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THE CHARACTERISTICS OF BOTH 
THE APPLICATIONS and the environ-
ment make writing parallel programs 
that perform well on multicore desktops 
a challenge. Often, desktop applications 
are modular and depend on shared, 
third-party libraries and plug-ins. When 
modules use parallel models that don’t 
compose well, each component might 
act as though it can consume all avail-
able resources, making it easy for the 
application to oversubscribe a system.

Desktop environments are also 

multi programmed and have indepen-
dent, competing applications. To per-
form well, parallel applications on 
the desktop must be able to adapt to 
changes in resource availability. Writing 
a correct parallel program is difficult; 
writing a highly modular parallel pro-
gram that performs well in a multipro-
grammed environment is even more so.

To address many difficult issues that 
desktop developers face, Intel designed In-
tel Threading Building Blocks (Intel TBB), 
a portable C++ template library. Intel 

TBB provides a range of building blocks 
to help developers write efficient paral-
lel programs (see Figure 1). Its task-based 
programming model and algorithms let 
developers express parallelism easily, le-
veraging its work-stealing scheduler to 
provide a composable execution environ-
ment that can effectively adapt to changes 
in resources. Moreover, its containers and 
synchronization constructs can be used 
flexibly from within tasks or from native 
threads to provide safety and scalability.

About Intel TBB
Intel TBB is a key component of Intel 
Parallel Building Blocks (Intel PBB). In-
tel PBB is Intel’s family of complemen-
tary and compatible parallel-program-
ming models; it also includes Intel Cilk 
Plus1 and Intel Array Building Blocks.2 
(For more information on other parallel 
programming models, see the “Related 
Work in Parallel-Programming Models” 
sidebar.)

Intel TBB is available as a commer-
cially supported product3 and an open 
source project.4 Intel supports the li-
brary on multiple platforms including 
Windows, Linux, and Mac OS. It’s used 
by many applications, including Adobe 
Systems’ Creative Suite 5, Autodesk’s 
Maya, Avid’s Media Composer, Epic 
Games’ Unreal Engine 3, Firaxis 
Games’ Civilization 5, and Creative As-
sembly’s Napoleon: Total War.

The Tasking Interface
Intel TBB’s lightweight tasks and work-
stealing task scheduler are key to its 
performance. Users express basic units 
of parallel work in their applications as 
tasks, which are user-space C++ objects. 
Because a task’s allocation and deallo-
cation are much more lightweight than 
those of a native OS thread, developers 
can overdecompose their problem, cre-
ating many more tasks than hardware 
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threads. This large pool of tasks lets 
Intel TBB schedule work as needed to 
adapt to the available resources.

The main application, all librar-
ies, and all plug-ins share a process-
wide set of worker threads. Sharing 
worker threads allows tasks spawned 
from all sources to be lumped together 
for scheduling (which avoids over-
subscription and undersubscription 
of resources). It also provides greater 
fl exibility in balancing a load across 
hardware threads. These features are 
critical for highly modular applications 
executing on desktop systems.

Tasks and Work Stealing
The Intel TBB runtime library uses 
work-stealing task schedulers (inspired 
by Cilk5) to distribute tasks and balance 
a load among worker threads. By default, 
Intel TBB creates one worker thread per 
hardware thread. Each worker main-
tains a double-ended queue (deque) 
of tasks (see Figure 2). As the worker 
spawns new tasks, Intel TBB puts those 
tasks at the back of its deque. When a 

worker fi nishes executing a task, it takes 
the most recently spawned task from the 
back of its deque, exploiting temporal lo-
cality. This strategy unfolds recursively 
generated task trees in a depth-fi rst man-
ner, minimizing memory use.

If a worker thread doesn’t fi nd tasks 
in its own deque (as is the case for 
Worker 1 in Figure 2), it steals a task 
from another random worker, if pos-
sible. Stolen tasks are taken from the 
front of the victims’ deques. For recur-
sive algorithms, these oldest tasks are 
high in the task tree, represent large 
chunks of work, and are often cold 
in the victims’ caches. Because tasks 
can execute on any worker thread, 
Intel TBB is free to shrink or grow the 
thread pool, enabling the library to re-
act to changes in available resources.

Using Tasks
Intel TBB provides two interfaces for 
using tasks: task_group and task. The 
task_group class is easier to use but less 
fl exible. The example in Figure 3 uses 
task_group to fi nd the minimum value in 

a binary tree. The class task_group de-
fi nes a run function. Each call to run cre-
ates and spawns a task that will execute 
the function object passed in as an ar-
gument. The example in Figure 3 also 
uses lambda expressions to create sim-
ple function objects at each call to run. 
(The C++ 201x language proposal in-
troduces lambda expressions to C++.6 
They provide a concise way to create 
function objects and are therefore use-
ful in libraries that frequently use func-
tion objects as arguments.)

In this example, when the number of 
nodes below the current node exceeds 
the given threshold (1,000), the pro-
gram creates two child tasks to traverse 
the left and right subtrees. The call to 
g.wait() blocks until all the tasks in the 
group are complete. Once both subtrees 
have fi nished, the code obtains the fi nal 
result by fi nding the minimum of the 
values computed for each subtree. The 
recursion continues until it reaches a 
node with 1,000 or fewer nodes below 
it. For these small subtrees, we use a se-
rial algorithm to fi nd the tree minimum.

When you need more control, you 
can use task instead of task_group. The 
task API lets users control low-level be-
haviors such as task-to-thread affi nity, 
task cancellation, and exception propa-
gation. It also can express more com-
plex dependencies between tasks than 
the simple parent-child relationships 
that can be expressed using task_group. 
However, the resulting code is less con-
cise than that for task_group and requires 
management of low-level details, such 
as reference counts. A detailed descrip-
tion of both APIs is in the Intel TBB 
reference manual.7

Generic Parallel Algorithms
Intel TBB also provides prepackaged, 
generic algorithms built on top of tasks 
(see Figure 1).

 Iteration over a Range or Collection
Intel TBB provides algorithms that iter-
ate over ranges or collections. The user 

Generic parallel algorithms
parallel_for, parallel_for_each

parallel_reduce
parallel_scan
parallel_do

pipeline, parallel_pipeline
parallel_sort

parallel_invoke

Task scheduler
task_group, structured_task_group

task
task_scheduler_init

task_scheduler_observer

Synchronization primitives
atomic, condition_variable
mutex, recursive_mutex

spin_mutex, spin_rw_mutex
queuing_mutex, queuing_rw_mutex

null_mutex, null_rw_mutex
critical_section, reader_writer_lock

Threads
tbb_thread

Concurrent containers
concurrent_hash_map

concurrent_unordered_map
concurrent_queue

concurrent_bounded_queue
concurrent_vector

Thread local storage
combinable

enumerable_thread_speci�c

Memory allocation
tbb_allocator
zero_allocator

cache_aligned_allocator
scalable_allocator

FIGURE 1. Intel Threading Building Blocks (Intel TBB) 3.0 components. This C++ template 

library provides a range of building blocks to help developers write effi cient parallel programs.
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specifies both a range and a body to 
apply to the elements in the range. The 
runtime library creates tasks from the 
range or collection by recursive subdivi-
sion. This process is similar to the one 
in the tasking example we described 
earlier. The library first subdivides an 
initial range into two tasks, each han-
dling roughly half of the range. When 
the task executes, it decides whether to 
further subdivide its range into two ad-
ditional tasks or to apply the loop’s body 
serially to the subrange. Figure 4 shows 
a computation in flight, in which recur-
sive division hasn’t yet terminated for all 
subranges.

To control the policy for terminat-
ing recursion, users can employ par-

titioners. The library supports three 
partitioning policies. The first, simple_
partitioner, recursively divides the range 
if its size is greater than a user-set 
threshold.

The second policy, auto_partitioner, is 
the default; it monitors stealing behav-
ior.8 If no stealing occurs, it divides the 
range into p × 4 subranges, where p is 
the number of hardware threads. How-
ever, if a task is stolen, the thief divides 
that task into four additional pieces, if 
possible. The reasoning behind auto_
partitioner is that stealing indicates imbal-
ance and that finer-grained tasks should 
be created to enable load balancing.

The last policy is affinity_partitioner. It 
keeps a history of the threads that ex-

ecuted a specific subrange on previous 
executions of the loop (or other loops) 
and tries to maintain this distribution 
on subsequent executions.

Figure 5 shows parallel_for examples 
that don’t specify a partitioner and 
therefore use auto_partitioner, the default. 
Both Figures 5a and 5b use a parallel_
for loop to set output[i] to the average of 
input[i-1], input[i], and input[i+1], for 1 ≤ i 
< n. In Figure 5a, a function object de-
scribes the loop’s body; in Figure 5b, a 
lambda expression describes it. In both 
cases, the parallel_for function template 
concurrently applies the loop body to 
the range’s elements.

The Intel TBB library also provides 
parallel_reduce and parallel_scan, which also 

Intel	Cilk	Plus	is	a	C/C++	extension	consisting	of	three	tasking	
keywords	inherited	from	Cilk1	and	a	new	array	notation	for	vector	
computation.	Its	structured	fork/join	parallelism	allows	for	fea-
tures	(such	as	hyperobjects)	that	Intel	Threading	Building	Blocks	
doesn’t.2,3	In	addition,	its	tasking	overheads	are	lower	because	of	
its	efficient	compiler	support.	However,	Intel	Cilk	Plus	tasks	aren’t	
first-class	objects,	which	makes	Cilk	less	flexible	than	Intel	TBB.

Intel	Array	Building	Blocks	(ArBB)	provides	a	generalized		
vector-parallel-programming	solution	for	data-intensive	math-
ematical	computation.4,5	Users	express	computations	as	opera-
tions	on	arrays	and	vectors.	A	just-in-time	compiler	supplied	with	
the	library	translates	the	operations	into	target-dependent	code,	
in	which	a	target	could	be	the	host	CPU	or	an	attached	GPU.	Intel	
ArBB	can	run	data-parallel	vector	computations	on	a	possibly	
heterogeneous	system,	whereas	Intel	TBB	focuses	on	task-based	
fork/join	parallelism	on	a	homogeneous	system.

The	OpenMP	API	is	a	pragma-based	extension	to	C/C++	pri-
marily	for	high-performance	computing.	It	provides	high-level	par-
allel	constructs	built	around	the	thread	teams	concept	and	is	ex-
tended	to	support	tasks.6	This	reliance	on	thread	teams	that	work	
on	an	identical	piece	of	code	could	easily	complicate	managing	
nested	parallelism	and	resource	sharing	on	desktop	computers.	
For	example,	many	OpenMP	implementations	by	default	create	ad-
ditional	threads	at	each	nested	parallel	region.

The	Microsoft	Parallel	Patterns	Library	(PPL)	is	a	C++	template	
library	that’s	similar	to	Intel	TBB.	For	instance,	some	high-level	
Intel	TBB	algorithms	and	containers	have	corresponding	abstrac-
tions	in	PPL.	PPL	uses	the	Concurrency	RunTime	(ConcRT)	for	task	
scheduling	and	load	balancing.	Intel	TBB	is	both	a	commercial	
and	open	source	project.	It	uses	a	task	scheduler	that	can	run	on	
Microsoft	Windows	with	or	without	the	ConcRT,	and	it’s	supported	
on	other	platforms	including	Linux	and	Mac	OS.

Kronos	OpenCL	(Open	Computing	Language),	Microsoft	Direct-
Compute,	and	Nvidia’s	CUDA	(Compute	Unified	Device	Architec-
ture)	target	heterogeneous	systems	typically	consisting	of	a	host	
machine	and	remote	computing	engines	(such	as	attached	GPUs).	
They	share	a	programming	model	similar	to	that	of	Intel	ArBB,	in	
which	host	threads	offload	data-parallel	work	onto	remote	comput-
ing	engines.	However,	they	require	programmers’	direct	control	at	
every	level.	In	contrast,	Intel	TBB	focuses	on	homogeneous	sys-
tems	with	transparent	load	balancing	through	work	stealing.

Apple’s	Grand	Central	Dispatch	(GCD)	is	a	tasking	system	
that	combines	queues	with	closures	called	blocks.7	Program-
mers	explicitly	enqueue	blocks	into	the	main	queue	and	into	local	
and	global	queues	they’ve	created.	The	system	schedules	this	
enqueuing	on	the	basis	of	the	available	cores’	priorities.	Although	
GCD	manages	the	sharing	of	system	resources	among	different	
applications,	it	doesn’t	provide	high-level	algorithms	or	containers	
and	requires	a	compiler	that	recognizes	blocks.
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apply a body to a range of elements 
concurrently. They support calculation 
of a reduction and a parallel prefi x, 
respectively.

Adding New Items While Iterating
The algorithms we just described as-
sume that the complete iteration space 
is known a priori. However, for many 
applications, the iteration space’s end 
isn’t known in advance. To handle this 

case, Intel TBB provides the parallel_do 
template function.

To use parallel_do, users provide be-
gin and end iterators and a function 
object (or lambda expression). If the 
user doesn’t provide random-access it-
erators, the algorithm ensures that no 
more than one thread will ever act on 
the iterators concurrently. This respects 
the defi nition of input iterators for se-
quential programs. However, if the in-

put iterators are random-access, this 
constraint is relaxed, which lets the al-
gorithm be more scalable.

The parallel_do body argument might 
take a parallel_do feeder as its second ar-
gument. In this case, the body might 
add new items to the iteration space by 
calling the feeder’s add function. Figure 6 
shows an example of parallel_do.

Execution of Pipelined Computations
The parallel_pipeline function is an inter-
face that applies a series of fi lters to a 
stream of items in a pipelined fash-
ion. Each fi lter operates in a particular 
mode: parallel, serial in-order, or serial 
out-of-order.9 Parallel fi lters process 
items as they arrive and might do so 
concurrently. Serial in-order fi lters pro-
cess one item at a time, in the order in 
which those items entered the pipeline. 
Serial out-of-order fi lters process one 
item at a time, but in the order in which 
those items arrive at the fi lter.

Figure 7 shows an example of paral-
lel_pipeline; it’s a syntactic demonstra-
tion only. It’s not a practical way to 
calculate a root mean square because 
overheads would likely dominate the 
calculation. However, when there is 
suffi cient work per item and suffi cient 
processors and items, the throughput 
of parallel_pipeline is limited only by the 
slowest serial stage.

Concurrent Containers
The prepackaged parallel algorithms 
we described earlier are useful in ex-
pressing parallelism in applications. 
Concurrent containers are equally (if 
not more so) useful in developing par-
allel applications for desktop comput-
ers because threads commonly use con-
current containers to communicate and 
synchronize with each other.

A typical C++ standard template li-
brary (STL) container isn’t safe for con-
current access and can’t be used for 
thread communication in its “naked” 
form. You can make it thread-safe by 
wrapping it in a mutex, an object on 
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thread
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FIGURE 2. Obtaining tasks from the local double-ended queues (deques) maintained by the 

worker threads. This strategy unfolds recursively generated task trees in a depth-fi rst manner, 

minimizing memory use.

fl oat fi nd_tree_min( tree_node *my_node ) {
   fl oat my_min = FLT_MAX;
   if ( my_node->num_nodes_below > 1000 ) {
       tbb::task_group g;
       fl oat min_left = FLT_MAX, min_right = FLT_MAX;
       if ( my_node->left_child )
           g.run( [&] { min_left = fi nd_tree_min( my_node->left_child ); } );
       if ( my_node->right_child )
           g.run( [&] { min_right = fi nd_tree_min( my_node->right_child ); } );
       g.wait();
       my_min = std::min( my_node->value, std::min( min_left, min_right ) );
   } else {
       my_min = serial_tree_min( my_node );
   }
   return my_min;
}

FIGURE 3. Using task_group to fi nd the minimum value in a binary tree. This example also 

uses lambda expressions to create anonymous function objects.
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which a thread can acquire a lock. How-
ever, this approach eliminates concur-
rency and creates a bottleneck. The 
concurrent containers in Intel TBB offer 
highly concurrent, scalable alternatives 
to mutex-wrapped, serial STL containers.

Intel TBB provides containers that 
yield a high level of concurrency and 
scalability because they use special-
ized container organizations, fi ne-grain 
locking, and lock-free techniques. Of 
course, this high level of concurrency is 
costly. Intel TBB containers are less ef-
fective for applications in which conten-
tion is light. A rule of thumb is to use 
Intel TBB containers for applications 
that may exhibit burst access patterns 
to shared data—that is, concurrent ac-
cesses to them in short time spans.

Intel TBB provides three kinds of 
concurrent containers: concurrent_hash_
map or concurrent_unordered_map, concur-
rent_vector, and concurrent_queue or concur-
rent_bounded_queue. Their interfaces are 
modeled after their STL counterparts 
in the C++ 201x standard proposal.6 
However, some STL methods are ab-
sent from Intel TBB containers, and 
others have different semantics in Intel 
TBB containers.10 Developers can use 
these containers in conjunction with 
task-based programming or with native 
Windows or Linux threads.

Concurrent Associative Containers
The concurrent_hash_map and concurrent_un-
ordered_map containers are extensions to 
the sequential associative containers. 
Because both add concurrency to a hash 
map, they have similar semantics. For 
example, both have unordered keys and 
at most one element for each key. How-
ever, they were developed with different 
design objectives and thus have different 
interfaces and, more importantly, have 
different concurrency requirements.

The concurrent_hash_map class allows 
concurrent insertion, lookup, and era-
sure on the same map instance. It ser-
vices concurrent access using auxiliary 
objects called accessors. An accessor 

acts as a smart pointer to a pair in a con-
current_hash_map. It holds an implicit lock 
on the pair until it’s destroyed or the 
lock is explicitly released. If the map 
contains a (key, value) pair correspond-
ing to an input key, insert and fi nd re-
turn the pair in the accessor passed to 
the map; erase deletes the pair from the 
map. If no pair exists for a given key, 
insert constructs a pair with the key and 
inserts it into the map. In addition, 
these operations invalidate any iterators 
pointing into the affected element; thus, 
concurrent traversal isn’t allowed.

Although concurrent_hash_map is useful, 
it lacks some desirable features. In some 
use cases, accessor-based concurrent 
operations are less fl exible than those 
that don’t require accessors, and they 
incur unnecessary overhead. For exam-
ple, every lookup on a concurrent_hash_map 
imposes a cost on the application for in-
ternal locking—even for read-only ac-
cess. Additionally, the concurrent_hash_map 
interface isn’t quite aligned with that 
of the corresponding associative con-

tainer in the C++ 201x proposal.6 The 
concurrent_unordered_map class addresses 
these two issues. It closely resembles 
std::unordered_map in the C++ 201x pro-
posal,6 although it omits methods re-
quiring C++ 201x language features 
(such as rvalue references). In particular, 
insertion, lookup, and erasure return it-
erators and have no visible locking. Us-
ers must ensure race-free access to the 
elements in a concurrent_unordered_map.

Intel TBB allows concurrent inser-
tion on the same concurrent_unordered_map. 
However, unlike concurrent_hash_map, in-
sertion of new items doesn’t invalidate 
iterators or change the order of items 
already in the map. Concurrent erasure 
isn’t permitted. These changes enable 
concurrent insertion and traversal on 
the same map. Figure 8 compares op-
erations on the two concurrent maps.

Concurrent Vectors
A concurrent_vector is an array of elements 
that permits concurrent read access 
and dynamic growth. Multiple threads 

[0, n /2) [n /2, n )

[0, n /4) [n /4, n /2)

[0, n /8) [n /8, n /4)

[0, n /16) [n /16, n /8)

[0, n )

(a) (b)

FIGURE 4. Recursive subdivision of a range to generate tasks. (a) Each box represents a 

task that will perform computation on a subrange. The leaves represent tasks that haven’t yet 

executed, and the internal nodes represent tasks that have executed and chose to subdivide 

their range. (b) An image generated by the Tachyon ray tracer demonstrates how the range’s 

division translates to the pixels computed in the fi nal image.
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can append new elements to a concurrent_
vector and grow it concurrently without 
invalidating existing iterators or indices.

This design choice has two impor-
tant design and implementation con-
sequences. First, methods that might 
invalidate existing iterators and indi-
ces aren’t allowed—this includes erase() 
and insert(). Second, existing elements 
can’t relocate when a concurrent vec-
tor grows, which means elements might 

not be stored contiguously, as they 
are in STL vectors.6 For example, the 
routine in Figure 9 safely appends a C 
string to a shared vector. Note the use 
of std::copy and iterators.

Concurrent Queues
A concurrent_queue is a first-in, first-out 
data structure that permits multiple 
threads to concurrently add and remove 
items. Its capacity is unbounded, sub-
ject only to the target machine’s mem-
ory limitations. It doesn’t have methods 
that block, which makes it appropriate 
when synchronization must occur at a 
high level. (The concurrent_bounded_queue 
class is a bounded variant with finite 
capacity and blocking semantics.)

The fundamental operations on a con-
current_queue are the push and try_pop meth-
ods. Because the concurrent queue’s 
capacity is unbounded, push always 
succeeds (provided that the target ma-
chine has available memory). The try_pop 
method pops an item if it’s available; the 
check and popping occur atomically.

Other Building Blocks
In addition to high-level parallel algo-

rithms and concurrent containers, In-
tel TBB provides other low-level build-
ing blocks such as mutexes and atomic 
operations.

Mutexes and Locks
All Intel TBB mutexes have a similar  
interface; this makes them easier to 
learn and enables generic program-
ming. For example, all Intel TBB mu-
texes have a nested scoped_lock type, 
which implements the acquire and release 
methods.

The simplest mutex class is spin_
mutex. As its name implies, it requires 
that threads spin-wait until acquiring 
the lock. Figure 10 gives an example; 
the constructor for scoped_lock waits un-
til no other locks are on spin_mutex, and 
the destructor releases the lock.

The spin_mutex class is unfair and 
nonrecursive, and it spin-waits in user 
space. However, it’s fast in lightly con-
tended situations and is the mutex of 
choice when a design spreads conten-
tion among many spin_mutex objects.

The queuing_mutex class is fair and also 
nonrecursive. Although it also spin-
waits in user space, it spins each thread 

class my_body {
  float *input;
  float *output;
  const int N;

public:

my_body( float *in, float *out,
          int n ) :
  input(in), output(out), N(n) {}

  void operator()( int i ) const {
    output[i] = (input[i-1]+input[i]+
                  input[i+1])*(1/3.f);
  }
};

void DoParallelAverage(float *input,
           float *output, int N) {
  my_body b( input, output, N );
  parallel_for( 1, N-1, b );
}
(a)

void DoParallelAverage2(float *input,
  float *output, int N) {
  parallel_for( 1, N-1,
    [=]( int i ) {
      output[i] = (input[i-1]+input[i]+
                    input[i+1])*(1/3.f);
  });
}
(b)

FIGURE 5. Two versions of parallel_for, in 

which the body is a (a) function object or (b) 

lambda expression. The two are functionally 

equivalent. The lambda expression version is 

more concise, but not all compilers support 

lambda expressions.

struct Item {
    data_type data;
    std::list<Item> *sub_list;
};

void ParallelApplyFooToList( const std::list<Item> &my_list ) {
    tbb::parallel_do( my_list.begin(), my_list.end(),
      []( const Item &item, tbb::parallel_do_feeder<Item> &feeder )
      {
        Foo(item);
        if ( item.sub_list ) {
          for ( std::list<Item>::iterator i = item.sub_list->begin();
                 i != item.sub_list->end(); ++i )
            feeder.add( *i );
          }
        }
    );
}

FIGURE 6. A parallel_do example. This code traverses the initial list my_list. Whenever it 

reaches an item containing a sublist, it adds all the items in the sublist to the iteration space, 

using calls to feeder.add.
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on a different location (which reduces 
pressure on memory traffic) and is thus 
more scalable than spin_mutex.

The null_mutex class does nothing; it 
mainly enables generic programming. 
For example, it’s useful for instantiat-
ing a thread-private container by using 
a container template with a mutex type 
as one of its template arguments.

The three previous classes have 
reader/writer variants (denoted by _rw_ 
in the class names—for example, spin_
rw_mutex), which allows multiple read-
ers in the protected region. The mutex 
and recursive_mutex classes are wrappers 
around the system’s “native” mutual-
exclusion interfaces.

Atomic Operations
These operations, which are low-level 

and hardware-
dependent, ap-
pear to occur 
instantaneously. They’re 
quick compared to locks 
and never suffer from 
lock pathologies. How-
ever, they do only a lim-
ited set of operations. 
So, developers often use 
them as building blocks 
for more complicated 
operations.

Intel TBB makes these operations 
portable by hiding them under the C++ 
template class atomic<T>. Intel TBB sup-
ports the five fundamental atomic op-
erations in Table 1. For syntactic conve-
nience, it provides additional interfaces 
in the form of overloaded operators.

Some architectures have weak 
memory consistency, which means the 
hardware might reorder memory op-
erations on different addresses for effi-
ciency.11,12 To account for this, atomic<T> 
lets programmers enforce certain order-
ing of memory operations as they like 
(see Table 2). In Table 2, the column on 

float RootMeanSquare( float* first, float* last ) {
  float sum=0;
  parallel_pipeline( /*max_number_of_live_token=*/16,
    make_filter<void,float*>(
      filter::serial,
      [&](flow_control& fc)-> float*{
        if( first<last ) {
          return first++;
        } else {
          fc.stop();
          return NULL;
        }
      }
    ) &
    make_filter<float*,float>(
      filter::parallel,
      [](float* p){return (*p)*(*p);}
    ) &
    make_filter<float,void>(
      filter::serial,
      [&](float x) {sum+=x;}
    )
  );
  return sqrt(sum);
}

FIGURE 7. A parallel_pipeline example. This code creates 

three filters: a serial filter iterates through the items in the list, a 

parallel filter squares each item, and another serial filter adds 

each squared value to the final sum. The overloaded operator& 

concatenates the filters.

using namespace tbb;
typedef
  concurrent_hash_map<string,int> StringTableH;
StringTableH htable;
StringTableH::accessor a;
for(string* p=range.begin();p!=range.end();++p)
{
  htable.insert( a, *p );
  a->second += 1;
  a.release();
}

StringTableH::const_accessor ca;
bool b = htable. find( ca, str_key )
           && htable.erase( ca );
(a)
using namespace tbb;
typedef
  concurrent_unordered_map<string,atomic<int> >
  StringTableU;
StringTableU utable;
...
for(string* p=range.begin();p!=range.end();++p)
{
 string_t::iterator i = utable.insert( *p );
 ++(*i).second;
}

string_t::iterator i = utable. find( *p );
if( i!=utable.end() ) utable.unsafe_erase(i);
(b)

FIGURE 8. Comparison of (a) concurrent_hash_map and 

(b) concurrent_unordered_map. Insertion on a concurrent_hash_map 

requires use of an accessor as well as an explicit release when  

accessing the element is complete, whereas only unsafe_erase is 

supported on concurrent_unordered_map. 

void Append( concurrent_vector<char>& vec, const char* str ) {
size_t n = strlen(str)+1;
std::copy( str, str+n, vec.grow_by(n) );

}

FIGURE 9. An example of concurrent_vector. This routine 

safely appends a C string to a shared vector.
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the right lists operations that default to 
a particular constraint. If desired, users 
employ variants taking a template ar-
gument, acquire or release, to relax these 
defaults. For example, release in refcount.
fetch_and_add<release>(-1); guarantees that 
stores before the decrement are visible 
before refcount is decremented. However, 
it also allows loads after the decrement 
to occur before the decrement.

Thread-Local Storage
Intel TBB provides two template classes 
for making thread-local storage avail-
able to programmers: combinable and 
enumerable_thread_specifi c. Both provide a 
local function that returns (or lazily cre-
ates) one thread-local element per thread 

and a combine function that reduces these 
thread-local elements to a single value. 
However, the enumerable_thread_specifi c 
class also acts like an STL container and 
permits iteration over the elements using 
the usual STL iteration idioms.

Performance
Figure 11 shows the performance of 
three sample Intel TBB applications, 
which executed using one through 32 
threads on a system with 32 cores. The 
Intel TBB 3.0 distribution includes all 
three applications as examples.

The polygon overlay application is 
an implementation of Polygon Over-
lay from the Cowichan Problems.13 It 
divides two maps of equal extent into 

nonoverlapping polygons and generates 
a resulting map overlaying those poly-
gons. It uses parallel_for to iterate over the 
submaps and enumerable_thread_specifi c to 
store polygons generated by intersecting 
the maps.

Tachyon is based on John Stone’s 2D 
ray tracer and renderer.14 It uses parallel_
for and blocked_range2d to parallelize over 

Node* FreeList;
spin_mutex FreeListMutex;
Node* AllocateNode() {
  Node* n;
  {
    spin_mutex::scoped_lock lock(FreeListMutex);
    n = FreeList;
    if( n)
      FreeList = n->next;
  }
  if( !n )
    n = new Node();
  return n;
}

FIGURE 10. A spin_mutex example. The 

spin_mutex class requires that threads spin-

wait until acquiring the lock. In this example, 

the constructor for scoped_lock waits until 

no other locks are on spin_mutex, and the 

destructor releases the lock.
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FIGURE 11. The performance of Intel TBB 3.0 for the Polygon Overlay, Tachyon, and Primes applications.
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 1 Fundamental operations on a variable x of Atomic<T>.

Operation Description

= x Read	x.

x = Write	to	x	and	return	it.

x.fetch_and_store(y) Do	y	=	x,	and	return	the	old	value	of	x.

x.fetch_and_add(y) Do	x	+=	y,	and	return	the	old	value	of	x.

x.compare_and_swap(y,z) If	x	=	z,	then	do	x	=	y;	in	either	case,	return	the	old	value	of	x.
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tasks that are rectangular subareas of 
the image. Figure 4b shows sample im-
ages from Tachyon.

Primes is a parallel version of the 
Sieve of Eratosthenes.15 It uses parallel_
reduce to compute all prime numbers up 
to a given integer.

For more information regarding 
performance and optimization choices 
in Intel software products, see http://
sof tware.intel.com/en-us /ar t icles /
optimization-notice.

I ntel TBB lets developers build 
well-performing applications by 
expressing parallelism in their ap-

plications using high-level constructs 
and by relegating details of scheduling 
and synchronization to the runtime li-
brary. In addition, Intel TBB provides 
a set of low-level constructs that de-
velopers can use directly, adding fl ex-
ibility that many other competing par-
allel programming models lack. Intel 
TBB is continually evolving to meet 
the demands of the emerging parallel 
desktop development community. To 
download the most recent release of the 
library, to learn about upcoming fea-
tures, or to provide feedback on new 
features, visit the community website at 
www.threadingbuildingblocks.org.
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 2 Ordering constraints.

Constraint Description Default for

acquire Operations	after	the	atomic	operation	never	move	over	the	atomic	operation. read

release Operations	before	the	atomic	operation	never	move	over	the	atomic	operation. write

Sequentially	consistent Operations	on	either	side	never	move	over	the	atomic	operation;	the	sequentially	
consistent	atomic	operations	have	a	global	order.

fetch_and_store
fetch_and_add
compare_and_swap
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