
FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOR DECADES, PROGRAMMERS
HAVE RELIED on Moore’s law to im-
prove application performance. But
with the advent of multicore chips, they
must exploit parallel processing to real-
ize the same improvement or to enable
new, previously unavailable applica-
tions and services.

The most common way to parallel-
ize a program is to do it incrementally,
one piece at a time. Each small step is a
refactoring, a revision to the code that
preserves the program’s behavior. Pro-
grammers prefer this approach because
it maintains a working, deployable ver-
sion of the program throughout the pro-

cess. However, the refactoring approach
is tedious because it means chang-
ing many lines of code, is error-prone,
and requires programmers to ensure
that parallel operations don’t interfere
with each other. For example, parallel-
izing several loops using Java’s Parallel
Array data structure can entail an av-
erage of 10 changes per loop, plus ad-
ditional time ensuring that the parallel
iterations didn’t update shared objects
or files, which could lead to data races.

In the next decade, refactoring tools
will transform the process of retro-
fitting parallelism, just as they trans-
formed sequential programming in

the past decade. But unlike sequential
refactoring, refactoring for parallelism
is likely to make the code more com-
plex, more expensive to maintain, and
less portable. I present my vision on
how refactoring tools, along with smart
integrated development environments
(IDEs) and performance tools, can fur-
ther improve programmer productivity
(by improving parallel code’s readabil-
ity and maintenance), program perfor-
mance, and program portability. I also
describe the current incarnation of this
vision in the form of a refactoring tool-
set developed by my research group.

A Vision for Interactive
Refactoring Tools
Researchers have proposed several tools
for reducing the programmer’s burden
when converting existing sequential
programs to parallel programs. They
come in two distinct flavors: fully au-
tomatic tools (for example, automatic
parallelizing compilers1–4) and interac-
tive tools (such as refactoring tools5–12).
The fundamental difference between
these tools is the programmer’s role.
(For more on previous work relating to
parallelism, see the “Other Refactoring
Tools for Parallelism” sidebar.)

Automatic versus Interactive
When an automatic tool works, it gives
great results. Unfortunately, with-
out access to a programmer’s domain
knowledge, such a compiler has limited
applicability. To date, commercial com-
pilers have been successful at paralleliz-
ing small, straightforward kernel loops
but not at introducing meaningful par-
allelism in large, irregular, nonscientific
applications. Even though compilers
have improved, programmers still par-
allelize most of the code by hand.

Interactive tools, by contrast, take a
completely different approach, putting
the programmer in the driver’s seat. As

A Refactoring
Approach
to Parallelism
Danny Dig, University of Illinois at Urbana-Champaign

// In the multicore era, a major task for programmers

will be application parallelization. This article

outlines how refactoring tools can help with this

task and describes a toolset for improving program

performance, safety, and scalability. //

FOCUS: PARALLELISM ON THE DESKTOP

074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E 	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 17

18	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

the expert in the problem domain, the
programmer understands the concepts
amenable to parallelism as well as the
existing program invariants that must
be preserved, the data and control fl ow
relationships between parts of the pro-
gram, and the current algorithms and
data structures.

Thus, the interactive approach com-
bines the strengths of both the pro-
grammer (domain knowledge, seeing
the big picture) and the computerized
tool (fast search, remember, and com-
pute). The programmer does the cre-
ative part: selecting code and target-
ing it with a transformation. The tool
does the tedious job of checking thread
safety (by traversing through many
functions and aliased variables) and
modifying the program. When the tool
can’t apply a transformation, it provides
feedback within the visual interface of
an IDE such as Eclipse or VisualStudio,
thus allowing the programmer to pin-
point the problematic code.

In the past decade, interactive refac-
toring tools have revolutionized how
programmers approach sequential pro-
gramming. Without these tools, they
often overdesigned their software be-

cause it was expensive to change the
design once implemented. Refactoring
tools let programmers continuously
explore the design space of large code
bases while preserving existing behav-
ior. Modern IDEs incorporate refactor-
ing in their top menu and often com-
pete on the basis of refactoring support.

When it comes to parallel program-
ming, interactive tools likewise enable
programmers to safely and effi ciently
explore the space of performance opti-
mizations and parallel constructs while
preserving existing functionality. Tests
of our current refactoring toolset for
improving thread safety, throughput,
and scalability support this predic-
tion. Our toolset reduces the burden of
analyzing and modifying code, is fast
enough to be used interactively, and
correctly applies transformations that
open source developers often overlook.

A refactoring toolset for parallelism
has several points of interaction with
the programmer, who is ultimately re-
sponsible for identifying all shared data
or compute-intensive code and target-
ing it with the appropriate refactoring.
As illustrated in Figure 1, the program-
mer fi rst selects some code and a tar-

get refactoring. The tool then analyzes
the transformation’s safety. By default,
the refactoring tool applies the changes
only when its analysis determines that
it’s safe to do so. If some of the pre-
conditions aren’t met, the tool raises
warnings and highlights the problem-
atic code. The programmer can decide
to cancel the refactoring, fi x the code
and rerun the refactoring, or proceed
despite the warnings.

Our growing toolset7–9 of refactor-
ings for parallelism lets programmers
explore the parallelism space along
three axes: thread safety, through-
put, and scalability. The experience
with replicating refactoring scenarios
performed by open source developers
shows that automation is useful. It also
shows that we need to go further.

In the past, refactoring was
traditionally associated with improving
the code’s structure, thus making the
code more readable and reusable, even
across different platforms. With refac-
torings for parallelism, the new code is
likely to be less readable. Note how the
parallel code in Figure 2 (on the right-
hand side) hides the original code’s in-
tent, thus increasing its complexity and
decreasing the productivity of the pro-
grammers who need to maintain it. The
new code is also less portable because
it’s fi ne-tuned for a particular platform.

 I envision smart IDEs that treat
refactorings for performance intelli-
gently, in ways that improve both the
readability and portability of the paral-
lel code. Furthermore, refactoring tools
could also suggest transformations that
achieve maximum program perfor-
mance. For this, they will need to work
in tandem with other tools (such as
compilers and performance profi lers).

Improving Programmer Productivity
When refactoring sequential programs,
programmers usually throw away the
old code and keep the new. But when
refactoring for performance, they want
to keep both and be able to navigate

Selects code and refactoring1

Analyzes safety2
Shows
preview

3

Fixes race2.1

Ignores warning2.2

Tool

Tool

Tool

Safe?
YesNo

Con�rms/overrides4

Rewrites
Sequential —> parallel

5

FIGURE 1. An interactive refactoring tool. There are three points of interaction: the

programmer selects a code snapshot and targets it for parallelism with a transformation, the

programmer then validates whether the safety warnings raised by the tool are genuine, and

fi nally, the programmer confi rms the edits that the tool applies.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 19

back and forth between the two forms.
A smart IDE that treats refactor-

ings as first-class program transforma-
tions can automatically record them as
the programmer applies them. Subse-
quently, these transformations can serve
as explicit documentation about how a
piece of code evolved, making the pro-
gram easier to understand. Advanced
refactoring engines like Eclipse already
provide this recording capability.

The IDE can also provide two views
of the same code: sequential and par-
allel. The programmer would use the
sequential view to understand the pro-
gram, fix bugs, or add new features,
and use the parallel view for perfor-
mance debugging. Annotations to the
code in the sequential view would in-
dicate that a programmer has applied
a performance refactoring. For the ex-
ample in Figure 2, the refactoring could
leave an @Parallel annotation in front of
each loop. By asking the IDE to expand
this annotation, the programmer could
view the parallel code.

Improving Code Portability
When programmers need to squeeze
the last bit of performance out of their
software, they often resort to platform-
specific transformations that take into
account hardware characteristics, such
as the number of cores, available mem-
ory (its size and whether it’s shared or
distributed), cache line sizes, and so on.

With current methods, such plat-
form-specific transformations are em-
bedded deep within the code, mak-
ing the code less portable. To migrate
to a new platform, the programmer
needs to first undo the platform-spe-
cific transformations, get the platform-
independent code, and then apply new
transformations.

Smart IDEs that understand explicit
parallel transformations can make par-
allel code more portable because the
same transformation can have several
platform-specific implementations. For
example, a programmer might refactor

a loop for parallelism, with different
transformations for running the code
on a gaming console, a GPU, a general-
purpose shared-memory computer, or
a distributed system. In such a case,
the refactoring tool would provide sev-
eral alternative implementations of the
same transformation. The program-
mer would maintain the portable code,
which is annotated with transforma-
tions, and switch to the platform-spe-
cific view when needed.

Improving Performance
When deciding what to parallelize,

programmers use their domain knowl-
edge along with other tools to identify
performance bottlenecks. Currently,
there’s a gap between performance tools
and refactoring tools: after determin-
ing what to parallelize, a programmer
still doesn’t know which of the several
potential refactorings would yield the
best performance. A more focused in-
teraction between refactoring tools and
the other tools in the toolbox could fill
up this gap. For example, refactoring
tools could take feedback from perfor-
mance tools such as hardware monitors
or profilers. After running a program

F
O
C
U
S
: M

U
LT

IP
A

R
A

D
IG

M
 P

R
O

G
R

A
M

M
IN

G

F
O
C
U
S
: M

U
LT

IP
A

R
A

D
IG

M
 P

R
O

G
R

A
M

M
IN

G

F
O
C
U
S
: M

U
LT

IP
A

R
A

D
IG

M
 P

R
O

G
R

A
M

M
IN

G

F
O
C
U
S

M
U

LT
IP

A
R

A
D

IG
M

P

R
O

G
R

A
M

M
IN

G

F
O
C
U
S

M
U

LT
IP

A
R

A
D

IG
M

 P
R

O
G

R
A

M
M

IN
G

OTHER REFACTORING
TOOLS FOR PARALLELISM

The	earliest	work	on	interactive	tools	for	parallelization	grew	out	of	the	Fortran	commu-
nity	and	targeted	loop	parallelization.	Interactive	tools	like	ParaScope1	and	SUIF	Explor-
er2	relied	on	the	user	to	specify	which	loops	to	interchange,	align,	replicate,	or	expand.	
The	tool	computed	and	displayed	to	the	programmer	information	such	as	dependence	
graphs,	but	this	work	addressed	numerical	computation	on	scalar	arrays	and	didn’t	deal	
with	the	sharing	through	the	heap	prevalent	in	object-oriented	programs.

Reentrancer3	is	a	recent	refactoring	tool	developed	at	IBM	for	making	code	reen-
trant.	Reentrancer	changes	global	data	stored	in	static	fields	into	thread-local	data.	The	
refactoring	for	reentrancy	can	be	seen	as	an	enabling	refactoring—that	is,	it	makes	ac-
cesses	to	global	data	thread-safe.	We	have	manually	performed	this	refactoring	several	
times	when	eliminating	writes	to	the	global	shared	objects	discovered	by	our	tool.4

Robert	Fuhrer5	proposes	five	concurrency	refactorings	for	the	X10	programming	
language	for	server	computing	on	networked	nodes	with	distributed	memory.	X10	intro-
duces	several	high-level	parallel	constructs	(such	as	asynchronous	tasks	and	clocks).	
The	proposed	set	of	refactorings	converts	sequential	code	to	make	use	of	these	parallel	
constructs.

The	Photran6	project	also	plans	to	support	several	concurrency	refactorings	for	
high-performance	computing	in	Fortran.

References
	 1.	 K.	Kennedy,	K.S.	McKinley,	and	C.W.	Tseng,	“Interactive	Parallel	Programming	Using	the	Parascope	

Editor,”	IEEE Trans. Parallel and Distributed Systems,	vol.	2,	no.	3,	1991,	pp.	329–341.	
	 2.	 S.-W.	Liao	et	al.,	“Suif	Explorer:	An	Interactive	and	Interprocedural	Parallelizer,”	Proc. 7th ACM

SIGPLAN Symp. Principles and Practice of Parallel Programming,	ACM	Press,	1999,	pp.	37–48.	
	 3.	 J.	Wloka,	M.	Sridharan,	and	F.	Tip,	“Refactoring	for	Reentrancy,”	Proc. 7th Joint Meeting European

Softare Eng. Conf. and the Int’l Symp. Foundations of Software Eng.	(ESEC/FSE),	ACM	Press,	2009,	
pp.	173–182.	

	 4.	 D.	Dig	et	al.,	ReLooper: Refactoring for Loop Parallelism,	tech.	report,	Dept.	Computer	Science,	Univ.	
Illinois	at	Urbana-Champaign,	Sept.	2009;	http://hdl.handle.net/2142/14536.	

	 5.	 R.	Fuhrer	and	V.	Saraswat,	“Concurrency	Refactoring	for	x10,”	Proc. 3rd ACM Workshop Refactoring
Tools,	ACM	Press,	2009.

	 6.	 M.	Méndez	et	al.,	“A	Catalog	and	Classification	of	Fortran	Refactorings,”	Proc. 11th Symp. Software
Eng.	(ASSE	2010),	2010;	www.fortranrefactoring.com.ar/papers/39jaiio-asse-20.pdf.

20	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

and detecting performance “smells”
that indicate bottlenecks, a smart IDE
could suggest several refactorings. The
programmer in the loop could make in-
formed decisions about which refactor-
ings to apply. The runtime information
would also complement the imprecise
static analysis of refactoring tools.

Refactoring tools could also provide
explicit knobs for other tools. For ex-
ample, parallelizing a sequential divide-
and-conquer algorithm requires the pro-
grammer to specify the cut-off threshold
between the sequential and the parallel
case. The programmer could provide an
initial starting point, and the refactor-
ing tool could hook into an autotuner
to find the value that maximizes the
performance. Even more radically, an
autotuner could mix and match several
refactorings and select the combination
that yields the best performance.

Refactoring tools and compilers
ought to complement rather than com-
pete with each other. In cases when the
compiler can’t automatically parallelize
a program, it could provide informa-
tion that the refactoring tool and pro-
grammer can use to get the job done.

Our Refactoring
Toolset for Parallelism
To turn this vision into reality, we first
asked the question, “What parallel-
izing program transformations occur

most often in practice?” To answer
it, we conducted a quantitative and
qualitative study13 of five open source
programs whose developers had par-
allelized them manually (two Eclipse
plugins, JUnit, Apache Tomcat server,
and Apache MINA library).

We found that parallelizing trans-
formations aren’t random but, rather,
fall into four categories:

• those that improve thread safety
(that is, the application behaves ac-
cording to its specification even when
executed under multiple threads);

• those that improve latency (that
is, an application feels more
responsive);

• those that improve throughput (that
is, the program executes more com-
putational tasks per unit of time);
and

• those that improve scalability (that
is, performance increases with the
addition of more cores).

The industry trend is to attack the
problem of introducing parallelism by
using a parallel library or framework.
For example, Microsoft provides the
Task Parallel Library (TPL) for .NET,
Intel provides Threading Building
Blocks (TBB) for C++, and Java con-
tains ForkJoinTask and ParallelArray.
All these libraries have comparable fea-

tures, and much of the complexity of
writing parallel code (for example, bal-
ancing the computation load among the
cores) is hidden within them. Libraries
also provide highly scalable thread-safe
collections (such as ConcurrentHashMap),
plus lightweight tasks—thread-like en-
tities but with much lower overhead for
creation and management.

Our current refactoring toolset
uses Java libraries and is implemented
on top of Eclipse’s refactoring engine.
Thus, it offers all the practical fea-
tures that programmers love: integra-
tion in an IDE, change previews, and
undo. It currently automates six refac-
torings that fall into three categories:
thread safety, throughput, and scal-
ability. These refactorings often require
transformations that span multiple
nonadjacent program statements and
require analyzing the program’s con-
trol and data flow. Also, the refactor-
ing tools must be able to analyze and
detect shared objects in object-oriented
programs that contain a web of heap-
allocated objects interconnected to
other objects through their fields.

Several researchers13–15 recommend
approaching the process by first making
the code right (that is, thread-safe), then
making it fast (that is, multi-threaded),
and then making it scalable. I discuss
our refactoring toolset in that order.

Refactorings for Thread Safety
To prepare or enable the program for
parallel execution, the programmer
must find the mutable data that will be
shared. He or she can decide to synchro-
nize accesses to such data, make it im-
mutable, or eliminate the sharing. Our
toolset supports two refactorings for
synchronizing accesses: one7 converts an
int field to an AtomicInteger, a java.util.concurrent
(j.u.c.) library class that provides atomic
operations for field updates. The second
converts a HashMap field into a Concurrent
HashMap, a thread-safe implementation for
working with hashmaps.

An alternate way to make a whole

FIGURE 2. The ParallelArray library. The preview shows the sequential code on the left-hand

side; the right-hand side shows all the changes that need to be applied.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 21

class thread-safe is to make it immu-
table. An immutable class, once prop-
erly constructed, is thread-safe by
default and so can be shared among
several threads with no need for
synchronization.

Our refactoring toolset enables
the programmer to convert a mutable
class into an immutable one by mak-
ing the class and all its fi elds fi nal, so
that they can’t be assigned outside
constructors and fi eld initializers. The
tool fi nds all mutator methods in the
class—that is, methods that directly
or indirectly mutate the internal state
(as given by its fi elds)—and converts
them into factory methods that return
a new object whose state is the old state
plus the mutation. Java programmers
have seen such methods in immutable
classes such as String, where the opera-
tions replace(oldChar, newChar) or toUpperCase()
return a new String with some characters
replaced.

Next, the tool fi nds the objects that
either enter from outside (for example,
as method parameters) and become
part of the state or are already part
of the state and escape (for example,
through return statements). It clones
these objects so that a client class hold-
ing a reference to these state objects
can’t mutate them. Finally, the tool
updates the client code to use the class
in an immutable fashion. For exam-
ple, when the client invokes a factory
method, the tool reassigns the reference
to the immutable class to the object re-
turned by the factory method (for ex-
ample, a reference to myString is assigned
to myString.toUpperCase()).

To evaluate the usefulness of auto-
mation, we ran this refactoring tool on
346 classes from known open source
projects.8 We also studied how open
source developers refactor manually.
The results showed that the refactor-
ing is widely applicable and that sev-
eral of the manual refactorings aren’t
correct (the code contains subtle muta-
tions and non-cloned entering or escap-

ing objects), whereas our tool is safer.
Furthermore, refactoring with our tool
is fast (2.3 seconds per class) and saves
the programmer from having to ana-
lyze 84 methods and change on average
42 lines per refactored class.

Refactorings for Throughput
Once a program is thread-safe, multi-
threading can improve its performance.
The programmer could manage a raw
thread manually (that is, create, spawn,
and wait for results) or use a light-
weight task managed automatically by
a framework (a programmer-friendlier
construct). Our toolset supports two
such refactorings. One7 converts a se-
quential divide-and-conquer algorithm
into an algorithm that solves the recur-
sive subproblems in parallel using Java’s
ForkJoinTask framework.14 Another paral-
lelizes loops over arrays via Parallel-
Array,14 a parallel library in Java. Using
this library, the programmer can apply
a procedure to each element or reduce
all elements to a new element in parallel.
The library balances the load among the
cores it fi nds at runtime.

The refactoring changes the array’s
data type and supersedes loops over
the array elements with the equivalent
parallel operations from the Parallel-
Array library. In the example in Figure
2, the fi rst loop replaces each element
with another random element; thus, the
tool supersedes the loop with the replace-
WithGeneratedValue parallel operation. The
second loop applies the moveBy function
to each element; thus, the tool super-
sedes the loop with the apply parallel
operation.

Each parallel operation takes as an

argument an element operator (lambda
function or a closure) and applies it on
each element. Since Java doesn’t sup-
port closures, the tool extracts the
statements from the original loop and
wraps them within the op method of an
Operator class. The tool chooses the cor-
rect operator among a class hierarchy
with 132 classes.

At the heart of the tool lies a data-
fl ow analysis that identifi es objects
shared among loop iterations and de-
tects writes to them. The analysis works
with programs in both source code and
byte code (for example, .jar-packaged li-
braries). When the analysis fi nds writes
to a shared object, it presents the pro-
grammer with a “program slice” of
code statements that refer to the object
being shared and indicate the write ac-
cess. These statements are hyperlinked
to the original source code, which helps
the developer fi nd the problematic code.

For empirical evaluation, we used
the tool to parallelize compute-inten-
sive loops in seven real programs.9 The
results show that the analysis is fast (20
seconds/refactoring) and effective. It
found several real races in the analyzed
programs. Automation saves the pro-
grammer from analyzing 420 methods
per refactoring. On average, the paral-
lelized code was 2.75 times faster on a
quad-core computer.

Refactorings for Scalability
You don’t want to sacrifi ce thread
safety and correctness in the name of
performance, but a naive synchroniza-
tion scheme can lead to serializing an
application, thus drastically reducing
its scalability. This usually happens

ABOUT THE AUTHOR

DANNY DIG is	a	research	professor	at	the	University	of	Illinois	at	Urbana-
Champaign	(UIUC),	where	he	works	on	software	evolution.	His	other	research	
interests	include	automated	refactoring,	program	analysis,	and	concurrency/
parallelism.	Dig	has	a	PhD	from	UIUC	,	where	his	dissertation	on	automated	
software	upgrades	won	the	best	PhD	thesis	award.	Contact	him	via	http://
netfi	les.uiuc.edu/dig/www.

22	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

when working with low-level synchro-
nization constructs such as locks, the
goto statements of parallel program-
ming. Locks are tedious to work with
and error-prone; too many slow down
or deadlock a program, while too few
lead to data races.

When possible, a better alternative
is to use a highly scalable data struc-
ture provided by parallel libraries. Our
toolset supports two such refactorings.
One converts an int into an AtomicInte-
ger, a lock-free data structure that uses
compare-and-swap hardware instruc-
tions, and the other converts a HashMap
field to a ConcurrentHashMap. If a class con-
tains a HashMap field that is read/writ-
ten in parallel, it must synchronize the
accesses to the map. To accomplish
this, the programmer can use a com-
mon lock or a synchronized wrapper
over a HashMap (for example, Collections.
synchronizedMap(aMap)). Both the synchro-
nized and wrapped HashMap achieves its
thread safety by protecting all accesses
to the map with a common lock. This re-
sults in poor scalability, since multiple
threads trying to access different parts
of the map simultaneously wind up con-
tending for the lock.

A better alternative is to refactor the
map field into a ConcurrentHashMap, a thread-
safe, highly scalable implementation for
hash maps provided by the j.u.c. library.
(All readers run in parallel, and a lim-
ited number of writers can run in par-
allel.) The refactoring replaces map up-
dates with calls to ConcurrentHashMap APIs.
For example, a common update opera-
tion is to first check whether a map con-
tains a certain key, create the value ob-
ject if it isn’t present, and place the (key,
value) in the map. The tool replaces
such an updating pattern with a call to
putIfAbsent of the ConcurrentHashMap, which
executes the update atomically, without
locking the entire map.

To evaluate our tool’s usefulness, we
used it to perform the same 77 refac-
torings that some open source develop-
ers performed manually.7 The compari-

son shows that the manual refactorings
were frequently incomplete. For exam-
ple, in 33 out of 73 cases, the develop-
ers forgot to replace compound updates
with the putIfAbsent API.

B uilding this refactoring toolset
taught us several lessons. First,
programmers often use paral-

lel libraries, so refactoring tools need to
support such libraries. Second, to keep
the programmer engaged, refactoring
tools need to finish their operations in
less than 30 seconds, so they must use
efficient, on-demand program analyses.
Third, program analysis libraries and
IDEs with excellent AST rewriting capa-
bilities are essential for building refac-
toring tools. Fourth, once a program
is parallel, it must stay maintainable,
that is, remain readable and portable.
Finally, refactoring tools must interact
with other tools in the parallel toolbox.

Although the currently implemented
refactorings are among the most com-
monly used in practice,13 we need many
more. We’re constantly expanding the
number of refactorings, inspired by the
problems that industry practitioners face
every day when they parallelize their
programs. In addition, we plan to tackle
the problems of readability, portability,
and interactivity with other performance
tools. Although our examples and refac-
torings use Java and Eclipse, they’re
representative for other object-oriented
languages like C++ and C# that have
similar shared-memory thread-based
parallelism and libraries, and can also be
accomplished in other environments.

Acknowledgments
This work is partially funded by Intel and
Microsoft through the Universal Parallel
Computing Research Center at the Univer-
sity of Illinois (UPCRC Illinois). I thank Paul
Adamczyk, Nicholas Chen, Milos Gligoric,
Ralph Johnson, Fredrik Kjolstad, Jeff Over-
bey, Cosmin Radoi, and the anonymous re-
viewers for providing valuable feedback on
drafts of this article.

References
 1. D.J. Kuck, “Automatic Program Restructuring

for High-Speed Computation,” Proc. Conf.
Analysing Problem Classes and Programming
for Parallel Computing, Springer, 1981, pp.
66–84.

 2. F. Allen et al., “An Overview for the Ptran
Analysis System for Multiprocessing,” J. Par-
allel and Distributed Computing, vol. 5, no. 5,
1988, pp. 617–640.

 3. R. Allen, D. Callahan, and K. Kennedy,
“Automatic Decomposition of Scientific
Programs for Parallel Execution,” Proc. 14th
ACM SIGACT-SIGPLAN Symp. Principles of
Programming Languages, ACM Press, 1987,
pp. 63–76.

 4. S.P. Amarasinghe et al., “An Overview of a
Compiler for Scalable Parallel Machines,”
Proc. 6th Int’l Workshop Languages and
Compilers for Parallel Computing, Springer,
1993, pp. 253–272.

 5. K. Kennedy, K.S. McKinley, and C.W. Tseng,
“Interactive Parallel Programming Using the
Parascope Editor,” IEEE Trans. Parallel and
Distributed Systems, vol. 2, no. 3, 1991, pp.
329–341.

 6. S.-W. Liao et al., “Suif Explorer: An Interac-
tive and Interprocedural Parallelizer,” Proc.
7th ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming, ACM
Press, 1999, pp. 37–48.

 7. D. Dig, J. Marrero, and M.D. Ernst, “Refac-
toring Sequential Java Code for Concurrency
via Concurrent Libraries,” Proc. 31st Int’l
Conf. Software Eng. (ICSE), IEEE Press,
2009, pp. 397–407.

 8. F. Kjolstad et al., “Refactoring for Immuta-
bility,” to appear in Proc. 33rd Int’l Conf.
Software Eng. (ICSE), IEEE Press, 2011.

 9. D. Dig et al., ReLooper: Refactoring for
Loop Parallelism, tech. report, Dept. Com-
puter Science, Univ. of Illinois at Urbana-
Champaign, Sept. 2009; http://hdl.handle.
net/2142/14536.

 10. J. Wloka, M. Sridharan, and F. Tip,
“Re factoring for Reentrancy,” Proc. 7th
Joint Meeting European Soft. Eng Conf.
and the Int’l. Symp. Foundations Software
Eng. (ESEC/FSE), ACM Press, 2009,
pp. 173–182.

 11. R. Fuhrer and V. Saraswat, “Concurrency
Refactoring for x10,” Proc. 3rd ACM Work-
shop Refactoring Tools, ACM Press, 2009.

 12. M. Méndez et al., “A Catalog and Classi-
fication of Fortran Refactorings,” Proc.
11th Symp. Software Eng. (ASSE 2010),
2010; www.fortranrefactoring.com.
ar/papers/39jaiio-asse20.pdf.

 13. D. Dig, J. Marrero, and M. D. Ernst,
“How Do Programs Become more Con-
current? A Story of Program Transforma-
tions,” tech. report, Computer Science
and Artificial Intelligence Laboratory,
 MIT, Sept. 2008; http://hdl.handle.
net/1721.1/42832.

 14. D. Lea, Concurrent Programming in
Java, Addison-Wesley, 2000.

 15. B. Goetz et al., Java Concurrency in
Practice, Addison-Wesley, 2006.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

