
074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E 	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 51

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

TWO MAJOR HARDWARE TRENDS
make parallel programming a crucial
issue for all software engineers today:
the rise of many-core CPU architec-
tures and the inclusion of powerful
graphics processing units (GPUs) in ev-
ery desktop computer. Modern CPUs
use the ever-increasing transistor count
predicted by Moore’s law not only for
larger caches and improved prediction
logic but also for adding more paral-
lel execution units (“cores”) per chip.
Projections show that future processor

generations will offer hundreds or even
thousands of cores per socket.1 How-
ever, an application can only benefit
from this development if it’s prepared
for parallel execution.

Currently, CPUs support parallel
programming by assigning threads to
different tasks and coordinating their
activities through hardware-supported
locking primitives in shared memory.
Newer programming models also con-
sider the nonuniform memory archi-
tecture (NUMA) of modern desktop

systems, but they still rely on the un-
derlying concept of parallel threads
accessing one flat address space. CPU
hardware is optimized for such coarse-
grained, task-parallel programming
with synchronized shared memory.

By contrast, GPU cards are mainly
designed for fine-grained, data-parallel
computation. The input data—not the
computational task set—drives the al-
gorithm design. Graphics processing is
an embarrassingly parallel problem,9 in
which the serial code for initialization,
synchronization, and result aggregation
is very small in comparison to the par-
allel code. GPU hardware is optimized
for this kind of load. It aims at combin-
ing a maximum number of simple par-
allel-processing elements, each having
only a small amount of local memory.
For example, the Nvidia Geforce GTX
480 graphics card supports up to 1,536
GPU threads on each of its 15 compute
units. So, at full operational capacity,
it can run 23,040 parallel execution
streams.

The use of a GPU compute device
in a desktop application is typically
driven by the need to accelerate a spe-
cific computation. We can therefore
assume that GPU-aware programs are
seldom implemented from scratch. Be-
sides the data-driven algorithm design,
the GPU code compulsory demands op-
timizations to achieve scalability and
performance improvements. We’ve col-
lected a commonly agreed set of these
strategies.

From CPU to GPU
Applications running on a computer
can access GPU resources with the help
of a control API implemented in user-
mode libraries and the graphics card
driver. The control application, which
developers can write in high-level

Joint Forces:
From Multithreaded
Programming
to GPU Computing

Frank Feinbube, Peter Tröger, and Andreas Polze,
Hasso Plattner Institute

// Using graphics hardware to enhance CPU-based

standard desktop applications is a question not only of

programming models but also of critical optimizations that

are required to achieve true performance improvements. //

FOCUS: PARALLELISM ON THE DESKTOP

52 IEEE SOFTWARE // WWW.COMPUTER.ORG/SOFTWARE

languages, submits extended C++
code (called a work item) to the card
through this API. The driver starts the
appropriate activities on the card asyn-
chronously with the host application.
Memory transfers between host and
card are also expressed as commands
to the driver.

The two major vendors in the GPU
market, Nvidia and AMD (which ac-
quired ATI and its GPU product line
in 2006), provided their own API def-
initions in the past. The most famous
approach is still CUDA, the Nvidia-
specifi c combination of programming
model and driver API. Recently, a con-
sortium of leading GPU-interested com-
panies defi ned the Open Computing
Language (OpenCL), a vendor-neutral
way of accessing compute resources.
Open CL specifi es the programming
model with C++ language extensions
and the control API to be implemented
by the driver.2 OpenCL implementa-
tions are available for major operating
systems and recent GPU hardware.

Table 1 shows a simplifi ed mapping
of terms and concepts in the GPU and
CPU worlds. OpenCL’s lower-level ter-
minology includes processing elements
that can execute a set of code instances
denoted as work items, or kernels
(Nvidia’s original term). Each process-
ing element on the card has a large reg-
ister set (currently 8,192 to 32,768) and
some private memory. The OpenCL
specifi cation groups processing ele-
ments as compute units, each of which

shares local memory (currently 16 to
48 Kbytes). It combines work items into
workgroups, each of which uses the lo-
cal memory for coordination and data
exchange. All work items in all work-
groups share a common global memory,
which can be accessed from CPU and
GPU code.

On execution, the GPU runtime
environment informs each work item
about the range of data items it must
process. The OpenCL interface ex-
pects the data partitioning for parallel
computations to be defi ned by the to-
tal number of work items plus the size
of workgroup chunks. Each chunk is
assigned to one compute unit. The de-
veloper can formulate partitioning in
different dimensions, but the common
strategy is to rely on a 2D matrix repre-
sentation of the input data. The subtle
difference from threads running on a
CPU is that work items on one com-
pute unit aren’t executed independently
but in a lock-step fashion, also known
as single instruction, multiple data
(SIMD) execution.

Sudoku Example Application
Figure 1 lists example code for a
small Sudoku validator, which checks
whether a given solution is valid ac-
cording to the game rules. A Sudoku
fi eld typically consists of 3 × 3 subfi elds
with each having 3 × 3 places. Three
facts make this problem a representa-
tive example of algorithms appropriate
for GPU execution:

• data validation is the primary appli-
cation task,

• the computational effort grows
with the game fi eld’s size (that is,
the problem size), and

• the workload belongs to the GPU-
friendly class of embarrassingly
parallel problems that have only a
very small serial execution portion.

Other examples from this well-parallel-
izable class of algorithms include frac-
tal calculations, brute-force searches in
cryptography, and genetic algorithms.
The matching of algorithm classes to
hardware architectures is still an ac-
tive research topic,3 but other problem
classes might also benefi t from using
GPUs by restructuring the problem or
optimizing the data. In any case, iden-
tifying data-parallel parts in the appli-
cation is always a good starting point
to work on the GPU version of an
algorithm.

Figure 1 shows our initial multi-
threaded version of the Sudoku vali-
dator. The isValid function checks if the
presented Sudoku solution fulfi lls all
relevant rules. It uses the contains func-
tion, which starts n*n threads (one
thread per row). The double loop in the
invalidColumn function is a perfect candi-
date for parallelization, since all itera-
tions run on different data parts.

Figure 2 shows a straightforward re-
formulation of our OpenCL example.
After fi nishing, the host can read the
results from the memory buffer. The

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP
TA

B
L
E

 1 CPU, OpenCL, and CUDA terminology mappings.

CPU OpenCL CUDA

Platform
level

Memory
level

Execution
level

Platform
level

Memory
level

Execution
level

Platform
level

Memory
level

Execution
level

Symmetric	
multipro-
cessing	
system

Main	
memory

Process Compute	
device

Global	and	
constant	
memory

Index	range	
(NDRange)

Device Global	and	
constant	
memory

Grid

Processor — — Compute	
unit

Local	
memory

Workgroup Multipro-
cessor

Shared	
memory

Thread	
block

Core Registers,	
thread	local	
storage

Thread Processing	
element

Registers,	
private	
memory

Work	items	
=	kernels

Scalar	pro-
cessor

Registers,	
local	
memory

Threads	=	
kernels

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 53

invalidColumn function is now realized as a
GPU work item. We pass the input fi eld
and the shared variable as global mem-
ory pointers. The y-loop is replaced as
well, so we can use n*n*n*n work items
instead of n*n threads. This is more ap-
propriate for the massively parallel
GPU hardware. We use the work-item
ID to derive the x and y coordinate
and then apply the normal checking
algorithm.

Even though the example is sim-
ple and not yet optimized, the GPU-
enabled version already performs bet-
ter than the multithreaded version (see
Figure 3). For small problem sizes with
this example, the AMD R800 GPU and
the Nvidia GT200 GPU are about an
order of magnitude faster than the Intel
E8500 CPU. For bigger problem sizes,
the gap becomes smaller.

Best CPU-GPU Practices
To push the performance of GPU-
enabled desktop applications even fur-
ther requires fi ne-grained tuning of data
placement and parallel activities on the
GPU card. Table 2 shows a synthesis
of relevant optimization strategies, col-
lected from documentation, vendor tu-
torials, and personal experience. We’ve
compiled an exhaustive list of sources
and related work focusing on GPU
computing, available at www.dcl.hpi.
uni-potsdam.de/research/gpureadings.

Every optimization must account
for different views of the application
requirements. Otherwise, the optimi-
zation doesn’t pay off in signifi cant
performance improvements. First, you
must focus on the parallelization task
from a logical perspective. From this
view, optimization is related to algo-
rithm design, memory transfer, and
control-fl ow layout. Second is memory
usage. To achieve maximum band-
width utilization, you must consider
memory type hierarchies and access
optimizations. Next, you can consider
the hardware model perspective. To
achieve maximal occupancy and in-

struction throughput,
the relevant optimiza-
tions relate to sizing,
instruction types, and
supported numerical
data formats.

Algorithm Design
The GPU’s SIMD ar-
chitecture requires
splitting the data-par-
allel problem into many
tiny work items. In ad-
dition to the parallel-
ism on one device, all a
host’s compute devices
can execute indepen-
dently and asynchro-
nously from the host
itself. You can even run
code on the card while
reading or writing a de-
vice’s data buffers.

Hardware directly
supports mathemati-
cal operations inside
the work items and
executes them quickly.
On the other hand,
the number of registers
available per work item
and the bandwidth for
communicating with
off-chip memory are
limited. This results in
the (counterintuitive)
recommendation to re-
compute values instead
of storing them in reg-
isters or in device memory.

Work items should be simple, with-
out complex control or data struc-
tures. Because the GPU hardware has
no stack, all function calls are inlined.
With nested function calls, all variables
are kept in registers, so the number of
registers needed per work item can in-
crease dramatically. This can reduce
hardware utilization effi ciency when
increased workloads cause your appli-
cation to create additional work items.

So you should try to keep the code
small and simple.

Memory Transfer
The control application must initially
copy input data for GPU computation,
using the PCI Express bus. The bus
has a comparatively low bandwidth,
so memory transfers between host and
GPU are expensive. Consequently, you
should try to reduce the amount of data
that needs to be transferred upfront.

bool isValid (int* � eld) {
 return
 // check for numbers > n*n or < 0
 !contains(� eld, invalidNumber) &&
 // no duplicates in a row
 !contains(� eld, invalidRow) &&
 // no duplicates in a column
 !contains(� eld, invalidColumn) &&
 // no duplicates in a sub� eld
 ! contains (� eld, invalidSub� eld);
}

bool invalidFieldDetected = false;

bool contains (int* � eld, ThreadStartRoutine checkFunction) {
 invalidFieldDetected = false;
 for (int x=0; x < n*n ; x++) {
 ThreadParameter* tp = new ThreadParameter ();
 tp–>threadId = x; tp–>� eld = � eld;
 ts[x] = StartThread(checkFunction, tp);
 }
 for (int x=0; x < n*n; x++) {WaitForThread (ts[x], INFINITE); }
 return invalidFieldDetected;
}

unsigned long invalidColumn (LPVOID data) {
 ThreadParameter* p = (ThreadParameter*) data;
 int* � eld = p–>� eld;
 int x = p–>threadId;
 for (int y = 0; y < n*n-1; y++)
 for (int y2 = y+1; y2 < n*n; y2++)
 if (� eld [x+y*n*n] == � eld [x+y2*n*n])
 invalidFieldDetected = true;
}
...

FIGURE 1. Multithreaded Sudoku validator. The algorithm

checks for all Sudoku rules that a valid solution must ful� ll.

54 IEEE SOFTWARE // WWW.COMPUTER.ORG/SOFTWARE

If multiple work items use the same
input data or run one after another, you
can improve performance by moving
data to the device once, chaining work
items, and reading the results back after
they have been executed. Another way
to reduce memory bandwidth usage
is to move more operations from the
host to the GPU. You can use separate
command queues to the same device to
overlap memory transfers and compute
operations, thus hiding bandwidth la-
tencies. If little or no data reuse occurs
within or between work items, you can
make host-allocated memory available
to the GPU code. This eliminates the
need to copy and synchronize data.

Control Flow
CPU-optimized programs often use sev-
eral execution paths and choose the right
one according to the current context to
reduce workload. The CPU world relies

upon condition variables, branches, and
loops. GPU compute devices demand a
completely different approach.

For example, each hardware-
processing element of the Nvidia Ge-
force GTX 480 graphics card can ex-
ecute up to 48 work items simultane-
ously. This holds as long as all work
items on a processing element branch
equally. Otherwise, their execution is
serialized, resulting in a worst-case ex-
ecution time 48 times greater than nor-
mal if all work items use different ex-
ecution paths. To avoid branching, even
in the case when the control fl ow of
some work items is divergent, the com-
piler can use predication. You can help
the compiler with this by making the
divergent parts within branching condi-
tions as short as possible.

For simple loops, the compiler will
use unrolling and predication automat-
ically. Special compiler pragmas can

also trigger this behavior. For complex
loops, unrolling should be performed
manually.4

Memory Types
OpenCL specifi es different types of
memory. Registers and local memory are
on-chip and therefore the fastest mem-
ory types. Both are scarce resources, so
limiting their use keeps the number of
work items per compute unit high.

Each work item has additional pri-
vate memory, which is mapped to off-
chip device memory and therefore slow.
The same holds for global memory.
Even the improved caching support ex-
pected in future cards doesn’t save the
GPU developer from considering the
memory hierarchy.

Graphic cards also have special
cached read-only memory: the constant
memory and the texture memory. Stor-
ing the arguments for a work-item ex-
ecution is a good use case for constant
memory because it saves local memory.
Texture memory applies well to mid-
size data structures with lots of reuse
and a hard-to-predict access pattern,
because its cache has a 2D layout.

We strongly recommend using local
memory as cache for global memory.
It signifi cantly improves performance
if data is reused. Arrays that are allo-
cated per work item are stored in pri-
vate memory and therefore reside off-
chip. They’re ideal candidates to store
in local memory. For example, each
work item could exclusively use a sub-
section of local memory and store its
arrays there. This lets the hardware use
collaborative writes.

Memory Access
Every memory access, especially to off-
chip memory, is performed synchro-
nously and therefore stalls the request-
ing workgroup. GPUs hide this latency
by scheduling other runnable work-
groups on the processing element dur-
ing the waiting phase. In contrast to the
case with CPUs, such context switch-

bool contains (int* � eld, cl_kernel checkKernel) {
 // ... initializing memory buffers ...
 // ... set arguments ...
 size_t local = 32;
 size_t global = ((workItemCount/local)+1)* local;
 // start parallel execution of work items
 clEnqueueNDRangeKernel(commands, checkKernel, 1, NULL, &global, &local, 0, NULL, NULL);
 // ... wait for the commands to � nish ...
 // ... read results from buffers, cleanup ...
 return (invalidFieldDetected [0] == 1);
}
__kernel void invalidColumn (
 __global int* � eld,
 __global int* invalidFieldDetected,
 const unsigned int n)
{
 uint id = get global id (0);
 if (id >=n*n*n*n) return; // range checking
 uint x=id/(n*n);
 uint y=id%(n*n);
 if (y >=n*n-1) return; // range checking
 for (int y2 = y+1; y2 < n*n; y2++)
 if (� eld [x+y*n*n] == � eld [x+y2*n*n])
 invalidFieldDetected [0] = 1;
}

FIGURE 2. OpenCL version of the Sudoku validator. In comparison to the multithreaded

version, this code was modi� ed to run the parallelizable functions on a GPU card.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 55

ing is free of costs so long as the com-
pute unit has enough runnable work-
groups. On the other hand, registers
and shared memory are very fast and
can be used to decrease memory laten-
cies. You must consider this trade-off
and evaluate which approach best fi ts
your algorithm.

You can optimize parallel memory
accesses by following some specifi c re-
quirements for memory alignment and
density, called coalesced memory ac-
cess. The detailed requirements are
hardware-specifi c. In the best case, all
work items on a compute unit can get
their global memory data in a single
fetch. In the worst case, each work item
requires a separate fetch. Coalescing is
therefore crucial, and you should ap-
ply it whenever possible. Because pri-
vate memory is also mapped to device
memory, you must coalesce access to it
as well.5

Even though the work-item code
can access shared memory without
considering coalescing, you must still
think about memory-bank confl icts. If
these occur, the accesses will be serial-
ized, and the performance might be de-
graded by one order of magnitude. The
latest profi lers detect such memory-
bank confl icts. You can reduce them by

using an appropriate alignment to ac-
cess memory addresses.

If you want to optimize access to
texture memory, consider its 2D cache
layout. Workgroups can also be repre-
sented in a 2D fashion, so testing dif-
ferent aspect ratios to fi nd the optimal
workgroup layout can be helpful.

Sizing
The workgroup size should be a multi-
ple of the compute unit’s native execu-
tion size to ensure optimal utilization of
the compute unit for coalescing—that
is, at least 32 running work items for
Nvidia cards and 64 for AMD cards.

Many cases require some bench-
marking with different local work-
group sizes to fi nd what’s most appro-
priate for your kernel.

Instructions
Because GPUs were originally designed
for specifi c mathematical workloads,
they have to emulate some of the avail-
able CPU instructions. For example, try
to replace GPU integer modulo opera-
tor or integer division operations with
bitwise operations like shift operators
whenever possible.

On the other hand, some crucial
GPU operations are very fast, such

as fused multiply-add and reciprocal
square root. If you have a choice, use
these functions wherever possible.

The performance impact of most in-
structions is hardware-specifi c. AMD’s
GPU compute devices are vector
machines, so vectorizing your code us-
ing OpenCL vector types and instruc-
tions can improve your work-item
code’s performance drastically.5 In con-
trast, Nvidia uses a scalar architecture
in its cards, which implies using more
work items instead of larger vectors per
work item.5

Precision
Although current GPUs are really fast
on single-precision fl oating-point opera-
tions, they miss or have limited support
for double-precision operations. First-
generation OpenCL-enabled GPUs have
no double-precision hardware units at
all, so they convert doubles to fl oats.
These unnecessary conversions de-
grade performance. Even with the latest
OpenCL-enabled cards, the amount of
double-precision fl oating-point units is
still smaller than the number of single-
precision arithmetic units.

Nvidia’s native math library pro-
vides low-precision math functions
like native_sin(x) and native_cos(x) that map

0

Intel E8500 CPU AMD R800 GPU Nvidia GT200

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

100,0000 200,000 300,000 400,000 50,0000 600,000 700,000
Ex

ec
ut

io
n

tim
e

(m
ill

is
ec

on
ds

)
Problem size (no. of Sudoku places)

0

200

400

600

800

1,000

1,200

1,400

0 10,000 20,000 30,000 40,000 50,000

Ex
ec

ut
io

n
tim

e
(m

ill
is

ec
on

ds
)

Problem size (no. of Sudoku places) (b)(a)

FIGURE 3. Execution time of the Sudoku validation on different compute devices: (a) problem size of 10,000 to 50,000 possible Sudoku

places and (b) problem size of 100,000 to 700,000 Sudoku places.

56 IEEE SOFTWARE // WWW.COMPUTER.ORG/SOFTWARE

TA
B

L
E

 2 Best practices for GPU code optimization (bold font indicates crucial practices).

Strategy

Importance

ATI Nvidia

Algorithm design

Use	host	asynchronously Low Low		

Recompute	instead	of	transferring High High

Use	simple	work	items Medium Medium	

Memory transfer

Reduce	input	data	size High High

Chain	work	items Medium Medium

Move	more	operations	to	GPU Medium Medium

Overlap	transfer	and	compute	time Medium Medium

Pass	memory	directly	to	the	work	item Low Low

Control � ow

Avoid	divergent	branching High High

Support	predication Medium Low	

Memory types

Reduce	per-thread	memory	usage High High

Store	arguments	in	constant	memory Low Low

Use	OpenCL	images	for	data	structures	with	hard-to-predict	access	patterns Low Low

Use	local	memory	as	a	cache	for	global	memory High High

Avoid	global	arrays	on	work-item	stacks Medium Medium

Collaboratively	write	to	local	memory Medium Medium

Memory access

Consider	trade-off	between	work-item	count	and	memory	usage High High

Avoid	memory-bank	confl	icts High High

Access	texture	memory	with	appropriate	workgroup	aspect	ratio Low Low

Sizing

Local	workgroup	size	should	be	a	multiple	of	the	processing	element’s	execution	size High High

Ensure	device	memory	accesses	are	coalesced	 High High

Evaluate	different	workgroup	sizes Medium Medium	

Instructions

Use	shift	operations	instead	of	division	and	modulo Low Low	

Use	fused	multiply	add	when	appropriate Low Low	

Use	vector	types	and	operations High –

Precision

Avoid	automatic	conversion	of	doubles	to	fl	oats Low Low	

Use	the	native	math	library	for	low-precision	tasks – Medium	

Use	build	options	that	trade	precision	for	speed – High

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 57

directly to the hardware. Some com-
pilers also provide options to reduce
precision and thereby improve speed
automatically.6

Developer Support
Nvidia and AMD offer software de-
velopment kits with different C com-
pilers for Windows- and Linux-based
systems. Developers can also utilize
special libraries, such as AMD’s Core
Math Library, Nvidia’s libraries for ba-
sic linear algebra subroutines and fast
Fourier transforms, OpenNL for nu-
merics, and CULA for linear algebra.
Nvidia’s Performance Primitives li-
brary is intended to be a collection of
common GPU-accelerated processing
functionality.

Nvidia and AMD also provide big
knowledge bases with tutorials, exam-
ples, articles, use cases, and developer
forums on their websites. Mature pro-
fi ling and debugging tools are available
for analyzing optimization effects—
for example, Nvidia’s Parallel Nsight
for Microsoft Visual Studio, AMD’s
ATI Stream Profi ler, or the platform-
independent alternative gDEBugger.
AMD’s StreamKernel Analyzer sup-
ports the study of GPU assembler code
for different GPUs and detects execu-
tion bottlenecks.

T he GPU market continues to
evolve quickly, but some trends
seem clear. Nvidia has already

started distinguishing between GPU
computing as an add-on for normal
graphic cards and as a sole-purpose
activity on processors such as its Tesla
series. Nvidia extends Fermi-architec-
ture-based cards with a cache hierarchy
for compute units and native double-
precision support.

Some of the best practices we’ve pre-
sented are efforts to circumvent current
hardware limitations, which might not
be relevant with future cards. Other is-
sues are inherent to GPU computing. In

many domains, dedicated libraries pro-
vide high-level functionality at great
performance while hiding the complex-
ity of using GPU computing power.
New language extensions emerge that
reduce the GPU programming burden
and automate some of the optimiza-
tions we’ve described. However, this
is still an open research fi eld for both
software engineering and program-
ming language design. Higher-level
languages like Java and C# can also
benefi t from GPU computing by using
GPU-based libraries.

The journey to heterogeneous com-
puting has just begun, but it could lead
to a new software engineering style
that considers the parallel execution of
software on heterogeneous compute de-
vices as the default case.

References
 1. K. Asanovic et al., The Landscape of Parallel

Computing Research: A View from Berkeley,
tech. report UCB/EECS-2006-183, Univ. of
California, Berkeley, Dec. 2006.

 2. The OpenCL Speci� cation–Version 1.1,
Khronos OpenCL Working Group, Sept.
2010; www.khronos.org/registry/cl.

 3. V.W. Lee, “Debunking the 100X GPU vs. CPU
Myth: An Evaluation of Throughput Comput-
ing on CPU and GPU,” Proc. 37th Ann. Int’l
Symp. Computer Architecture (ISCA 10),
ACM Press, 2010, pp. 451–460.

 4. S.-Z. Ueng et al., “CUDA-Lite: Reducing
GPU Programming Complexity,” Proc. 21th
Int’l Workshop Languages and Compilers for
Parallel Computing (LCPC 08), LNCS 5335,
Springer, 2008, pp. 1–15.

 5. Advanced Micro Devices, ATI Stream Com-
puting OpenCL Programming Guide, June
2010; http://developer.amd.com/zones/
OpenCLZone/programming/Pages/default.
aspx.

 6. Nvidia, Nvidia OpenCL Best Practices Guide,
Version 2.3, Aug. 2009; www.nvidia.com/
object/cuda_opencl_new.html.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

FRANK FEINBUBE is	PhD	candidate	at	the	Hasso	Plattner	Institute	
and	a	member	of	the	HPI	Research	School	on	Service-Oriented	Sys-
tems	Engineering.	His	research	focuses	on	parallel	programming	mod-
els,	especially	on	new	ways	of	programming	complex	heterogeneous	
parallel	architectures.	Feinbube	has	an	MSc	in	IT	systems	engineering	
from	the	Hasso	Plattner	Institute.	Contact	him	at	frank.feinbube@hpi.
uni-potsdam.de.

PETER TRÖGER is	a	senior	researcher	at	the	Hasso	Plattner	Institute.	
His	research	focuses	on	dependable	multicore	systems,	especially	on	
fault	prediction	and	injection.	Tröger	has	a	PhD	in	computer	science	
from	the	University	of	Potsdam.	Contact	him	at	peter.troeger@hpi.
uni-potsdam.de.

ANDREAS POLZE leads	the	Hasso	Plattner	Institute’s	Operating	
Systems	and	Middleware	group.	His	research	focuses	on	operating	
system	architectures,	component-based	middleware,	and	predictable	
distributed	and	cloud	computing.	Polze	has	a	PhD	from	Freie	University	
and	habilitation	(tenure)	from	Humboldt	University,	both	in	Berlin.	
Contact	him	at	andreas.polze@hpi.uni-potsdam.de.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

