
074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E 	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 23

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

THE CHARACTERISTICS OF BOTH
THE APPLICATIONS and the environ-
ment make writing parallel programs
that perform well on multicore desktops
a challenge. Often, desktop applications
are modular and depend on shared,
third-party libraries and plug-ins. When
modules use parallel models that don’t
compose well, each component might
act as though it can consume all avail-
able resources, making it easy for the
application to oversubscribe a system.

Desktop environments are also

multi programmed and have indepen-
dent, competing applications. To per-
form well, parallel applications on
the desktop must be able to adapt to
changes in resource availability. Writing
a correct parallel program is difficult;
writing a highly modular parallel pro-
gram that performs well in a multipro-
grammed environment is even more so.

To address many difficult issues that
desktop developers face, Intel designed In-
tel Threading Building Blocks (Intel TBB),
a portable C++ template library. Intel

TBB provides a range of building blocks
to help developers write efficient paral-
lel programs (see Figure 1). Its task-based
programming model and algorithms let
developers express parallelism easily, le-
veraging its work-stealing scheduler to
provide a composable execution environ-
ment that can effectively adapt to changes
in resources. Moreover, its containers and
synchronization constructs can be used
flexibly from within tasks or from native
threads to provide safety and scalability.

About Intel TBB
Intel TBB is a key component of Intel
Parallel Building Blocks (Intel PBB). In-
tel PBB is Intel’s family of complemen-
tary and compatible parallel-program-
ming models; it also includes Intel Cilk
Plus1 and Intel Array Building Blocks.2
(For more information on other parallel
programming models, see the “Related
Work in Parallel-Programming Models”
sidebar.)

Intel TBB is available as a commer-
cially supported product3 and an open
source project.4 Intel supports the li-
brary on multiple platforms including
Windows, Linux, and Mac OS. It’s used
by many applications, including Adobe
Systems’ Creative Suite 5, Autodesk’s
Maya, Avid’s Media Composer, Epic
Games’ Unreal Engine 3, Firaxis
Games’ Civilization 5, and Creative As-
sembly’s Napoleon: Total War.

The Tasking Interface
Intel TBB’s lightweight tasks and work-
stealing task scheduler are key to its
performance. Users express basic units
of parallel work in their applications as
tasks, which are user-space C++ objects.
Because a task’s allocation and deallo-
cation are much more lightweight than
those of a native OS thread, developers
can overdecompose their problem, cre-
ating many more tasks than hardware

Multicore Desktop
Programming with
Intel Threading
Building Blocks
Wooyoung Kim and Michael Voss, Intel

// Intel Threading Building Blocks is a key component of

Intel Parallel Building Blocks. This widely used C++ template

library helps developers achieve well-performing modular

parallel programs in multiprogrammed environments. //

FOCUS: PARALLELISM ON THE DESKTOP

24	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

threads. This large pool of tasks lets
Intel TBB schedule work as needed to
adapt to the available resources.

The main application, all librar-
ies, and all plug-ins share a process-
wide set of worker threads. Sharing
worker threads allows tasks spawned
from all sources to be lumped together
for scheduling (which avoids over-
subscription and undersubscription
of resources). It also provides greater
fl exibility in balancing a load across
hardware threads. These features are
critical for highly modular applications
executing on desktop systems.

Tasks and Work Stealing
The Intel TBB runtime library uses
work-stealing task schedulers (inspired
by Cilk5) to distribute tasks and balance
a load among worker threads. By default,
Intel TBB creates one worker thread per
hardware thread. Each worker main-
tains a double-ended queue (deque)
of tasks (see Figure 2). As the worker
spawns new tasks, Intel TBB puts those
tasks at the back of its deque. When a

worker fi nishes executing a task, it takes
the most recently spawned task from the
back of its deque, exploiting temporal lo-
cality. This strategy unfolds recursively
generated task trees in a depth-fi rst man-
ner, minimizing memory use.

If a worker thread doesn’t fi nd tasks
in its own deque (as is the case for
Worker 1 in Figure 2), it steals a task
from another random worker, if pos-
sible. Stolen tasks are taken from the
front of the victims’ deques. For recur-
sive algorithms, these oldest tasks are
high in the task tree, represent large
chunks of work, and are often cold
in the victims’ caches. Because tasks
can execute on any worker thread,
Intel TBB is free to shrink or grow the
thread pool, enabling the library to re-
act to changes in available resources.

Using Tasks
Intel TBB provides two interfaces for
using tasks: task_group and task. The
task_group class is easier to use but less
fl exible. The example in Figure 3 uses
task_group to fi nd the minimum value in

a binary tree. The class task_group de-
fi nes a run function. Each call to run cre-
ates and spawns a task that will execute
the function object passed in as an ar-
gument. The example in Figure 3 also
uses lambda expressions to create sim-
ple function objects at each call to run.
(The C++ 201x language proposal in-
troduces lambda expressions to C++.6
They provide a concise way to create
function objects and are therefore use-
ful in libraries that frequently use func-
tion objects as arguments.)

In this example, when the number of
nodes below the current node exceeds
the given threshold (1,000), the pro-
gram creates two child tasks to traverse
the left and right subtrees. The call to
g.wait() blocks until all the tasks in the
group are complete. Once both subtrees
have fi nished, the code obtains the fi nal
result by fi nding the minimum of the
values computed for each subtree. The
recursion continues until it reaches a
node with 1,000 or fewer nodes below
it. For these small subtrees, we use a se-
rial algorithm to fi nd the tree minimum.

When you need more control, you
can use task instead of task_group. The
task API lets users control low-level be-
haviors such as task-to-thread affi nity,
task cancellation, and exception propa-
gation. It also can express more com-
plex dependencies between tasks than
the simple parent-child relationships
that can be expressed using task_group.
However, the resulting code is less con-
cise than that for task_group and requires
management of low-level details, such
as reference counts. A detailed descrip-
tion of both APIs is in the Intel TBB
reference manual.7

Generic Parallel Algorithms
Intel TBB also provides prepackaged,
generic algorithms built on top of tasks
(see Figure 1).

 Iteration over a Range or Collection
Intel TBB provides algorithms that iter-
ate over ranges or collections. The user

Generic parallel algorithms
parallel_for, parallel_for_each

parallel_reduce
parallel_scan
parallel_do

pipeline, parallel_pipeline
parallel_sort

parallel_invoke

Task scheduler
task_group, structured_task_group

task
task_scheduler_init

task_scheduler_observer

Synchronization primitives
atomic, condition_variable
mutex, recursive_mutex

spin_mutex, spin_rw_mutex
queuing_mutex, queuing_rw_mutex

null_mutex, null_rw_mutex
critical_section, reader_writer_lock

Threads
tbb_thread

Concurrent containers
concurrent_hash_map

concurrent_unordered_map
concurrent_queue

concurrent_bounded_queue
concurrent_vector

Thread local storage
combinable

enumerable_thread_speci�c

Memory allocation
tbb_allocator
zero_allocator

cache_aligned_allocator
scalable_allocator

FIGURE 1. Intel Threading Building Blocks (Intel TBB) 3.0 components. This C++ template

library provides a range of building blocks to help developers write effi cient parallel programs.

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 25

specifies both a range and a body to
apply to the elements in the range. The
runtime library creates tasks from the
range or collection by recursive subdivi-
sion. This process is similar to the one
in the tasking example we described
earlier. The library first subdivides an
initial range into two tasks, each han-
dling roughly half of the range. When
the task executes, it decides whether to
further subdivide its range into two ad-
ditional tasks or to apply the loop’s body
serially to the subrange. Figure 4 shows
a computation in flight, in which recur-
sive division hasn’t yet terminated for all
subranges.

To control the policy for terminat-
ing recursion, users can employ par-

titioners. The library supports three
partitioning policies. The first, simple_
partitioner, recursively divides the range
if its size is greater than a user-set
threshold.

The second policy, auto_partitioner, is
the default; it monitors stealing behav-
ior.8 If no stealing occurs, it divides the
range into p × 4 subranges, where p is
the number of hardware threads. How-
ever, if a task is stolen, the thief divides
that task into four additional pieces, if
possible. The reasoning behind auto_
partitioner is that stealing indicates imbal-
ance and that finer-grained tasks should
be created to enable load balancing.

The last policy is affinity_partitioner. It
keeps a history of the threads that ex-

ecuted a specific subrange on previous
executions of the loop (or other loops)
and tries to maintain this distribution
on subsequent executions.

Figure 5 shows parallel_for examples
that don’t specify a partitioner and
therefore use auto_partitioner, the default.
Both Figures 5a and 5b use a parallel_
for loop to set output[i] to the average of
input[i-1], input[i], and input[i+1], for 1 ≤ i
< n. In Figure 5a, a function object de-
scribes the loop’s body; in Figure 5b, a
lambda expression describes it. In both
cases, the parallel_for function template
concurrently applies the loop body to
the range’s elements.

The Intel TBB library also provides
parallel_reduce and parallel_scan, which also

Intel	Cilk	Plus	is	a	C/C++	extension	consisting	of	three	tasking	
keywords	inherited	from	Cilk1	and	a	new	array	notation	for	vector	
computation.	Its	structured	fork/join	parallelism	allows	for	fea-
tures	(such	as	hyperobjects)	that	Intel	Threading	Building	Blocks	
doesn’t.2,3	In	addition,	its	tasking	overheads	are	lower	because	of	
its	efficient	compiler	support.	However,	Intel	Cilk	Plus	tasks	aren’t	
first-class	objects,	which	makes	Cilk	less	flexible	than	Intel	TBB.

Intel	Array	Building	Blocks	(ArBB)	provides	a	generalized		
vector-parallel-programming	solution	for	data-intensive	math-
ematical	computation.4,5	Users	express	computations	as	opera-
tions	on	arrays	and	vectors.	A	just-in-time	compiler	supplied	with	
the	library	translates	the	operations	into	target-dependent	code,	
in	which	a	target	could	be	the	host	CPU	or	an	attached	GPU.	Intel	
ArBB	can	run	data-parallel	vector	computations	on	a	possibly	
heterogeneous	system,	whereas	Intel	TBB	focuses	on	task-based	
fork/join	parallelism	on	a	homogeneous	system.

The	OpenMP	API	is	a	pragma-based	extension	to	C/C++	pri-
marily	for	high-performance	computing.	It	provides	high-level	par-
allel	constructs	built	around	the	thread	teams	concept	and	is	ex-
tended	to	support	tasks.6	This	reliance	on	thread	teams	that	work	
on	an	identical	piece	of	code	could	easily	complicate	managing	
nested	parallelism	and	resource	sharing	on	desktop	computers.	
For	example,	many	OpenMP	implementations	by	default	create	ad-
ditional	threads	at	each	nested	parallel	region.

The	Microsoft	Parallel	Patterns	Library	(PPL)	is	a	C++	template	
library	that’s	similar	to	Intel	TBB.	For	instance,	some	high-level	
Intel	TBB	algorithms	and	containers	have	corresponding	abstrac-
tions	in	PPL.	PPL	uses	the	Concurrency	RunTime	(ConcRT)	for	task	
scheduling	and	load	balancing.	Intel	TBB	is	both	a	commercial	
and	open	source	project.	It	uses	a	task	scheduler	that	can	run	on	
Microsoft	Windows	with	or	without	the	ConcRT,	and	it’s	supported	
on	other	platforms	including	Linux	and	Mac	OS.

Kronos	OpenCL	(Open	Computing	Language),	Microsoft	Direct-
Compute,	and	Nvidia’s	CUDA	(Compute	Unified	Device	Architec-
ture)	target	heterogeneous	systems	typically	consisting	of	a	host	
machine	and	remote	computing	engines	(such	as	attached	GPUs).	
They	share	a	programming	model	similar	to	that	of	Intel	ArBB,	in	
which	host	threads	offload	data-parallel	work	onto	remote	comput-
ing	engines.	However,	they	require	programmers’	direct	control	at	
every	level.	In	contrast,	Intel	TBB	focuses	on	homogeneous	sys-
tems	with	transparent	load	balancing	through	work	stealing.

Apple’s	Grand	Central	Dispatch	(GCD)	is	a	tasking	system	
that	combines	queues	with	closures	called	blocks.7	Program-
mers	explicitly	enqueue	blocks	into	the	main	queue	and	into	local	
and	global	queues	they’ve	created.	The	system	schedules	this	
enqueuing	on	the	basis	of	the	available	cores’	priorities.	Although	
GCD	manages	the	sharing	of	system	resources	among	different	
applications,	it	doesn’t	provide	high-level	algorithms	or	containers	
and	requires	a	compiler	that	recognizes	blocks.

References
	 1.	M.	Frigo,	C.E.	Leiserson,	and	K.H.	Randall,	“The	Implementation	of	the	Cilk-5	

Multithreaded	Language,”	Proc. ACM SIGPLAN 1998 Conf. Programming Lan-
guage Design and Implementation	(PLDI	99),	ACM	Press,	1998,	pp.	212–223.

	 2.	M.	Frigo	et	al.,	“Reducers	and	Other	Cilk++	Hyperobjects,”	Proc. 21st Ann.
Symp. Parallelism in Algorithms and Architectures,	ACM	Press,	2009,	pp.	
79–90.

	 3.	“A	Quick,	Easy	and	Reliable	Way	to	Improve	Threaded	Performance:	Intel	Cilk	
Plus,”	Intel,	2010;	http://software.intel.com/en-us/articles/intel-cilk-plus.

	 4.	“Sophisticated	Library	for	Vector	Parallelism:	Intel	Array	Building	Blocks,”	Intel,	
2010;	http://software.intel.com/en-us/articles/intel-array-building-blocks.

	 5.	A.	Ghuloum	et	al.,	“Future-Proof	Data	Parallel	Algorithms	and	Software	on	
Intel	Multi-core	Architecture,”	Intel Technology J.,	vol.	11,	no.	4,	2007,	pp.	
333–347.

	 6.	OpenMP Application Program Interface Ver. 3.0,	OpenMP	Architecture	Review	
Board,	May	2008;	www.openmp.org/mp-documents/spec30.pdf.

	 7.	“Introducing	Blocks	and	Grand	Central	Dispatch,”	Apple,	2010;	http://	
developer.apple.com/library/mac/#featuredarticles/BlocksGCD/.

RELATED WORK
IN PARALLEL-PROGRAMMING MODELS

26	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

apply a body to a range of elements
concurrently. They support calculation
of a reduction and a parallel prefi x,
respectively.

Adding New Items While Iterating
The algorithms we just described as-
sume that the complete iteration space
is known a priori. However, for many
applications, the iteration space’s end
isn’t known in advance. To handle this

case, Intel TBB provides the parallel_do
template function.

To use parallel_do, users provide be-
gin and end iterators and a function
object (or lambda expression). If the
user doesn’t provide random-access it-
erators, the algorithm ensures that no
more than one thread will ever act on
the iterators concurrently. This respects
the defi nition of input iterators for se-
quential programs. However, if the in-

put iterators are random-access, this
constraint is relaxed, which lets the al-
gorithm be more scalable.

The parallel_do body argument might
take a parallel_do feeder as its second ar-
gument. In this case, the body might
add new items to the iteration space by
calling the feeder’s add function. Figure 6
shows an example of parallel_do.

Execution of Pipelined Computations
The parallel_pipeline function is an inter-
face that applies a series of fi lters to a
stream of items in a pipelined fash-
ion. Each fi lter operates in a particular
mode: parallel, serial in-order, or serial
out-of-order.9 Parallel fi lters process
items as they arrive and might do so
concurrently. Serial in-order fi lters pro-
cess one item at a time, in the order in
which those items entered the pipeline.
Serial out-of-order fi lters process one
item at a time, but in the order in which
those items arrive at the fi lter.

Figure 7 shows an example of paral-
lel_pipeline; it’s a syntactic demonstra-
tion only. It’s not a practical way to
calculate a root mean square because
overheads would likely dominate the
calculation. However, when there is
suffi cient work per item and suffi cient
processors and items, the throughput
of parallel_pipeline is limited only by the
slowest serial stage.

Concurrent Containers
The prepackaged parallel algorithms
we described earlier are useful in ex-
pressing parallelism in applications.
Concurrent containers are equally (if
not more so) useful in developing par-
allel applications for desktop comput-
ers because threads commonly use con-
current containers to communicate and
synchronize with each other.

A typical C++ standard template li-
brary (STL) container isn’t safe for con-
current access and can’t be used for
thread communication in its “naked”
form. You can make it thread-safe by
wrapping it in a mutex, an object on

Worker 3Worker 3Worker 2 (victim)Worker 1 (thief)

Oldest task

Worker
thread

Newest task

. . .

. . .

. . .

Worker
thread

Newest task

. . .

. . .

. . .

Worker 0

Worker
thread

Worker
thread

Newest task

Oldest task

. . .

. . .

. . .

Pop

Spawn

Steal Oldest task

FIGURE 2. Obtaining tasks from the local double-ended queues (deques) maintained by the

worker threads. This strategy unfolds recursively generated task trees in a depth-fi rst manner,

minimizing memory use.

fl oat fi nd_tree_min(tree_node *my_node) {
 fl oat my_min = FLT_MAX;
 if (my_node->num_nodes_below > 1000) {
 tbb::task_group g;
 fl oat min_left = FLT_MAX, min_right = FLT_MAX;
 if (my_node->left_child)
 g.run([&] { min_left = fi nd_tree_min(my_node->left_child); });
 if (my_node->right_child)
 g.run([&] { min_right = fi nd_tree_min(my_node->right_child); });
 g.wait();
 my_min = std::min(my_node->value, std::min(min_left, min_right));
 } else {
 my_min = serial_tree_min(my_node);
 }
 return my_min;
}

FIGURE 3. Using task_group to fi nd the minimum value in a binary tree. This example also

uses lambda expressions to create anonymous function objects.

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 27

which a thread can acquire a lock. How-
ever, this approach eliminates concur-
rency and creates a bottleneck. The
concurrent containers in Intel TBB offer
highly concurrent, scalable alternatives
to mutex-wrapped, serial STL containers.

Intel TBB provides containers that
yield a high level of concurrency and
scalability because they use special-
ized container organizations, fi ne-grain
locking, and lock-free techniques. Of
course, this high level of concurrency is
costly. Intel TBB containers are less ef-
fective for applications in which conten-
tion is light. A rule of thumb is to use
Intel TBB containers for applications
that may exhibit burst access patterns
to shared data—that is, concurrent ac-
cesses to them in short time spans.

Intel TBB provides three kinds of
concurrent containers: concurrent_hash_
map or concurrent_unordered_map, concur-
rent_vector, and concurrent_queue or concur-
rent_bounded_queue. Their interfaces are
modeled after their STL counterparts
in the C++ 201x standard proposal.6
However, some STL methods are ab-
sent from Intel TBB containers, and
others have different semantics in Intel
TBB containers.10 Developers can use
these containers in conjunction with
task-based programming or with native
Windows or Linux threads.

Concurrent Associative Containers
The concurrent_hash_map and concurrent_un-
ordered_map containers are extensions to
the sequential associative containers.
Because both add concurrency to a hash
map, they have similar semantics. For
example, both have unordered keys and
at most one element for each key. How-
ever, they were developed with different
design objectives and thus have different
interfaces and, more importantly, have
different concurrency requirements.

The concurrent_hash_map class allows
concurrent insertion, lookup, and era-
sure on the same map instance. It ser-
vices concurrent access using auxiliary
objects called accessors. An accessor

acts as a smart pointer to a pair in a con-
current_hash_map. It holds an implicit lock
on the pair until it’s destroyed or the
lock is explicitly released. If the map
contains a (key, value) pair correspond-
ing to an input key, insert and fi nd re-
turn the pair in the accessor passed to
the map; erase deletes the pair from the
map. If no pair exists for a given key,
insert constructs a pair with the key and
inserts it into the map. In addition,
these operations invalidate any iterators
pointing into the affected element; thus,
concurrent traversal isn’t allowed.

Although concurrent_hash_map is useful,
it lacks some desirable features. In some
use cases, accessor-based concurrent
operations are less fl exible than those
that don’t require accessors, and they
incur unnecessary overhead. For exam-
ple, every lookup on a concurrent_hash_map
imposes a cost on the application for in-
ternal locking—even for read-only ac-
cess. Additionally, the concurrent_hash_map
interface isn’t quite aligned with that
of the corresponding associative con-

tainer in the C++ 201x proposal.6 The
concurrent_unordered_map class addresses
these two issues. It closely resembles
std::unordered_map in the C++ 201x pro-
posal,6 although it omits methods re-
quiring C++ 201x language features
(such as rvalue references). In particular,
insertion, lookup, and erasure return it-
erators and have no visible locking. Us-
ers must ensure race-free access to the
elements in a concurrent_unordered_map.

Intel TBB allows concurrent inser-
tion on the same concurrent_unordered_map.
However, unlike concurrent_hash_map, in-
sertion of new items doesn’t invalidate
iterators or change the order of items
already in the map. Concurrent erasure
isn’t permitted. These changes enable
concurrent insertion and traversal on
the same map. Figure 8 compares op-
erations on the two concurrent maps.

Concurrent Vectors
A concurrent_vector is an array of elements
that permits concurrent read access
and dynamic growth. Multiple threads

[0, n /2) [n /2, n)

[0, n /4) [n /4, n /2)

[0, n /8) [n /8, n /4)

[0, n /16) [n /16, n /8)

[0, n)

(a) (b)

FIGURE 4. Recursive subdivision of a range to generate tasks. (a) Each box represents a

task that will perform computation on a subrange. The leaves represent tasks that haven’t yet

executed, and the internal nodes represent tasks that have executed and chose to subdivide

their range. (b) An image generated by the Tachyon ray tracer demonstrates how the range’s

division translates to the pixels computed in the fi nal image.

28	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

can append new elements to a concurrent_
vector and grow it concurrently without
invalidating existing iterators or indices.

This design choice has two impor-
tant design and implementation con-
sequences. First, methods that might
invalidate existing iterators and indi-
ces aren’t allowed—this includes erase()
and insert(). Second, existing elements
can’t relocate when a concurrent vec-
tor grows, which means elements might

not be stored contiguously, as they
are in STL vectors.6 For example, the
routine in Figure 9 safely appends a C
string to a shared vector. Note the use
of std::copy and iterators.

Concurrent Queues
A concurrent_queue is a first-in, first-out
data structure that permits multiple
threads to concurrently add and remove
items. Its capacity is unbounded, sub-
ject only to the target machine’s mem-
ory limitations. It doesn’t have methods
that block, which makes it appropriate
when synchronization must occur at a
high level. (The concurrent_bounded_queue
class is a bounded variant with finite
capacity and blocking semantics.)

The fundamental operations on a con-
current_queue are the push and try_pop meth-
ods. Because the concurrent queue’s
capacity is unbounded, push always
succeeds (provided that the target ma-
chine has available memory). The try_pop
method pops an item if it’s available; the
check and popping occur atomically.

Other Building Blocks
In addition to high-level parallel algo-

rithms and concurrent containers, In-
tel TBB provides other low-level build-
ing blocks such as mutexes and atomic
operations.

Mutexes and Locks
All Intel TBB mutexes have a similar
interface; this makes them easier to
learn and enables generic program-
ming. For example, all Intel TBB mu-
texes have a nested scoped_lock type,
which implements the acquire and release
methods.

The simplest mutex class is spin_
mutex. As its name implies, it requires
that threads spin-wait until acquiring
the lock. Figure 10 gives an example;
the constructor for scoped_lock waits un-
til no other locks are on spin_mutex, and
the destructor releases the lock.

The spin_mutex class is unfair and
nonrecursive, and it spin-waits in user
space. However, it’s fast in lightly con-
tended situations and is the mutex of
choice when a design spreads conten-
tion among many spin_mutex objects.

The queuing_mutex class is fair and also
nonrecursive. Although it also spin-
waits in user space, it spins each thread

class my_body {
 float *input;
 float *output;
 const int N;

public:

my_body(float *in, float *out,
 int n) :
 input(in), output(out), N(n) {}

 void operator()(int i) const {
 output[i] = (input[i-1]+input[i]+
 input[i+1])*(1/3.f);
 }
};

void DoParallelAverage(float *input,
 float *output, int N) {
 my_body b(input, output, N);
 parallel_for(1, N-1, b);
}
(a)

void DoParallelAverage2(float *input,
 float *output, int N) {
 parallel_for(1, N-1,
 [=](int i) {
 output[i] = (input[i-1]+input[i]+
 input[i+1])*(1/3.f);
 });
}
(b)

FIGURE 5. Two versions of parallel_for, in

which the body is a (a) function object or (b)

lambda expression. The two are functionally

equivalent. The lambda expression version is

more concise, but not all compilers support

lambda expressions.

struct Item {
 data_type data;
 std::list<Item> *sub_list;
};

void ParallelApplyFooToList(const std::list<Item> &my_list) {
 tbb::parallel_do(my_list.begin(), my_list.end(),
 [](const Item &item, tbb::parallel_do_feeder<Item> &feeder)
 {
 Foo(item);
 if (item.sub_list) {
 for (std::list<Item>::iterator i = item.sub_list->begin();
 i != item.sub_list->end(); ++i)
 feeder.add(*i);
 }
 }
);
}

FIGURE 6. A parallel_do example. This code traverses the initial list my_list. Whenever it

reaches an item containing a sublist, it adds all the items in the sublist to the iteration space,

using calls to feeder.add.

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 29

on a different location (which reduces
pressure on memory traffic) and is thus
more scalable than spin_mutex.

The null_mutex class does nothing; it
mainly enables generic programming.
For example, it’s useful for instantiat-
ing a thread-private container by using
a container template with a mutex type
as one of its template arguments.

The three previous classes have
reader/writer variants (denoted by _rw_
in the class names—for example, spin_
rw_mutex), which allows multiple read-
ers in the protected region. The mutex
and recursive_mutex classes are wrappers
around the system’s “native” mutual-
exclusion interfaces.

Atomic Operations
These operations, which are low-level

and hardware-
dependent, ap-
pear to occur
instantaneously. They’re
quick compared to locks
and never suffer from
lock pathologies. How-
ever, they do only a lim-
ited set of operations.
So, developers often use
them as building blocks
for more complicated
operations.

Intel TBB makes these operations
portable by hiding them under the C++
template class atomic<T>. Intel TBB sup-
ports the five fundamental atomic op-
erations in Table 1. For syntactic conve-
nience, it provides additional interfaces
in the form of overloaded operators.

Some architectures have weak
memory consistency, which means the
hardware might reorder memory op-
erations on different addresses for effi-
ciency.11,12 To account for this, atomic<T>
lets programmers enforce certain order-
ing of memory operations as they like
(see Table 2). In Table 2, the column on

float RootMeanSquare(float* first, float* last) {
 float sum=0;
 parallel_pipeline(/*max_number_of_live_token=*/16,
 make_filter<void,float*>(
 filter::serial,
 [&](flow_control& fc)-> float*{
 if(first<last) {
 return first++;
 } else {
 fc.stop();
 return NULL;
 }
 }
) &
 make_filter<float*,float>(
 filter::parallel,
 [](float* p){return (*p)*(*p);}
) &
 make_filter<float,void>(
 filter::serial,
 [&](float x) {sum+=x;}
)
);
 return sqrt(sum);
}

FIGURE 7. A parallel_pipeline example. This code creates

three filters: a serial filter iterates through the items in the list, a

parallel filter squares each item, and another serial filter adds

each squared value to the final sum. The overloaded operator&

concatenates the filters.

using namespace tbb;
typedef
 concurrent_hash_map<string,int> StringTableH;
StringTableH htable;
StringTableH::accessor a;
for(string* p=range.begin();p!=range.end();++p)
{
 htable.insert(a, *p);
 a->second += 1;
 a.release();
}

StringTableH::const_accessor ca;
bool b = htable. find(ca, str_key)
 && htable.erase(ca);
(a)
using namespace tbb;
typedef
 concurrent_unordered_map<string,atomic<int> >
 StringTableU;
StringTableU utable;
...
for(string* p=range.begin();p!=range.end();++p)
{
 string_t::iterator i = utable.insert(*p);
 ++(*i).second;
}

string_t::iterator i = utable. find(*p);
if(i!=utable.end()) utable.unsafe_erase(i);
(b)

FIGURE 8. Comparison of (a) concurrent_hash_map and

(b) concurrent_unordered_map. Insertion on a concurrent_hash_map

requires use of an accessor as well as an explicit release when

accessing the element is complete, whereas only unsafe_erase is

supported on concurrent_unordered_map.

void Append(concurrent_vector<char>& vec, const char* str) {
size_t n = strlen(str)+1;
std::copy(str, str+n, vec.grow_by(n));

}

FIGURE 9. An example of concurrent_vector. This routine

safely appends a C string to a shared vector.

30	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: PARALLELISM ON THE DESKTOP

the right lists operations that default to
a particular constraint. If desired, users
employ variants taking a template ar-
gument, acquire or release, to relax these
defaults. For example, release in refcount.
fetch_and_add<release>(-1); guarantees that
stores before the decrement are visible
before refcount is decremented. However,
it also allows loads after the decrement
to occur before the decrement.

Thread-Local Storage
Intel TBB provides two template classes
for making thread-local storage avail-
able to programmers: combinable and
enumerable_thread_specifi c. Both provide a
local function that returns (or lazily cre-
ates) one thread-local element per thread

and a combine function that reduces these
thread-local elements to a single value.
However, the enumerable_thread_specifi c
class also acts like an STL container and
permits iteration over the elements using
the usual STL iteration idioms.

Performance
Figure 11 shows the performance of
three sample Intel TBB applications,
which executed using one through 32
threads on a system with 32 cores. The
Intel TBB 3.0 distribution includes all
three applications as examples.

The polygon overlay application is
an implementation of Polygon Over-
lay from the Cowichan Problems.13 It
divides two maps of equal extent into

nonoverlapping polygons and generates
a resulting map overlaying those poly-
gons. It uses parallel_for to iterate over the
submaps and enumerable_thread_specifi c to
store polygons generated by intersecting
the maps.

Tachyon is based on John Stone’s 2D
ray tracer and renderer.14 It uses parallel_
for and blocked_range2d to parallelize over

Node* FreeList;
spin_mutex FreeListMutex;
Node* AllocateNode() {
 Node* n;
 {
 spin_mutex::scoped_lock lock(FreeListMutex);
 n = FreeList;
 if(n)
 FreeList = n->next;
 }
 if(!n)
 n = new Node();
 return n;
}

FIGURE 10. A spin_mutex example. The

spin_mutex class requires that threads spin-

wait until acquiring the lock. In this example,

the constructor for scoped_lock waits until

no other locks are on spin_mutex, and the

destructor releases the lock.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 31 3223 24 25 26 27 28 29 30

30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0

No. of cores

Sp
ee

du
p

Polygon overlay

Primes

Tachyon

FIGURE 11. The performance of Intel TBB 3.0 for the Polygon Overlay, Tachyon, and Primes applications.

TA
B

L
E

 1 Fundamental operations on a variable x of Atomic<T>.

Operation Description

= x Read	x.

x = Write	to	x	and	return	it.

x.fetch_and_store(y) Do	y	=	x,	and	return	the	old	value	of	x.

x.fetch_and_add(y) Do	x	+=	y,	and	return	the	old	value	of	x.

x.compare_and_swap(y,z) If	x	=	z,	then	do	x	=	y;	in	either	case,	return	the	old	value	of	x.

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 31

tasks that are rectangular subareas of
the image. Figure 4b shows sample im-
ages from Tachyon.

Primes is a parallel version of the
Sieve of Eratosthenes.15 It uses parallel_
reduce to compute all prime numbers up
to a given integer.

For more information regarding
performance and optimization choices
in Intel software products, see http://
sof tware.intel.com/en-us /ar t icles /
optimization-notice.

I ntel TBB lets developers build
well-performing applications by
expressing parallelism in their ap-

plications using high-level constructs
and by relegating details of scheduling
and synchronization to the runtime li-
brary. In addition, Intel TBB provides
a set of low-level constructs that de-
velopers can use directly, adding fl ex-
ibility that many other competing par-
allel programming models lack. Intel
TBB is continually evolving to meet
the demands of the emerging parallel
desktop development community. To
download the most recent release of the
library, to learn about upcoming fea-
tures, or to provide feedback on new
features, visit the community website at
www.threadingbuildingblocks.org.

References
 1. “A Quick, Easy and Reliable Way to Improve

Threaded Performance: Intel Cilk Plus,” Intel,
2010; http://software.intel.com/en-us/articles/
intel-cilk-plus.

 2. “Sophisticated Library for Vector Parallel-
ism: Intel Array Building Blocks,” Intel, 2010;
http://software.intel.com/en-us/articles/intel-
array-building-blocks.

 3. “Deliver Scalable and Portable Parallel Code:
Intel Threading Building Blocks,” Intel, 2010;
http://software.intel.com/en-us/intel-tbb.

 4. “Intel Threading Building Blocks 3.0 for
Open Source,” Intel, 2010; www.
threadingbuildingblocks.org.

 5. M. Frigo, C.E. Leiserson, and K.H. Randall,
“The Implementation of the Cilk-5 Multi-
threaded Language,” Proc. ACM SIGPLAN
1998 Conf. Programming Language Design
and Implementation (PLDI 99), ACM Press,
1998, pp. 212–223.

 6. Programming Languages – C++, Int’l Org. for
Standardization, Mar. 2010; www.open-std.
org/JTC1/SC22/WG21/docs/papers/2010/
n3092.pdf

 7. Intel Threading Building Blocks Reference
Manual, Intel, 2010; http://software.intel.
com/en-us/articles/intel-threading-building
-blocks-reference-pdf.

 8. A. Robison, M. Voss, and A. Kukanov, “Op-
timization via Refl ection on Work Stealing in
TBB,” Proc. 2008 IEEE Int’l Symp. Parallel
and Distributed Processing (IPDPS 08), IEEE
Press, 2008, pp. 1–8.

 9. S. MacDonald, D. Szafron, and J. Schaeffer,
“Rethinking the Pipeline as Object-Oriented
States with Transformations,” Proc. 9th Int’l
Workshop High-Level Parallel Programming
Models and Supportive Environments (HIPS
04), IEEE CS Press, 2004, pp. 12–21.

 10. A. Marochko, “TBB Containers vs. STL.
Functionality Rift,” blog, Intel, 13 Oct.
2008; http://software.intel.com/en-us/
blogs/2008/10/13/tbb-containers-vs-stl
-functionality-rift.

 11. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Vol. 3A: System Pro-
gramming Guide, Part 1, Intel, 2010; www.
intel.com/Assets/PDF/manual/253668.pdf.

 12. P. Sewell et al., “x86-TSO: A Rigorous and
Usable Programmer’s Model for x86 Multipro-
cessors,” Comm. ACM, vol. 53, no. 7, 2010,
pp. 89–97.

 13. G.V. Wilson, “Assessing the Usability of
Parallel Programming Systems: The Cowichan
Problems,” Proc. IFIP Working Conf. Pro-
gramming Environments for Massively Paral-
lel Distributed Systems, 1994, pp. 183–193.

 14. J. Stone, “Tachyon Parallel / Multiprocessor
Ray Tracing System,” Sept. 2010; http://jedi.
ks.uiuc.edu/~johns/raytracer.

 15. E.W. Weisstein, “Sieve of Eratosthenes,”
Wolfram Research, 2010; http://mathworld.
wolfram.com/SieveofEratosthenes.html.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

WOOYOUNG KIM is	a	software	engineer	in	the	Intel	Software	and	
Services	Group.	His	interests	include	programming	languages	and	run-
time	support	for	parallel,	concurrent,	and	distributed	systems	(including	
shared-memory,	multicore	systems,	and	wireless	sensor	networks).	
Kim	has	a	PhD	in	computer	science	from	the	University	of	Illinois	at	
Urbana-Champaign.	Contact	him	at	wooyoungdim@intel.com.

MICHAEL VOSS is	a	software	engineer	in	the	Intel	Software	and	
Services	Group	and	a	developer	of	Intel	Threading	Building	Blocks.	His	
research	interests	include	languages	and	compilers	for	parallel	comput-
ing	and	adaptive	program	optimization.	Voss	has	a	PhD	in	electrical	
engineering	from	Purdue	University.	Contact	him	at	michaelj.voss@
intel.com.

TA
B

L
E

 2 Ordering constraints.

Constraint Description Default for

acquire Operations	after	the	atomic	operation	never	move	over	the	atomic	operation. read

release Operations	before	the	atomic	operation	never	move	over	the	atomic	operation. write

Sequentially	consistent Operations	on	either	side	never	move	over	the	atomic	operation;	the	sequentially	
consistent	atomic	operations	have	a	global	order.

fetch_and_store
fetch_and_add
compare_and_swap

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

