
14 IEEE SOFTWARE // PUBLISHED BY THE IEEE COMPUTER SOCIET Y � 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

THE COMPUTER INDUSTRY IS EX-
PERIENCING a major shift: improved
single-processor performance via
higher clock rates has reached its tech-
nical limits due to overheating. Fortu-
nately, Moore’s law still holds, so chip
makers use transistors to boost per-
formance through parallelism. Mod-
ern chips consist of multiple micro-
processors (also called cores), buses,
and cache memory on the same chip.
As of this writing, desktop proces-
sors already have up to six cores, but
this number will likely increase. Server
processors such as Intel’s Single Chip
Cloud Computer demonstrate that
it’s possible to integrate 48 general-
purpose processors on just 567 mm².
The record, however, is held by many-
core graphics cards with processors
that have hundreds of specialized
cores, simultaneously executing tens
of thousands of hardware threads. In
fact, multicore general-purpose pro-

cessors and manycore graphic proces-
sors are the de facto standard for every
modern desktop or laptop computer.

Exploiting the full hardware poten-
tial of these processors requires parallel
programming. Thus, a large number of
developers need to parallelize desktop
applications, including browsers, busi-
ness applications, media processing,
and other domain-specifi c applications.
This is likely to result in the largest re-
write of software in the history of the
desktop. To be successful, systematic
engineering principles must be applied
to parallelize these applications and
environments. In light of these devel-
opments, we’re pleased to present this
special issue on programming meth-
ods, tools, and libraries for paralleliz-
ing desktop applications.

The Rise of Multicore
and Manycore Processors
Let’s revisit history for a moment to un-

derstand why multicore and manycore
processors are here to stay and why
software must catch up. Between 1986
and 2004, microprocessor manufactur-
ers used transistors to develop more
complex pipelines that increased clock
rates even faster than semiconduc-
tor scaling alone would allow. The in-
crease in silicon real estate also allowed
for more sophisticated processor archi-
tectures with speculative execution. All
of these factors allowed the desktop
programmer to simply write sequen-
tial code that principally executed in
a single thread of control and still see
dramatic performance improvements.
But after nearly 20 years, this run of
good luck came to an abrupt halt as
high clock frequencies pushed power
dissipation beyond the limits of eco-
nomical integrated circuit packages.

This upper limit on power budgets
back-propagated to constrain clock fre-
quencies and limit speculative execution

Parallelism
on the
Desktop

FOCUS: GUEST EDITORS’ INTRODUCTION

Victor Pankratius, Karlsruhe Institute of Technology

Wolfram Schulte, Microsoft

Kurt Keutzer, University of California, Berkeley

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 15

in hardware. If software applications
were going to continue to see improve-
ments in performance, they needed to
apply a radically different strategy. The
alternative was to cap clock frequencies
and use transistors to implement mul-
tiple copies of a single power-efficient
microprocessor architecture. In other
words, parallelism began to augment
and supplant pipelining as a strategy
for improving performance. Although
parallelism is a natural solution from
the standpoint of hardware design, its
demands on software developers are
quite different. Pipelining delivered
significant performance improvements
with no demand on software develop-
ers to change their applications. In con-
trast, the development of parallel soft-
ware asked programmers to completely
rethink how to organize their programs
so that multiple cores could operate on
them simultaneously.

Why Is Parallelism
on the Desktop Different?
Servers in the cloud have been able to
easily exploit that native parallelism for
some time. For instance, serving static
files on a Web server requires little or
no communication of results between
different Web requests, thus this task is
easy to parallelize. Because of the rela-
tive independence of the tasks, such ap-
plications tend to be called “embarrass-
ingly parallel.” To assist in processing
huge datasets in the cloud, Google in-
troduced the MapReduce framework.
Using this framework, Web queries—
such as Web index construction, statis-
tical machine translation, image stitch-
ing, and news aggregation—can often
be Mapped simultaneously onto dis-
joint sets of data distributed through-
out the cloud. The same MapReduce
framework can then Reduce or aggre-
gate the results of the mapped function
to deliver, for example, the answer to
the query. Thus parallelizing applica-
tions that are amenable to implementa-
tion in such a framework is quite easy.

At the other extreme, embedded and
mobile systems use modest numbers of
heterogeneous processors to execute
several applications simultaneously—
for example, in an automobile or even
a mobile phone. At this extreme, en-
ergy efficiency plays a major role. Par-
allel software is typically created from
scratch, with the high-level specifica-
tion of the overall application provid-
ing the blueprint for creating parallel
tasks.

On the desktop, we face a very dif-
ferent challenge. We must migrate large
bodies of existing code written for ex-
ecution on a single processor to either
multicore or manycore computers. To
gain any significant performance im-
provement from this migration, we
have to expose the application’s intrin-
sic concurrency as different threads of
control. However, as
soon as we introduce
different threads,
program execution
is no longer deter-
ministic: the operat-
ing system’s thread
scheduler starts and
stops threads run-
ning on different
cores using its own
policy. The result-
ing thread sched-
ules are inherently
unpredictable.

Different threads
of control often need
access to shared
resources. If the
shared resource is
mutable, program-
mers must introduce
exclusion mecha-
nisms, such as locks
in C++ or synchro-
nized methods in
Java, to prevent race
conditions (where
two or more threads
change the resource

at the same time and introduce an in-
consistent state). The protocol of ac-
quiring and releasing resources is often
nontrivial: programmers have to decide
which parts of the shared state must
be protected and for which periods of
execution. Improper usage of exclu-
sion mechanisms can lead to conten-
tion (when too many threads wait to
acquire the same resource), deadlock
(when two or more threads are waiting
for each other to release a resource), or
starvation (when a thread is perpetually
denied access to a resource). To avoid
these problems, programmers need sys-
tematic engineering guidelines and the
support of software engineering tools.

In This Issue
In response to these timely challenges,
this special issue introduces multicore

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

Distributed by the University of Chicago Press
www.press.uchicago.edu

Studies in Weak Arithmetics
Edited by Patrick Cégielski

The field of weak arithmetics is an application of
logical methods to number theory developed by
mathematicians, philosophers, and theoretical

computer scientists.
PAPEr $40.00

Selected Papers on Fun and Games
Donald E. Knuth

The present volume is the eighth in a series of Donald
E. Knuth’s collected papers. This volume contains
humorous pieces, including one he wrote as a high

school student for MAD magazine.
PAPEr $35.00

New from the

CeNter for the Study of
LaNguage and INformatIoN

16 IEEE SOFTWARE // WWW.COMPUTER.ORG/SOFTWARE

and manycore software engineering for
desktop applications. It presents prac-
tically relevant methods, libraries, and
tools, as well as exemplary parallel-
ization experiences. The authors also
sketch the frontiers of research, paint-
ing a picture of the developments that
can be expected over the coming years.

In “A Refactoring Approach to Par-
allelism,” Danny Dig addresses an im-
portant problem for practitioners who
are tasked to produce parallel code
out of existing sequential code. Spe-
cifi cally, he introduces different Java
refactorings for thread safety, through-
put, and scalability, and presents a
semiautomated toolset that helps soft-
ware engineers fi nish their work more
quickly.

Wooyoung Kim and Michael Voss
provide in “Multicore Desktop Pro-
gramming with Intel Threading Build-

ing Blocks” an excellent example of a
widely used parallel library and explain
how to use it. Parallel libraries like this
one are extremely helpful to reduce the
development time of real-life parallel
desktop applications. In addition, the
authors also explain the library’s inter-
nals and design rationales.

Nasser Giacaman and Oliver Sinnen
present a practitioner-oriented view on
the parallelization of desktop applica-
tions with graphical user interfaces in
“Object-Oriented Parallelization of
Java Desktop Programs.” The article
elaborates on a new context for paral-
lelization of applications with irregu-
larly structured computations, user
interaction, and short runtimes. Giaca-
man and Sinnen introduce a language
called ParaTask, which includes paral-
lel patterns that are useful for the de-
velopment of desktop applications. The

article also shows a new perspective on
novel parallelization opportunities on
the desktop that differ from classical
high-performance computing.

Chi-Keung Luk, Ryan Newton,
William Hasenplaugh, Mark Hamp-
ton, and Geoff Lowney show how to
use an autotuning approach to opti-
mize the performance of multithreaded
programs in “Synergetic Approach to
Throughput Computing on x86-Based
Multicore Desktops.” Specifi cally, they
automatically generate many program
variants and let a system empirically try
out each variant on a target multi core
machine until an optimum is found.
Their XTune approach saves developers
the time involved in manually varying
parameters such as ones affecting data
size to fi t in caches, number of threads,
or scheduling policy.

Finally, Frank Feinbube, Peter
Troeger, and Andreas Polze show a
novel frontier for parallelization on
the desktop—the simultaneous usage
of multicore processors and graph-
ics processors—in “Joint Forces: From
Multithreaded Programming to GPU
Programming.” The authors give an
overview of the technical details for
getting started with the development
of a new generation of heterogeneous
parallel applications. They also dis-
cuss best practices on algorithm de-
sign, memory transfer and data sizes,
control-fl ow handling, and computa-
tional precision.

T he importance of concurrency
is universally acknowledged.
On 8 July 2008, for example,

Anders Heilsberg, designer of C#, said,
“We have been ignoring concurrency
because we could ... now we can’t ...
it is a damn hard problem...”(http://
channel9.msdn.com/blogs/charles /
c-40-meet-the-design-team). Read the
articles in this special issue, and see
how you can exploit concurrency on
the desktop today.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

VICTOR PANKRATIUS heads	the	Multicore	Software	Engineering	
investigator	group	at	the	Karlsruhe	Institute	of	Technology,	Germany.	
He	also	serves	as	the	elected	chairman	of	the	Software	Engineering	for	
Parallel	Systems	(SEPARS)	international	working	group.	Pankratius’s	
current	research	concentrates	on	how	to	make	parallel	program-
ming	easier,	and	his	work	covers	a	range	of	research	topics	including	
empirical	studies,	auto-tuning,	language	design,	and	debugging.	He	has	
a	Dr.rer.pol.	with	distinction	from	the	University	of	Karlsruhe,	and	is	a	

member	of	the	IEEE	Computer	Society,	the	ACM,	HiPEAC,	and	the	German	Computer	Science	
Society.	Contact	him	via	www.victorpankratius.com.

WOLFRAM SCHULTE is	a	principal	researcher	and	the	founding	
manager	of	Microsoft’s	Research	in	Software	Engineering	(RiSE)	team	
in	Redmond,	Washington.	His	research	concentrates	on	improving	soft-
ware	development	productivity	by	providing	better	methods,	languages,	
and	tools	for	describing,	developing,	analyzing,	testing,	and	executing	
software.	He	co-designed	Microsoft’s	Task	Parallel	Library	and	recently	
worked	on	a	Verifi	er	for	Concurrent	C.	He	has	a	PhD	from	TU	Berlin	and	
a	state	doctorate	from	the	University	of	Ulm.

KURT KEUTZER is	a	principal	investigator	at	the	University	of	Califor-
nia,	Berkeley’s,	Universal	Parallel	Computing	Research	Center,	where	
he	focuses	on	patterns	and	frameworks	for	effi	cient	parallel	program-
ming.	He’s	also	a	professor	of	electrical	engineering	and	computer	
science	at	UCB.	Keutzer	has	published	six	books	and	more	than	200	
refereed	articles.	He	has	a	PhD	in	computer	science	from	Indiana	
University	and	is	a	fellow	of	IEEE.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: GUEST EDITORS’ INTRODUCTION

