
32	 IEEE SOFTWARE // PUBLISHED BY THE IEEE COMPUTER SOCIET Y � 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

PARALLELIZATION IS THE PROCESS
OF decomposing a large computation
into smaller parts and simultaneously
executing those smaller parts to reduce
overall processing time. Despite its po-
tential performance benefits, parallel
computing has long been a program-
ming nightmare for software develop-
ers because it requires developers to en-
vision the original problem as smaller,
somewhat independent subproblems
and then carefully analyze the depen-

dencies among those pieces. Even when
the designer has met this theoretical
challenge, practical challenges—such as
implementing synchronization mecha-
nisms, scheduling subproblems, and
countless hours of debugging—remain.

So, what about desktop paralleliza-
tion? We’re no longer discussing paral-
lelizing trivial scientific and engineering
applications with large amounts of ob-
vious and repetitive inherent parallel-
ism (it’s easy to envision these applica-

tions’ smaller subproblems). We’re now
in the realm of irregularly structured
computations with short runtimes. To
add further complication, we execute
these applications on nondedicated and
unknown target systems (is the system
a uniprocessor, quad-core processor,
or many-core processor?). The more ef-
fort developers invest in expressing the
problem’s inherent parallelism, the more
effort they require to realize it: more
subproblem decomposition, more code
restructuring, more synchronization,
and more debugging. If they invest any
less effort in realizing the inherent par-
allelism, the performance is punished
accordingly.

Unfortunately, it gets even more
complex for desktop applications. Us-
ers generally expect feedback on exe-
cuting tasks, even intermittent updates
on partially complete ones (such as a
progress bar). Consequently, a desktop
application’s performance is primarily
user perceived. We want a responsive,
interactive application, even if the ap-
plication executes on a single processor.
Because desktop applications are user
driven (unlike batch-type applications),
the user interface’s graphical and inter-
active nature contributes tremendously
to the challenge. Finally, because devel-
opers can’t determine the system speci-
fications that their applications will ex-
ecute on, dynamic runtime support that
adjusts to hardware is vital.

So, how do we simplify desktop
applications’ parallelization? Object-
oriented languages dominate desktop
applications’ development.1 We must
realize parallelization’s benefits in the
realm of such high-level languages,
without resorting to languages like
C or Fortran. Those low-level lan-
guages might be speed-efficient, but
large desktop applications demand the
software engineering benefits associ-

Object-Oriented
Parallelization
of Java Desktop
Programs
Nasser Giacaman and Oliver Sinnen, University of Auckland

// This article explores desktop applications’ structure

and the threading model’s limitations while examining

the parallelization of a desktop application using

object-oriented and GUI-aware concepts. //

FOCUS: PARALLELISM ON THE DESKTOP

 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 33

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

ated with object-oriented languages.
In this article, we address these chal-
lenges by discussing the paralleliza-
tion of an object-oriented desktop
application with a GUI. We start by
examining the rarely discussed chal-
lenges that are unique to GUI desktop
applications—namely, user interactiv-
ity, graphical frameworks’ limitations,
and the large variety of target systems.
Because most desktop applications are
written in object-oriented languages,
we must perform the parallelization in
these languages. We based our paral-
lelization approach, Parallel Task (also
called ParaTask for short), on a unifi ed
task concept that integrates all com-
mon concurrency types.

Desktop Applications’ Anatomy
Figure 1 illustrates a typical desktop
application scenario. A user interacts
with the application to perform various
tasks. Some tasks might execute only
once, while others might execute mul-
tiple times on different data elements
(such as processing a directory full of
fi les in Figure 1a). Some tasks are more
computationally intensive, while oth-
ers are I/O bound—such as an Internet
search (Figure 1b), waiting for user in-
put (Figure 1c), or printing (Figure 1d).
Some tasks may execute independently,
while others might have ordering con-
straints that depend on other tasks’
completion (Figure 1e). We categorize
this into different types of tasks, each
with different behaviors that demand
different handling. To ease the parallel-
ization process, the fi rst step is unifying
these different task concepts into the
same model.

Before attempting to parallelize
desktop applications, we must under-
stand their external and internal com-
position. We’re most familiar with the
external features, which include nu-
merous visual input components (such
as buttons and text fi elds) and output
components (such as labels and prog-
ress bars). It’s this distinguishing GUI

that enables a desktop application to
interact with its users.

What about a desktop application’s
internal structure? The most vital or-
gan is the event loop (see Figure 2a),
which reacts to events (such as a mouse
click) by dispatching them to the appro-
priate event handler (Figure 2b). The
GUI thread, called the event dispatch
thread (EDT) in Java, is solely responsi-
ble for anything GUI-related, from the
external display of visual components
to the internal management of events.
No other thread may perform these
actions—a restriction common to most
desktop and GUI frameworks.2,3 Con-
sequently, if the event loop isn’t pro-
cessing events in a timely fashion, the
application will become unresponsive,
“freeze,” and frustrate users.

To avoid such inanimate behavior,

multithreading has long been neces-
sary for GUI applications to create re-
sponsiveness. On single-processor sys-
tems, multiple threads time-share the
processor and thereby create concur-
rency. The computation is offl oaded to
another thread (Figure 2c) so the GUI
thread can return to the event loop.
Both threads then share the single pro-
cessor, but neither is fully stopped. Al-
though the helping thread executes the
offl oaded computation (Figure 2d), it
may not directly access any GUI com-
ponent (Figure 2e) because the GUI
components aren’t thread-safe (re-
member, the GUI thread is solely re-
sponsible for anything GUI-related).
Consequently, events must be posted
to the GUI thread (Figure 2f) that will
in turn be handled by the GUI thread
(Figure 2g).

Feedback on partially completed tasks

Feedback
on

completed
tasks

? ?

?

Feedback
on

completed
tasks

Feedback on partially completed tasks

a

b

c

d

e

FIGURE 1. Desktop applications involve different types of tasks that require different

implementation approaches. Such tasks include (a) processing a directory of � les,

(b) performing an Internet search, (c) waiting for user input, and (d) printing, while some tasks

(e) can’t execute until others are complete. Another complication is that the system that the

application will run on is unknown.

34	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

So, when multiple processors came
into play, it felt natural to use threads
not only for virtual concurrency and
responsiveness, but for real parallel
execution, where different processors
execute the threads. Unfortunately,
the concept of threads is ill-fi tted to
parallel computing’s diverse demands.
Offl oading a computation to another
thread isn’t enough—you must further
divide and distribute the computation
to multiple threads to keep all the avail-
able cores busy. The problem of manag-
ing threads is elevated and will be a lot
worse when intricate synchronization is
necessary among subtasks to ensure a
logically correct execution of the origi-
nal computation. In other words, desk-
top parallelization incorporates all gen-
eralized parallel computing challenges
together with the challenges of develop-
ing responsive desktop applications.

The Problem with Existing Tools
Threads have been an integral part of
Java since its initial release, so manu-
ally parallelizing a GUI application us-
ing Java Threads has been the norm.
However, this model is unsuitable for
parallelizing desktop applications.
First, Java Threads’ purpose is to fork
a new execution thread at a particular

point in the program. As such, most
independent subproblems don’t neces-
sarily demand a new execution thread.
Rather, we only wish to express that
such a computation can safely be per-
formed asynchronously. In other words,
we merely wish to denote this computa-
tion as a potential task, as opposed to
enforcing a new execution thread for it.

Second, performance consequences
make the Java Threads model unde-
sirable. If the application creates too
few threads, not enough parallelism
is introduced to exploit the number of
cores. Conversely, if the application
creates too many threads, resource con-
tention and scheduling overheads de-
grade performance. Performance issues
aside, the threading model reduces code
legibility because the code migrates to
new threads. Programmers must then
manage any dependencies among the
subcomputations manually. Not only
is this error-prone, it also introduces
coupling among otherwise independent
tasks.

For these reasons, modern paral-
lelization tools have opted for a task-
ing model as opposed to the tradi-
tional threading model: programmers
express independent code snippets as
tasks, and the tool’s runtime system

manages task scheduling. But in most
cases, such as Java’s SwingWorker and
ForkJoinTask, these modern tools are
only improvements on the performance
level. Programmers must still migrate
code, implement dependency handling
among tasks, and avoid I/O bound
tasks. Outside of Java, other modern
parallelization tools include Cilk++,
OpenMP Task, Intel Threading Build-
ing Blocks, Apple’s Grand Central Dis-
patch, X10, and the .NET Task Paral-
lel Library. Although these approaches
are a huge step forward from a man-
ual thread-based parallelization, many
of them aren’t truly object-oriented
and often involve add-ons that aren’t
designed.

More importantly, when it comes to
parallelizing desktop applications, the
primary problem is that none of these
tools consider the structure of GUI ap-
plications. Consequently, the program-
mer is still left with the responsibility
of ensuring that GUI computations are
performed only on the GUI thread, and
that the GUI thread remains free. Fur-
thermore, implementing dependencies
between tasks becomes the program-
mer’s responsibility. This results in a
high amount of coupling among (oth-
erwise independent) tasks and tangling
of parallelization concerns with the ac-
tual business logic. The tangling and
coupling reduce the amount of code re-
use, a principle important to both soft-
ware engineering and object-oriented
programming.

Figure 3 illustrates ParaTask’s per-
formance as compared to typical Java
parallelization approaches by exam-
ining the speedup to the original se-
quential benchmarks on a synthetic
calculation (here, the Newton–Raph-
son method). For fi ne-grained and bal-
anced workloads, Figure 3a shows that
only a manual thread-based implemen-
tation, where the work is preallocated
to the threads, can slightly outperform
ParaTask. However, Figure 3b shows
that this approach doesn’t extend well

FIGURE 2. Structure of a multithreaded GUI desktop application. The parts include

(a) the event loop, (b) the event handler, (c) another thread, (d) an of­ oaded computation,

(e) GUI components, (f) GUI events, and (g) the GUI thread.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

Helper threadGUI thread, event dispatch thread (EDT)

Not allowed

Event queue

Event handler
(mouse click)

Event handler
(data received)

Event handler
(refresh GUI)

Event loop

GUI components

a

Process long
task

d

b

g

c

f

e

 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 35

for unbalanced workloads, requiring a
dynamic runtime scheduling solution.
ParaTask performs most consistently
across different workloads. In numer-
ous other performance evaluations, it
has regularly outperformed other ap-
proaches, and is only occasionally sur-
passed by manual parallelization with
threads or by JCilk for the special case
of a highly recursive and fi ne-grained
workload.

Parallelizing Desktop
Applications with Parallel Task
To address these problems, we pro-
pose ParaTask for the parallelization of
object-oriented desktop applications.4
The ParaTask parallelization tool con-
sists of a source-to-source compiler and
supporting runtime system to manage
tasks. Although ParaTask draws on
standard parallelization concepts, it
unifi es these concepts into an object-
oriented environment. Programmers in-
troduce concurrency with a single key-
word, and the different task concepts
integrate into one model. ParaTask also
supports an intuitive approach to de-
pendency handling and has the unique
feature of focusing on GUI applica-
tions. Here, we’ll walk through paral-
lelizing a GUI application, introducing
the various ParaTask features as we
would use them. The example applica-
tion, ParaImage, provides various func-
tionality such as an online image search
and image editing. Figure 4 shows a
screenshot of the image-editing project
in ParaImage.

Defi ning and Invoking Tasks
Owing to the complications of manu-
ally threading an application (both
in terms of performance and ease of
use), we would like a simple task solu-
tion. Because we’re focusing on object-
oriented applications, we must decide
how we express tasks—using methods
or objects? Choosing objects to repre-
sent tasks doesn’t address threads’ pro-
gramming diffi culties because develop-

ers must still restructure and migrate
the code. For this reason, ParaTask
encapsulates tasks at the method level
and defi nes them with the TASK key-
word. Here is the defi nition of a task
that performs edge detection on an
image:

TASK public Image edgeDetectTask(Image i) {
 // detect the edges
}

This event handler shows the invo-
cation of this task:

public void actionPerformed(ActionEvent e) {
 ...
 for (Image image: selectedImages) {
 TaskID<Image> result = edgeDetectTask(image);
 ...
 }
}

Invoking a TASK is essentially the
same as invoking a standard sequen-
tial method, except that it executes in
parallel to its caller. Because of this
asynchronous behavior, we’ll generally
need a handle on the task invocation
should we wish to synchronize with its
completion (for example, to access the
return result). The TaskID serves this pur-
pose and is essentially a future value
that represents a task invocation.

The actionPerformed method is an event
handler, and as such, the GUI thread
performs it. In a sequential implemen-
tation, the GUI thread would execute
the edge detection in its entirety (the
application freezes during this time).
However, in the parallel mode, the GUI
thread only places the task into the
queue and returns to the event loop.
The tasks are then scheduled for exe-
cution by a team of threads; ParaTask

FIGURE 3. ParaTask performance as compared to typical Java parallelization approaches:

(a) a � ne-grained, balanced workload; (b) an unbalanced workload.

(b) Processor count

16

14

12

10

8

6

4

2

0

Unbalanced workload

Linear speedup
Threads
SpringWorker
ParaTask
JCilk

Sp
ee

du
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) Processor count

16

14

12

10

8

6

4

2

0

Fine-grained and balanced workload

Linear speedup
Threads
SpringWorker
ParaTask
JCilk

Sp
ee

du
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

36	 IEEE SOFTWARE // WWW.COMPUTER.ORG/SOFTWARE

automatically creates and manages an
ideal number of threads to keep each
processing core busy. This means that
invoking multiple tasks is much more
efficient than creating a thread for each
computation.

You’ve probably figured out our next
problem. Now that we’ve offloaded the
task from the GUI thread, how will we
know when the task completes (to up-
date the results to the user)? The first
thing that comes to mind might be to
block on the TaskID:

Image i = result.getResult();

If the task is already complete by
this stage, no problem—the result is al-
ready available. Otherwise, the thread
invoking this call blocks until the task
completes. This behavior is clearly un-
acceptable for the GUI thread. Instead,
we need a way for the GUI thread to be
notified when the task completes—that
is, a nonblocking notification solution:

public void actionPerformed (ActionEvent e) {
 ...
 for (Image image: selectedImages) {
 TaskID<Image> result = edgeDetectTask(image)
 notify(updateGUI(TaskID));
 ...
 }
}

Even though we offload the fil-

ter computation to another thread,
the GUI thread must still update the
GUI. By using the notify clause, the GUI
thread returns to the event loop and
later learns when the task completes.
The methods specified inside the notify
clause and the task definition remain
decoupled:

public void updateGUI(TaskID<Image> id) {
 Image thumbnail = id.getResult();
 // display thumbnail, update progress bar...
}

Dependencies
What happens when a newly invoked
task depends on previous tasks? For ex-
ample, assume the user wishes to per-
form multiple filters on a single image
(the filters should have an accumulat-
ing effect). Maybe the user applies an
edge detection filter and then immedi-
ately applies a blur filter twice. In this
case, there’s a dependency between the
tasks applied on the same image. Using
standard threading libraries, program-
mers would have to manually code for
such dependencies using synchroniza-
tion mechanisms such as wait condi-
tions. Besides being error-prone, this
approach would couple the tasks with
each other. For such cases, we suggest
using the dependsOn clause:

1	 for (Image image: selectedImages) {
2		 TaskIDGroup history = historyMap.get(image);

3
4		 TaskID result = blurTask(image)
5			 notify(updateGUI(TaskID))
6			 dependsOn(history);
7
8			 history.add(result);
9		 }

Each image has a history of fil-
ters (in the form of TaskIDs that make
up the TaskIDGroup, line 2). Whenever
we apply a new filter (that is, a new
task) to an image, that filter will only
apply once the previous filters (tasks)
have completed on the image (line 6).
Otherwise, without this dependency,
the filter will be applied on the origi-
nal image (rather than be accumulated
on the previous filters). Once the task
is invoked, it’s then added to the im-
age’s history (line 8) so that other
future tasks will wait for it to com-
plete. Deadlocks can’t happen with
dependsOn, because dependency cycles
can’t be created. Unlike the fork-join
model, this model requires dependen-
cies within a task to be explicit (that
is, there is no implicit barrier). Because
ParaTask is a substitute for threads,
and threading libraries don’t impose
such an implicit barrier, ParaTask also
doesn’t impose this restriction.

Interactive Tasks
Let’s now consider a task that isn’t com-
putationally intensive—maybe the task
performs an online search as in Figure
1b. In this situation, assigning such a
task to a worker thread is undesirable if
there are other computationally inten-
sive tasks that would make better use
of the thread (see the “Further Read-
ing on Desktop Parallelization” sidebar
for more information). ParaTask lets us
identify such tasks using the INTERACTIVE_
TASK keyword:

INTERACTIVE_TASK public List<Image>
		 searchTask(String query) {
	 // perform internet search
}

FURTHER READING
ON DESKTOP
PARALLELIZATION
For a discussion on issues such as responsiveness and the GUI thread, see Herb
Sutter’s “The Pillars of Concurrency” (Dr. Dobbs Journal, 2 July 2007;
www.drdobbs.com/high-performance-computing/200001985).

For a discussion on task sizes and dependencies, see Herb Sutter’s “Use Thread
Pools Correctly: Keep Tasks Short and Nonblocking” (Dr. Dobbs Journal, 13 Apr. 2009;
www.drdobbs.com/high-performance-computing/216500409).

To download Parallel Task or Parallel Iterator (under GPL license), including
source files, example applications, documentations, publications, an Eclipse plug-in,
and tutorials, visit www.parallelit.org.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 37

The difference between interac-
tive and standard tasks is that the for-
mer don’t queue to the worker threads.
Other than this, ParaTask treats inter-
active tasks the same as standard tasks
(for example, you can still use the de-
pendsOn clause and other features). This
allows for a unifi ed tasking model,
meaning that the concepts behind the
threading model integrate into the task-
ing model.

Interim Results, Progress,
and Canceling
Sometimes, we might want to display
partially complete tasks to the user—
for example, showing the images re-
trieved so far rather than having to
wait until they’ve all arrived. ParaTask
extends the notify clause concept with
the notifyInterim clause:

1 public void actionPerformed(ActionEvent e) {
2 ...
3 currentSearchID = searchTask(query)
4 notify(searchCompleted())
5 notifyInterim(receivedAnotherImage
 (TaskID,Image));
6 ...
7 }

Just like with the notify clause, the
GUI thread executes the methods in-
side the notifyInterim clause. The current-
SearchID (line 3) represents the TaskID for
the current search being performed.
It’s declared globally to keep it in scope
should the search be canceled. The
receivedAnotherImage method (line 5) is de-
fi ned to update the panel with a new
thumbnail and overall progress:

private void receivedAnotherImage(TaskIDid,
 Image image) {
 panel.addImage(image);
 progressBar.setValue(id.getProgress());
}

We now explore the code behind
searchTask. We update task status and
check for cancel requests:

1 INTERACTIVE_TASK public List<Image>
searchTask(String query) {
2 List<Image> results = new
 ArrayList<Image>();
3
4 PhotoList pList = Flickr.getPhotoIDs(query);
5
6 for (int i = 0; i < pList.size(); i++) {
7 Image thumb = Flickr.getThumbnail(pList.
 get(i));
8 results.add(thumb);
9
10 if (CurrentTask.cancelRequested()) {
11 CurrentTask.setProgress(100);
12 return results;
13 } else {
14 CurrentTask.setProgress(++i/pList.
 size()*100);
15 CurrentTask.publishInterim(thumb);
16 }
17 }
18 return results;
19 }

The fi rst part of the search involves
retrieving a list of IDs for images that
match the search criteria (line 4). For
each of the IDs, the task retrieves the
actual image (line 7) and saves it to the
result set (line 8). The task then checks
to see whether a cancel request has been
submitted (line 10). If so, it returns the
current result set (line 12). Otherwise,

the task computes its new progress (line
14) and publishes the newly retrieved
image (line 15). All these features (the
canceling check, progress updates, and
publishing of interim results) perform
without the task’s knowledge of other
code. Such canceling is also essential
for implementing exception handlers.

Multitasks
Data parallelism is a common form of
parallelism where the same computa-
tion is to be performed multiple times
(see Figure 1a). The problem with in-
voking a task multiple times is that we
wouldn’t get any sense of group aware-
ness among the multiple invocations.
We prefer to invoke a task once, yet
that task is automatically invoked mul-
tiple times. ParaTask’s multitask con-
cept is perfect for such situations, al-
lowing the subtasks to determine their
position in the group (lines 2 and 4)
and a barrier to synchronize with the
sibling subtasks (line 12). We defi ne a
multitask using the following code:

1 TASK(*) public void multiTask(ParIterator<File>
 pi) {
2 int myPos = CurrentTask.relativeID();
3 print(“Hello from sub-task“+myPos);
4 int numTasks = CurrentTask.multiTaskSize();
5 if (myPos == 0)

FIGURE 4. ParaImage, a GUI application developed using ParaTask, involves many of the

different parallelization concepts discussed in Figures 1 and 2.

38	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

6 print(“Multi-task has “+numTasks+”
 sub-tasks.”);
7 ...
8 while (pi.hasNext()) {
9 process(pi.next());
10 }
11 ...
12 CurrentTask.barrier();
13 ...
14 }

Whereas a standard task is anno-
tated with TASK, we annotate a multitask
with TASK(*), meaning that it’s created

once for every worker thread. Alterna-
tively, annotating the multitask with
any integer n (instead of *) will create
n tasks. The ParIterator (line 1) refers to
the Parallel Iterator concept,5 which es-
sentially extends the Java-style sequen-
tial iterator to allow the parallel traverse
of an arbitrary collection of elements.
Parallel Iterator is particularly useful in
combination with ParaTask’s multitask
feature; the programmer doesn’t need to
create threads (done by ParaTask’s mul-
titask) or distribute elements (done by
the Parallel Iterator).

P araTask and Parallel Iterator
aim to achieve a truly object-
oriented approach to parallel

programming by integrating differ-
ent task concepts into the same model,
minimizing code restructuring, and
promoting code reuse. Various perfor-
mance benchmarks exist for both Par-
allel Task and Parallel Iterator, showing
that developers have introduced these
concepts without sacrifi cing perfor-
mance. Comparing their performance
to different parallelization approaches
using various benchmarks shows that
they create low overhead and high
speedups. Developers have used Par-
allel Iterator and ParaTask in creating
several applications (such as a paral-
lel graph library, image application,
PDF application, and Web interaction),
many of which are available for down-
load at www.parallelit.org.

Future work for both ParaTask and
Parallel Iterator includes optimizing
runtime to improve speed and intro-
ducing memory awareness for schedul-
ing—for example, to avoid false shar-
ing by seeing how cache effects and
NUMA (Non-Uniform Memory Ac-
cess) systems affect performance.

References
 1. TIOBE Software, “TIOBE Programming

Community Index,” Nov. 2010;
www.tiobe.com/tpci.htm.

 2. E. Ludwig, “Multithreaded User Interfaces in
Java,” doctoral dissertation, Dept. Math-
ematics and Computer Science, Univ. of
Osnabrück, 2006.

 3. H. Muller and K. Walrath, “Threads and
Swing,” Oracle Sun Developer Network,
Apr. 2008; http://java.sun.com/products/jfc/
tsc/articles/threads/threads1.html.

 4. N. Giacaman and O. Sinnen, “Parallel Task
for Parallelizing Object-Oriented Desktop Ap-
plications,” 2010 IEEE Int’l Symp. Parallel &
Distributed Processing, Workshops and PhD
Forum (IPDPSW), IEEE CS Press, 2010,
pp. 1–8.

 5. N. Giacaman and O. Sinnen, “Parallel Iterator
for Parallelizing Object-Oriented Applica-
tions,” Int’l J. Parallel Programming, Sept.
2010, doi:10.1007/s10766-010-0150-5.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

NASSER GIACAMAN is a postdoctoral research fellow in the
Department of Electrical and Computer Engineering at the University
of Auckland and a lecturer in the university’s software engineering
program. His research interests include parallel computing for desktop
environments and source-to-source compilers. Giacaman received his
PhD in desktop parallelization from the University of Auckland. Contact
him at ngia003@aucklanduni.ac.nz.

OLIVER SINNEN is a senior lecturer in the Department of Electrical
and Computer Engineering at the University of Auckland. His research
interests include parallel computing, scheduling, reconfi gurable com-
puting, graph theory, and algorithm design. Sinnen received his PhD
in electrical and computer engineering from Instituto Superior Técnico
(IST), Technical University of Lisbon. He authored the book Task
Scheduling for Parallel Systems (Wiley, 2007). Contact him at
o.sinnen@auckland.ac.nz.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

Log on to our Web site to

 • Search our vast archives

 • Preview upcoming topics

 • Browse our calls for papers

 • Submit your article for

 publication

 • Subscribe or renew

www.computer.org/software

