = (searchKey[:] == currKey[:]); 
           bool lt[:] = (searchKey[:] < currKey[:]);
                     localAnswers[:] = eq[:]? 1: localAnswers[:];
           i[:] = localAnswers[:]? i[:]: ((lt[:])?  (2*i[:]+1): (2*i[:]+2));
                }
      int whichChild[VLEN] = i[:] - numNodesInSubTree;
                subTreeIndexInLayout[:] = localAnswers[:]? subTreeIndexInLayout[:] :
  (subTreeIndexInLayout[:]<<SUBTREE_HEIGHT + whichChild[:] + 1);
                array[:] = localAnswers[:]? array[:] : 
  (Keys + subTreeIndexInLayout[:] * numNodesInSubTree);
            }
            Answers[q:VLEN] = localAnswers[:];
        }
    }
}
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FIGURE 7. Optimizing the search with 

cache-oblivious layout and array notation. 

(a) We divided the cache-oblivious tree 

layout into multiple layers of subtrees. (b) The 

optimized version parallelizes the search with 

a cilk_for loop and then simdizes each loop 

iteration using an array notation. 
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putation, elements must be shuffl ed 
into position between stages at smaller 
comparison distances. Our merge sort 
(1.) invokes a bitonic merge network to 
consume CHUNKSIZE elements simultane-
ously. That is, at each step, the chunk 
(already internally in order) with a min-
imum leading element is taken from the 
head of a sequence being merged. The 
chunk is mixed with leftovers from the 
previous step by a bitonic merge net-
work of size 2*CHUNKSIZE. The minimum 
half of the sorted result is output and 
the rest become new leftovers. Chunk 
size is autotuned.

The in-register sort via sorting net-
work (fi nest grain) algorithm ensures 
that chunks are internally sorted. It 
treats CHUNKSIZE chunks to be sorted as 
the rows of a square matrix. The ma-
trix is transposed (with shuffl es), turn-
ing rows into columns, and then sorted 
with vector operations between rows. 
When the matrix is transposed a sec-
ond time, the original rows are inter-
nally sorted. Any fi xed sorting routine 
could be used; we choose a Batcher 
odd-even sort.

In trying to write a generic and por-
table version of these three algorithms, 

several implementation diffi culties 
arise. The sorting networks we de-
scribed rely heavily on permuting vec-
tors. Permutation code isn’t currently 
amenable to automatic compiler-based 
simdization, but array notation allows 
arbitrary permutations (automatically 
generating shuffl e instructions for the 
target machine) if permutations are 
known at compile time. Unfortunately, 
arbitrarily sized bitonic and odd-even 
networks can only be implemented by 
recursive functions. In fact, because 
these kernels are at the heart of our 
computation, eliminating the recursive 
function calls is necessary for perfor-
mance. Thus, staged code generation 
(or partial evaluation) is appropriate. 
(The Intel Array Building Blocks is an 
appropriate framework for staged code 
generation in this example.) We use a 
complementary technique to autotun-
ing that we call lightweight code gener-
ation. Whenever a computation kernel 
is needed at different sizes or confi gura-
tions for autotuning or portability pur-
poses, we write a simple program gen-
erator (a script) to produce a large set of 
different kernels.

Code generation is usually thought 

of as relying on heavyweight infrastruc-
ture—for example, in the context of 
large, complex compilers. But we argue 
that for limited purposes (kernels), little 
work is required to build simple code 
generators in any high-level language 
(such as Python and Haskell). In this 
case, we wrote 86 lines of noncomment, 
nonblank Scheme code for manipulat-
ing permutations and another 135 lines 
of code that generate arbitrarily sized 
bitonic and odd-even kernel functions 
and output them to a .c fi le.

Evaluation
For our experiment, we used an In-
tel Nehalem, with eight cores (on two 
sockets), a 2.27-GHz core clock, and 
12 Gbytes of memory. The architec-
ture also used a 22.6 Gbyte/sec mem-
ory bandwidth; the 64-bit CentOS v4; 
and the ICC v12, -fast option complier. 
Table 1 shows the details of the bench-
marks we used, which are important 
throughput computing kernels also 
used by other researchers.18,19

Figure 8 shows our overall perfor-
mance results. We compiled the serial 
cases with the -fast option in ICC, which 
generally produces the best-performing 
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code. For each benchmark, we show 
simple loop-based parallelization in 
Cilk; cache-oblivious parallelization; 
both cache-oblivious parallelization 
and compiler-based simdization; and 
cache-oblivious parallelization, sim-
dization, and autotuning together.

As Figure 8 shows, simple loop-
based parallelization achieves a 4.8x 
speedup on average, which isn’t bad 
given an eight-core machine. Never-
theless, cache-oblivious techniques im-
prove the average speedup to 10.7x, 
more than doubling the performance. 
This apparently superlinear speedup 
is a result of improved cache locality. 
Their impacts are particularly large in 
LBM, Search, and Matrix Multiply. 
Adding simdization improves the aver-
age speedup to 17.3x, especially helping 
Matrix Multiply and Bilateral. Finally, 
autotuning further improves perfor-

mance of 3dfd, LBM, and Search. 
Overall, our approach achieves an aver-
age speedup of 19.1x over the best se-
rial case or four times faster than sim-
ple parallelization. Nevertheless, Figure 
8 also shows that our best average is 
15.6 Gfl ops, which is still far below the 
machine’s peak of 145.3 Gfl ops, indi-
cating that we’re largely limited by the 
memory latency.

To get an idea of how well our re-
sults compared against highly tuned 
codes, Figure 9 compares the perfor-
mance of single-precision matrix mul-
tiplication with our approach and the 
Intel Math Kernel Library (MKL v11), 
while Figure 10 compares sorting per-
formance with our approach and the 
Intel Integrated Performance Primitives 

(IPP v7). It’s encouraging that our high-
level approach achieves comparable or 
better performance than highly tuned 
library codes.

Figure 11 shows the LBM’s perfor-
mance with various optimization strat-
egies. The serial case (fi rst bar) achieves 
only 1.7 Gfl ops. Applying simple loop-
based parallelization and simdization 
(the second bar) improves performance 
by only 17 percent because this applica-
tion is limited by memory bandwidth. 
One optimization that is known to be 
effective to this application is the Ar-
ray of Structures (AOS) to Structure of 
Arrays (SOA) transformation, which is 
the third bar. It results in 2.6x speedup 
over the serial case. Our approach (the 
fourth bar) achieves 3.8x speedup over 
serial without changing the data layout 
at all.

Figure 12 shows how the execution 
time of the Search benchmark changes 
as we vary the two parameters VLEN and 
BUNDLE_WIDTH. There are a number of lo-
cal minimums, and the best confi gura-
tion is (VLEN=48, BUNDLE_WIDTH=32). This 
contrasts with the intuitive choice of 
VLEN=4, the number of SIMD lanes. For-
tunately, autotuning enables us to pick 
this nonoblivious choice.

F inally, an interesting future 
work is to apply our approach 
to other architectures such as 

GPUs. The Intel compiler is available 
for purchase at http://software.intel.
com/en-us/intel-compilers, and the In-
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Benchmark Description Problem size

3dfd19 3D	fi	nite	difference	computation x	=	1,000,	y	=	1,000,	z	=	1,000,	t	=	20

Bilateral18 Bilateral	image	fi	ltering 8,000	×	8,000	pixels

LBM14 Lattice-Boltzman	method Reference	input

Matrix	Multiply19 Dense	matrix	multiplication 4,000	×	4,000	dimensions

Search18 Searching	a	binary	tree 24-level	tree,	4	million	queries

Sort18 Sorting 16	million	elements
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tel Software Autotuning Tool is freely 
available at http://software.intel.com/
en-us/whatif.
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