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TWO MAJOR HARDWARE TRENDS 
make parallel programming a crucial 
issue for all software engineers today: 
the rise of many-core CPU architec-
tures and the inclusion of powerful 
graphics processing units (GPUs) in ev-
ery desktop computer. Modern CPUs 
use the ever-increasing transistor count 
predicted by Moore’s law not only for 
larger caches and improved prediction 
logic but also for adding more paral-
lel execution units (“cores”) per chip. 
Projections show that future processor 

generations will offer hundreds or even 
thousands of cores per socket.1 How-
ever, an application can only benefit 
from this development if it’s prepared 
for parallel execution. 

Currently, CPUs support parallel 
programming by assigning threads to 
different tasks and coordinating their 
activities through hardware-supported 
locking primitives in shared memory. 
Newer programming models also con-
sider the nonuniform memory archi-
tecture (NUMA) of modern desktop 

systems, but they still rely on the un-
derlying concept of parallel threads 
accessing one flat address space. CPU 
hardware is optimized for such coarse-
grained, task-parallel programming 
with synchronized shared memory.

By contrast, GPU cards are mainly 
designed for fine-grained, data-parallel 
computation. The input data—not the 
computational task set—drives the al-
gorithm design. Graphics processing is 
an embarrassingly parallel problem,9 in 
which the serial code for initialization, 
synchronization, and result aggregation 
is very small in comparison to the par-
allel code. GPU hardware is optimized 
for this kind of load. It aims at combin-
ing a maximum number of simple par-
allel-processing elements, each having 
only a small amount of local memory. 
For example, the Nvidia Geforce GTX 
480 graphics card supports up to 1,536 
GPU threads on each of its 15 compute 
units. So, at full operational capacity, 
it can run 23,040 parallel execution 
streams.

The use of a GPU compute device 
in a desktop application is typically 
driven by the need to accelerate a spe-
cific computation. We can therefore 
assume that GPU-aware programs are 
seldom implemented from scratch. Be-
sides the data-driven algorithm design, 
the GPU code compulsory demands op-
timizations to achieve scalability and 
performance improvements. We’ve col-
lected a commonly agreed set of these 
strategies.

From CPU to GPU
Applications running on a computer 
can access GPU resources with the help 
of a control API implemented in user-
mode libraries and the graphics card 
driver. The control application, which 
developers can write in high-level  
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languages, submits extended C++  
code (called a work item) to the card 
through this API. The driver starts the 
appropriate activities on the card asyn-
chronously with the host application. 
Memory transfers between host and 
card are also expressed as commands 
to the driver.

The two major vendors in the GPU 
market, Nvidia and AMD (which ac-
quired ATI and its GPU product line 
in 2006), provided their own API def-
initions in the past. The most famous 
approach is still CUDA, the Nvidia-
specifi c combination of programming 
model and driver API. Recently, a con-
sortium of leading GPU-interested com-
panies defi ned the Open Computing 
Language (OpenCL), a vendor-neutral 
way of accessing compute resources. 
Open CL specifi es the programming 
model with C++ language extensions 
and the control API to be implemented 
by the driver.2 OpenCL implementa-
tions are available for major operating 
systems and recent GPU hardware.

Table 1 shows a simplifi ed mapping 
of terms and concepts in the GPU and 
CPU worlds. OpenCL’s lower-level ter-
minology includes processing elements 
that can execute a set of code instances 
denoted as work items, or kernels 
(Nvidia’s original term). Each process-
ing element on the card has a large reg-
ister set (currently 8,192 to 32,768) and 
some private memory. The OpenCL 
specifi cation groups processing ele-
ments as compute units, each of which 

shares local memory (currently 16 to 
48 Kbytes). It combines work items into 
workgroups, each of which uses the lo-
cal memory for coordination and data 
exchange. All work items in all work-
groups share a common global memory, 
which can be accessed from CPU and 
GPU code.

On execution, the GPU runtime 
environment informs each work item 
about the range of data items it must 
process. The OpenCL interface ex-
pects the data partitioning for parallel 
computations to be defi ned by the to-
tal number of work items plus the size 
of workgroup chunks. Each chunk is 
assigned to one compute unit. The de-
veloper can formulate partitioning in 
different dimensions, but the common 
strategy is to rely on a 2D matrix repre-
sentation of the input data. The subtle 
difference from threads running on a 
CPU is that work items on one com-
pute unit aren’t executed independently 
but in a lock-step fashion, also known 
as single instruction, multiple data 
(SIMD) execution.

Sudoku Example Application
Figure 1 lists example code for a 
small Sudoku validator, which checks 
whether a given solution is valid ac-
cording to the game rules. A Sudoku 
fi eld typically consists of 3 × 3 subfi elds 
with each having 3 × 3 places. Three 
facts make this problem a representa-
tive example of algorithms appropriate 
for GPU execution:

• data validation is the primary appli-
cation task, 

• the computational effort grows 
with the game fi eld’s size (that is, 
the problem size), and

• the workload belongs to the GPU-
friendly class of embarrassingly 
parallel problems that have only a 
very small serial execution portion.

Other examples from this well-parallel-
izable class of algorithms include frac-
tal calculations, brute-force searches in 
cryptography, and genetic algorithms. 
The matching of algorithm classes to 
hardware architectures is still an ac-
tive research topic,3 but other problem 
classes might also benefi t from using 
GPUs by restructuring the problem or 
optimizing the data. In any case, iden-
tifying data-parallel parts in the appli-
cation is always a good starting point 
to work on the GPU version of an 
algorithm. 

Figure 1 shows our initial multi-
threaded version of the Sudoku vali-
dator. The isValid function checks if the 
presented Sudoku solution fulfi lls all 
relevant rules. It uses the contains func-
tion, which starts n*n threads (one 
thread per row). The double loop in the 
invalidColumn function is a perfect candi-
date for parallelization, since all itera-
tions run on different data parts. 

Figure 2 shows a straightforward re-
formulation of our OpenCL example. 
After fi nishing, the host can read the 
results from the memory buffer. The 
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invalidColumn function is now realized as a 
GPU work item. We pass the input fi eld 
and the shared variable as global mem-
ory pointers. The y-loop is replaced as 
well, so we can use n*n*n*n work items 
instead of n*n threads. This is more ap-
propriate for the massively parallel 
GPU hardware. We use the work-item 
ID to derive the x and y coordinate 
and then apply the normal checking 
algorithm.

Even though the example is sim-
ple and not yet optimized, the GPU-
enabled version already performs bet-
ter than the multithreaded version (see 
Figure 3). For small problem sizes with 
this example, the AMD R800 GPU and 
the Nvidia GT200 GPU are about an 
order of magnitude faster than the Intel 
E8500 CPU. For bigger problem sizes, 
the gap becomes smaller.

Best CPU-GPU Practices 
To push the performance of GPU-
enabled desktop applications even fur-
ther requires fi ne-grained tuning of data 
placement and parallel activities on the 
GPU card. Table 2 shows a synthesis 
of relevant optimization strategies, col-
lected from documentation, vendor tu-
torials, and personal experience. We’ve 
compiled an exhaustive list of sources 
and related work focusing on GPU 
computing, available at www.dcl.hpi.
uni-potsdam.de/research/gpureadings.

Every optimization must account 
for different views of the application 
requirements. Otherwise, the optimi-
zation doesn’t pay off in signifi cant 
performance improvements. First, you 
must focus on the parallelization task 
from a logical perspective. From this 
view, optimization is related to algo-
rithm design, memory transfer, and 
control-fl ow layout. Second is memory 
usage. To achieve maximum band-
width utilization, you must consider 
memory type hierarchies and access 
optimizations. Next, you can consider 
the hardware model perspective. To 
achieve maximal occupancy and in-

struction throughput, 
the relevant optimiza-
tions relate to sizing, 
instruction types, and 
supported numerical 
data formats.

Algorithm Design
The GPU’s SIMD ar-
chitecture requires 
splitting the data-par-
allel problem into many 
tiny work items. In ad-
dition to the parallel-
ism on one device, all a 
host’s compute devices 
can execute indepen-
dently and asynchro-
nously from the host 
itself. You can even run 
code on the card while 
reading or writing a de-
vice’s data buffers.

Hardware directly 
supports mathemati-
cal operations inside 
the work items and 
executes them quickly. 
On the other hand, 
the number of registers 
available per work item 
and the bandwidth for 
communicating with 
off-chip memory are 
limited. This results in 
the (counterintuitive) 
recommendation to re-
compute values instead 
of storing them in reg-
isters or in device memory. 

Work items should be simple, with-
out complex control or data struc-
tures. Because the GPU hardware has 
no stack, all function calls are inlined. 
With nested function calls, all variables 
are kept in registers, so the number of 
registers needed per work item can in-
crease dramatically. This can reduce 
hardware utilization effi ciency when 
increased workloads cause your appli-
cation to create additional work items. 

So you should try to keep the code 
small and simple.

Memory Transfer
The control application must initially 
copy input data for GPU computation, 
using the PCI Express bus. The bus 
has a comparatively low bandwidth, 
so memory transfers between host and 
GPU are expensive. Consequently, you 
should try to reduce the amount of data 
that needs to be transferred upfront.

bool isValid (int* � eld ) {
  return 
    // check for numbers > n*n or < 0 
    !contains(� eld, invalidNumber) &&
    // no duplicates in a row 
    !contains(� eld, invalidRow) && 
    // no duplicates in a column 
    !contains(� eld, invalidColumn) && 
    // no duplicates in a sub� eld 
    ! contains ( � eld, invalidSub� eld); 
}

bool invalidFieldDetected = false; 

bool contains (int* � eld, ThreadStartRoutine checkFunction ) {
  invalidFieldDetected = false; 
  for (int x=0; x < n*n ; x++) {
    ThreadParameter* tp = new ThreadParameter ();
    tp–>threadId = x; tp–>� eld = � eld; 
    ts[x] = StartThread(checkFunction, tp);
  }
  for (int x=0; x < n*n; x++) {WaitForThread ( ts[x], INFINITE); }
  return invalidFieldDetected;
}

unsigned long invalidColumn (LPVOID data) {
  ThreadParameter* p = ( ThreadParameter*) data; 
  int* � eld = p–>� eld; 
  int x = p–>threadId;
  for (int y = 0; y < n*n-1; y++) 
    for (int y2 = y+1; y2 < n*n; y2++)
      if (� eld [x+y*n*n] == � eld [x+y2*n*n])
        invalidFieldDetected = true; 
}
...

FIGURE 1. Multithreaded Sudoku validator. The algorithm 

checks for all Sudoku rules that a valid solution must ful� ll.



54 IEEE SOFTWARE  // WWW.COMPUTER.ORG/SOFTWARE

If multiple work items use the same 
input data or run one after another, you 
can improve performance by moving 
data to the device once, chaining work 
items, and reading the results back after 
they have been executed. Another way 
to reduce memory bandwidth usage 
is to move more operations from the 
host to the GPU. You can use separate 
command queues to the same device to 
overlap memory transfers and compute 
operations, thus hiding bandwidth la-
tencies. If little or no data reuse occurs 
within or between work items, you can 
make host-allocated memory available 
to the GPU code. This eliminates the 
need to copy and synchronize data.

Control Flow 
CPU-optimized programs often use sev-
eral execution paths and choose the right 
one according to the current context to 
reduce workload. The CPU world relies 

upon condition variables, branches, and 
loops. GPU compute devices demand a 
completely different approach. 

For example, each hardware-
processing element of the Nvidia Ge-
force GTX 480 graphics card can ex-
ecute up to 48 work items simultane-
ously. This holds as long as all work 
items on a processing element branch 
equally. Otherwise, their execution is 
serialized, resulting in a worst-case ex-
ecution time 48 times greater than nor-
mal if all work items use different ex-
ecution paths. To avoid branching, even 
in the case when the control fl ow of 
some work items is divergent, the com-
piler can use predication. You can help 
the compiler with this by making the 
divergent parts within branching condi-
tions as short as possible. 

For simple loops, the compiler will 
use unrolling and predication automat-
ically. Special compiler pragmas can 

also trigger this behavior. For complex 
loops, unrolling should be performed 
manually.4

Memory Types 
OpenCL specifi es different types of 
memory. Registers and local memory are 
on-chip and therefore the fastest mem-
ory types. Both are scarce resources, so 
limiting their use keeps the number of 
work items per compute unit high.

Each work item has additional pri-
vate memory, which is mapped to off-
chip device memory and therefore slow. 
The same holds for global memory. 
Even the improved caching support ex-
pected in future cards doesn’t save the 
GPU developer from considering the 
memory hierarchy.

Graphic cards also have special 
cached read-only memory: the constant 
memory and the texture memory. Stor-
ing the arguments for a work-item ex-
ecution is a good use case for constant 
memory because it saves local memory. 
Texture memory applies well to mid-
size data structures with lots of reuse 
and a hard-to-predict access pattern, 
because its cache has a 2D layout. 

We strongly recommend using local 
memory as cache for global memory. 
It signifi cantly improves performance 
if data is reused. Arrays that are allo-
cated per work item are stored in pri-
vate memory and therefore reside off-
chip. They’re ideal candidates to store 
in local memory. For example, each 
work item could exclusively use a sub-
section of local memory and store its 
arrays there. This lets the hardware use 
collaborative writes.

Memory Access
Every memory access, especially to off-
chip memory, is performed synchro-
nously and therefore stalls the request-
ing workgroup. GPUs hide this latency 
by scheduling other runnable work-
groups on the processing element dur-
ing the waiting phase. In contrast to the 
case with CPUs, such context switch-

bool contains (int* � eld, cl_kernel checkKernel ) {
  // ... initializing memory buffers ... 
  // ... set arguments ... 
  size_t local = 32;
  size_t global = ((workItemCount/local)+1)* local;
  // start parallel execution of work items 
  clEnqueueNDRangeKernel(commands, checkKernel, 1, NULL, &global, &local, 0, NULL, NULL); 
  // ... wait for the commands to � nish ... 
  // ... read results from buffers, cleanup ... 
  return (invalidFieldDetected [0] == 1); 
}
__kernel void invalidColumn (
  __global int* � eld,
  __global int* invalidFieldDetected, 
  const unsigned int n) 
{
  uint id = get global id (0);
  if (id >=n*n*n*n) return;  // range checking 
  uint x=id/(n*n); 
  uint y=id%(n*n);
  if (y >=n*n-1) return;  // range checking 
  for (int y2 = y+1; y2 < n*n; y2++)
    if (� eld [x+y*n*n] == � eld [x+y2*n*n]) 
      invalidFieldDetected [0] = 1; 
} 

FIGURE 2. OpenCL version of the Sudoku validator. In comparison to the multithreaded 

version, this code was modi� ed to run the parallelizable functions on a GPU card.
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ing is free of costs so long as the com-
pute unit has enough runnable work-
groups. On the other hand, registers 
and shared memory are very fast and 
can be used to decrease memory laten-
cies. You must consider this trade-off 
and evaluate which approach best fi ts 
your algorithm. 

You can optimize parallel memory 
accesses by following some specifi c re-
quirements for memory alignment and 
density, called coalesced memory ac-
cess. The detailed requirements are 
hardware-specifi c. In the best case, all 
work items on a compute unit can get 
their global memory data in a single 
fetch. In the worst case, each work item 
requires a separate fetch. Coalescing is 
therefore crucial, and you should ap-
ply it whenever possible. Because pri-
vate memory is also mapped to device 
memory, you must coalesce access to it 
as well.5

Even though the work-item code 
can access shared memory without 
considering coalescing, you must still 
think about memory-bank confl icts. If 
these occur, the accesses will be serial-
ized, and the performance might be de-
graded by one order of magnitude. The 
latest profi lers detect such memory-
bank confl icts. You can reduce them by 

using an appropriate alignment to ac-
cess memory addresses. 

If you want to optimize access to 
texture memory, consider its 2D cache 
layout. Workgroups can also be repre-
sented in a 2D fashion, so testing dif-
ferent aspect ratios to fi nd the optimal 
workgroup layout can be helpful. 

Sizing
The workgroup size should be a multi-
ple of the compute unit’s native execu-
tion size to ensure optimal utilization of 
the compute unit for coalescing—that 
is, at least 32 running work items for 
Nvidia cards and 64 for AMD cards. 

Many cases require some bench-
marking with different local work-
group sizes to fi nd what’s most appro-
priate for your kernel. 

Instructions
Because GPUs were originally designed 
for specifi c mathematical workloads, 
they have to emulate some of the avail-
able CPU instructions. For example, try 
to replace GPU integer modulo opera-
tor or integer division operations with 
bitwise operations like shift operators 
whenever possible.

On the other hand, some crucial 
GPU operations are very fast, such 

as fused multiply-add and reciprocal 
square root. If you have a choice, use 
these functions wherever possible. 

The performance impact of most in-
structions is hardware-specifi c. AMD’s 
GPU compute devices are vector 
machines, so vectorizing your code us-
ing OpenCL vector types and instruc-
tions can improve your work-item 
code’s performance drastically.5 In con-
trast, Nvidia uses a scalar architecture 
in its cards, which implies using more 
work items instead of larger vectors per 
work item.5

Precision
Although current GPUs are really fast 
on single-precision fl oating-point opera-
tions, they miss or have limited support 
for double-precision operations. First-
generation OpenCL-enabled GPUs have 
no double-precision hardware units at 
all, so they convert doubles to fl oats. 
These unnecessary conversions de-
grade performance. Even with the latest 
OpenCL-enabled cards, the amount of 
double-precision fl oating-point units is 
still smaller than the number of single-
precision arithmetic units. 

Nvidia’s native math library pro-
vides low-precision math functions 
like native_sin(x) and native_cos(x) that map 
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FIGURE 3. Execution time of the Sudoku validation on different compute devices: (a) problem size of 10,000 to 50,000 possible Sudoku 

places and (b) problem size of 100,000 to 700,000 Sudoku places.
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 2 Best practices for GPU code optimization (bold font indicates crucial practices).

Strategy

Importance

ATI Nvidia

Algorithm design

Use	host	asynchronously Low Low		

Recompute	instead	of	transferring High High

Use	simple	work	items Medium Medium	

Memory transfer 

Reduce	input	data	size High High

Chain	work	items Medium Medium

Move	more	operations	to	GPU Medium Medium

Overlap	transfer	and	compute	time Medium Medium

Pass	memory	directly	to	the	work	item Low Low

Control � ow

Avoid	divergent	branching High High

Support	predication Medium Low	

Memory types

Reduce	per-thread	memory	usage High High

Store	arguments	in	constant	memory Low Low

Use	OpenCL	images	for	data	structures	with	hard-to-predict	access	patterns Low Low

Use	local	memory	as	a	cache	for	global	memory High High

Avoid	global	arrays	on	work-item	stacks Medium Medium

Collaboratively	write	to	local	memory Medium Medium

Memory access 

Consider	trade-off	between	work-item	count	and	memory	usage High High

Avoid	memory-bank	confl	icts High High

Access	texture	memory	with	appropriate	workgroup	aspect	ratio Low Low

Sizing

Local	workgroup	size	should	be	a	multiple	of	the	processing	element’s	execution	size High High

Ensure	device	memory	accesses	are	coalesced	 High High

Evaluate	different	workgroup	sizes Medium Medium	

Instructions 

Use	shift	operations	instead	of	division	and	modulo Low Low	

Use	fused	multiply	add	when	appropriate Low Low	

Use	vector	types	and	operations High –

Precision 

Avoid	automatic	conversion	of	doubles	to	fl	oats Low Low	

Use	the	native	math	library	for	low-precision	tasks – Medium	

Use	build	options	that	trade	precision	for	speed – High 
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directly to the hardware. Some com-
pilers also provide options to reduce 
precision and thereby improve speed 
automatically.6

Developer Support 
Nvidia and AMD offer software de-
velopment kits with different C com-
pilers for Windows- and Linux-based 
systems. Developers can also utilize 
special libraries, such as AMD’s Core 
Math Library, Nvidia’s libraries for ba-
sic linear algebra subroutines and fast 
Fourier transforms, OpenNL for nu-
merics, and CULA for linear algebra. 
Nvidia’s Performance Primitives li-
brary is intended to be a collection of 
common GPU-accelerated processing 
functionality.

Nvidia and AMD also provide big 
knowledge bases with tutorials, exam-
ples, articles, use cases, and developer 
forums on their websites. Mature pro-
fi ling and debugging tools are available 
for analyzing optimization effects—
for example, Nvidia’s Parallel Nsight 
for Microsoft Visual Studio, AMD’s 
ATI Stream Profi ler, or the platform-
independent alternative gDEBugger. 
AMD’s StreamKernel Analyzer sup-
ports the study of GPU assembler code 
for different GPUs and detects execu-
tion bottlenecks.

T he GPU market continues to 
evolve quickly, but some trends 
seem clear. Nvidia has already 

started distinguishing between GPU 
computing as an add-on for normal 
graphic cards and as a sole-purpose 
activity on processors such as its Tesla 
series. Nvidia extends Fermi-architec-
ture-based cards with a cache hierarchy 
for compute units and native double-
precision support. 

Some of the best practices we’ve pre-
sented are efforts to circumvent current 
hardware limitations, which might not 
be relevant with future cards. Other is-
sues are inherent to GPU computing. In 

many domains, dedicated libraries pro-
vide high-level functionality at great 
performance while hiding the complex-
ity of using GPU computing power. 
New language extensions emerge that 
reduce the GPU programming burden 
and automate some of the optimiza-
tions we’ve described. However, this 
is still an open research fi eld for both 
software engineering and program-
ming language design. Higher-level 
languages like Java and C# can also 
benefi t from GPU computing by using 
GPU-based libraries. 

The journey to heterogeneous com-
puting has just begun, but it could lead 
to a new software engineering style 
that considers the parallel execution of 
software on heterogeneous compute de-
vices as the default case.
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