Parallel Model for Complex Attack Detection|

Abstract

Jhis investigation extends previous work on a

Continued research in complex attack detection
is becoming more important.

Traffic-based Reasoning Intrusion Detection
System using Ontology (TRIDSO). TRIDSO uses
semantic expression to give reason to network
traffic patterns to detect complex attacks.
Although_achieving complex attack \detectionl

Frye, Cheng and Heflin [3] developed a Traffic- |

based Reasoning Intrusion Detection System
using Ontology (TRIDSO), which focused on
detection of complex attacks. Detection of
complex attacks requires the recognition of the

the overhead of populating the application’s
knowledge base prevents it from real-time
usage. Concurrent programming benefits
include increased run-time efficiency. Two
different parallel models were created in an
attempt to reduce the application overhead.
Solutions to issues in refactoring TRIDSO for
concurrency are presented, including handling
of volatile resources. Run-time and scalability
analysis describing application throughput
improvement is provided.

Introduction

Computer networks and the number of devices
with connectivity to networks continue to grow.
Access to network applications and information
can increase productivity. Relying on network
connectivity carries a risk. As the size of a
network grows, the dependent devices,
resources, and information become vulnerable
to attack. The implementation of necessary
network security protocols are based on the
probability of the occurrence of a specific attack
and the cost to recoup the damage caused by
the attack.

Intrusion detection systems (IDS) are used to
ensure the protection and availability of
network Amoroso and
Kwampniewski [1] identified IDS requirements
to be short time to attack detection, knowledge
of attacks, profiling of system activity and multi-
source information correlation. Snort [2] is an
open source IDS which satisfies this selection
criteria including the ability to quickly and
accurately detect simple attacks. As simple
attack detection become more efficient,
complex attacks will become more prevalent.

resources.

combination of multiple simple attacks. TRIDSO

uses semantic expression to reduce redundant
matching of multiple simple attacks in complex
attack recognition. This methodology was
shown to detect complex attacks that Snort
overlooked.

TRIDSO uses an ontology model developed by
Frye, Cheng and Kaplan [4] to detect complex
attacks. The ontology model was developed
using Jena [5], a Java based framework used by
the application as a knowledge base. The
semantic web and linked data abilities are used
to construct the detection hierarchy. As is
common with other reason-based IDSs, TRIDSO
suffers from a knowledge base population
overhead. The reduced run-time efficiency
restricts the application from deployment in a
real-time system, but the complex attack
detection results provide useful information for
developing security protocols for network
managers.

Today, many computer systems include multi-
core processors that allow for multiple sets of
instructions to be completed at the same time
or concurrently. Concurrent programming
practices developing applications  where
separate sets of instructions are executed
simultaneously or in parallel. Concurrent
programs run more efficiently on multi-
processor systems as each sub-process can be
run in parallel on a separate processor. Further,
each processor may contain multiple cores,
each of which is capable of executing its own
set of instructions. The benefit of concurrency
is parallel execution, which often leads to
increased  application  throughput  when
compared with similar sequential applications.
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Many of the risks associated with concurrency
are based on contention for shared resources
between processes. A concurrent application
design should control access to shared or
volatile resources between multiple processes
to prevent an indeterminate outcome.

This paper addresses the scalability problem
associated with the run-time efficiency of
TRIDSO by adapting the application for
concurrency. The goal is to reduce the
overhead of populating the application’s
knowledge base to increase application
throughput. The multi-core, multi-processor
system where the concurrent models were
tested is outlined. Volatile resource
management and transaction classification are
discussed. Design patterns of two parallel
implementations are explained. Finally, a run-
time and scalability analysis is given.

Related Work

Mehra [6] provides a comparison of two freely
available open source IDSs named Snort [2] and
BRO [7]. Both systems monitor network traffic
by completing deep payload packet inspection.
Snort uses string and regular expression
matching against a rule set to determine
malicious signatures. BRO uses application-
level semantics and event pattern matching to
detect attacks. Mehra explains that BRO has
better network adaptability being designed for
customization and experimentation. Although
Snort is more commonly used due to its ease of
deployment, it is not suitable for high speed
networks.

Mirtra, Najjar, and Bhuyan [8] used advances in
computer hardware to implement a faster
version of Snort. Since Snort is open source,
additional rules are continually added to the
applications. As network speeds increase and
packet volume grows, more computation cycles
are required to step through the application’s
rule set. The hardware model offsets
computational cost by handing off rule
matching to dedicated hardware. Compiling
each regular expression in the Snort rule set

into hardware based non-deterministic finite
state automata creates an improvement in run-
time efficiency.

Although hardware solutions are achievable,
scalability and portability are unresolved issues
when adapting such a model to new systems.
Xiang and Zhou [9, 10] suggest using multi-core,
multi-processor systems to support packet
processing in real-time at the application level.
This approach is used to address the scalability
of TRIDSO by implementing two parallel models
for execution on a multi-core, multi-processor
machine.

Sequential System Analysis

The sequential version of TRIDSO was
analyzed to determine necessary adjustments
to adapt the model for parallel execution. A
UML sequence diagram [11] was useful in
identifying the Jena ontology model as a volatile
resourcel This ontology model serves as the

knowledge base for complex attack detection.
Multiple components of the application use
SPARQL [12] queries to commit updates by
inserting instances into the knowledge base.
The knowledge base is eventually queried to
determine if a complex attack has occurred.

Unfortunately, Jena does not support
internal concurrent updates. This functionality
could be useful as multiple classes commit
potentially overlapping updates to the
knowledge base. Instead of replacing Jena, the
approach of implementing program control for
updating the knowledge base was taken. The
first step was to identify where and what
processes were committing updates in order to

synchronize their access. The sequential
implementation uses a chain of responsibility
design pattern [13] with static methods called
from library Classes, Four separate classes

create multiple query strings for committing
updates, which include Traffic Streams, Packet
Collections, Alert Attacks and Simple Attacks.
Multiple functions within each class generate
query strings and commit updates through a
common library function call. Each class creates
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a layer of semantic knowledge used toward
detecting a complex attack. Each class or layer
is dependent on the preceding layer and
therefore cannot be executed in parallel. While
the instances inserted within a class share an
association to the same layer of semantics, they
do not retain a dependency upon each other.
Therefore, the updates committed within a
class can be executed in parallel whereas each
class must be treated atomically.

The system used for testing in this
research contained eight processors where
each processor has eight cores. As threads are
spawned in the application, each processor is
assigned a thread of execution, which is run in
one of the eight cores local to the processor.
Each of the processors is assigned a single
thread of execution and none of the processors
is assigned a second thread until each of the
processors is executing at least one.

To allow for parallel execution, classes
were refactored to fit object oriented design
patterns. Due to Jena not supporting internal
concurrency, improvements for application
throughput focused on reducing the overhead
of generating the update query strings. The
developed Symmetric model follows a builder
design pattern [13] allowing the operating
system to distribute the workload of generating
query strings and committing updates across
multiple cores and processors. The Asymmetric
model follows a factory design pattern [13] with
a producer-consumer model [14]. The

implementation used to achieve this model
uses an adapted builder design pattern shown
in Figure 1. The pattern is applied to each of
the classes responsible for generating queries
and committing updates. The example
presented is for the TrafficStreams class,
although all four aforementioned classes follow
the same pattern.

The instantiation of each class object is
a bootstrap for adding the respective layer of
semantics to the ontology. The sequential
implementation used multiple methods, each of
which generated a unique query string for
populating the knowledge base. Here, when
the initial object is constructed, multiple
threads are generated. The initial class object is
the runnable target of each thread, allowing the
thread to inherit the knowledge base reference.
Each thread generates a unique query string
and commits an update by pairing an assigned
thread id with a class method. Each of the
threads is joined before the constructor returns.
Thus, instantiation of each class object,
corresponding to a layer of semantic
knowledge, executes its internal updates
concurrently while the class instructions are
treated atomically. Each layer of semantics is
then added by simply instantiating each class in
sequential order to build the layering
dependency needed for complex attack
detection.

Asymmetric model dedicates knowledge base
updates to a single core on a single processor
while distributing the workload of query string
generation. The two parallel models were
implemented to benchmark run-time
improvements. The implementations of
Symmetric and Asymmetric parallel models are
described in the following two sections.

Symmetric Implementation

The Symmetric implementation allows
the operating system to distribute the load over
multiple cores and processors of a system. The

TrafficStreams TrafficStreams
Thread(this, theKB) theKB: KBconnect
run()
KButility Thread

execUpdQuery(queryStr id: int

theKB) * [<— queryStr : String
theKB: KBconnect
commitUpdate(queryStr)

Figure 1: Adapted Builder Pattern|

In the Symmetric model, the operating
system is responsible for distributing the
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workload over the cores and processors of the
system. This implementation addresses
scalability by leveraging the operating system to
distribute the work load as opposed to pigeon-
holing work based on system hardware. This
implementation is portable, although run-time
improvements will be platform dependent.
Parallel query string generation and instance
insertion within each class should yield an
increase in application throughput, although a
lack of internal knowledge base concurrency
may result in unwanted and unpredictable
thread pre-emption resulting from contention
for the knowledge base writing lock. These
issues are discussed in the run-time analysis
section.

Asymmetric Implementation

The Asymmetric implementation was
developed to address two potential issues in
the Symmetric implementation. One problem
with the Symmetric design was assuming that
generating a query string and committing an
update was an atomic instruction. For example,
although updates committed by
PacketCollections cannot take place before all
TrafficStreams updates are complete, the query
strings for PacketCollections could be generated
concurrently while TrafficStreams updates
where being completed. Second, sharing the
knowledge base across multiple threads could
create additional overhead. Each time the
knowledge base is updated, the reference must
be shared to each thread containing a
reference. Assuming that two processes
responsible for committing an update are
executing on cores of separate processors, the
knowledge base must be written out to Java
Main Memory. As the knowledge base grows,
the cost of sharing this reference increases. The
Asymmetric model addresses each of these
design flaws.

By following a parallel
producer/consumer model, a solution to both
problems is achieved. First, a factory design
pattern is applied to all four classes for
generating query strings. A QueryGenerator

interface is implemented as the query
generation factory. Each class implements the
QueryGenerator  interface, becoming a
specialized factory for generating query strings
specific for adding their respective layer of
semantics. Each class is instantiated with a
reference to a blocking queue specific to the
class. Each class generates unique query strings
in parallel and inserts them into the blocking
queue. The factories become the producers in
the producer/consumer model and all four
classes are executed in parallel as the query
strings do not have dependency upon layers of
semantic knowledge. The knowledge base is
retained in the main thread of execution and
becomes the consumer in the model. The main
thread is responsible for committing updates
with query strings removed from the blocking
queue associated with each class. lA blocking
queue is used to ensure the consumer does not
move to the next queue before all queries
associated with the class have been consumed.
Each queue is consumed fully before moving to
the next queue to preserve the semantic
layering of the knowledge base.

Main
theKB: KBconnect

<<interface>>
QueryGenerator

commitUpdate(theKB, aQueue)

uses

TrafficStreams( QueryQueue )

PacketCollecti QueryQueue)

creates | AlertAttacks( QueryQueue )
SimpleA ks( QueryQueue )

QueryQueue<String>

Figure 2: Asymmetric Factory Design Pattern

In this design, the knowledge base
follows a Singleton design pattern [13] by
restricting the knowledge base to the main
thread of execution. This allows possible local
caching of the knowledge base and reduces the
potential of multiple writes to Java Main
Memory. This concept parallels an Asymmetric
model as updates to the knowledge base will be
limited to one jprocess, which will execute on
one core of one processor assuming the thread
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is not pre-empted. In the Symmetric model,
generating queries for the last three layers of
semantics are dependent on successful
insertion of instances from the first layer of
semantics. In

The Asymmetric mode|, queries for all

calculated respective to the Sequential
implementation. The Asymmetric model had a
34.97 percent gain on average and a 21.38
percent gain during the fastest observed test
runs. The gain for each model is attributed to
the reduced overhead by generating query

four classes are generated in parallel. The
removed dependence should yield an increase
in run-time efficiency for the Asymmetric
model.

Run-time Analysis

A series of test runs for each of the
three execution models was planned to
benchmark gains in run-time efficiency. The
same dataset containing a PingScan network
attack was used for each test. Four test runs
where completed for each model over two
separate days with one test run starting in the
morning and one starting in the evening. The
application was allowed to complete running
before a new test run would begin and was the
only application running on the test machine. A
limit of two test runs per day was used to
ensure that exceedingly long run-times could
complete before a new test began. Also, test
runs on different days where added to
determine if latency in accessing accompanying
project files located in the network file system
was effecting run-time efficiency.

Table 1 shows the run-time results from
Sequential, Symmetric and Asymmetric models.
The first four rows of the table show the
application run-time for each of the four test
runs completed for each model. The fifth row
shows the average run-time for each model
with the two columns at the far right displaying
the percent increase in run-time achieved. The
last two rows show the differences in the
fastest and slowest run-times.

The results show that both the
Symmetric and Asymmetric models increase
application throughput by 12.88 percent and
34.97 percent respectfully. Percentage gains
for the Symmetric and Asymmetric are

Run-Time Percent Increase
Sequen- | Sym- Asym- Sym- Asym-
tial metric | metric metric | metric
AM
dayl 9:10 2:20 3:40 | - | e
PM
dayl 5:16 2:55 4:48 | - | ---
AM
day2 4:55 8:10 1:54 | - | -
PM
day2 2:25 5:30 349 | - | -
Overall
Average | 5:26 4:44 3:32 12.88% | 34.97%
Fastest
run-
time 2:25 2:20 1:54 3.45% | 21.38%
Slowest
run-
time 9:10 8:10 4:48 10.91% | 47.64%

strings in parallel.

Table 1. Benchmark results with time in hours

scalable

The Asymmetric model is a more

concurrent

application

than

the

Symmetric model for several reasons. First, this
model has a greater increase in application
throughput attributed to constraining the
knowledge base to one thread of execution. By
localizing the knowledge base, the overhead of
writing its reference to Java Main Memory after
each update is eliminated. Now, the knowledge
base can be cached locally and only needs to be
rewritten when its size exceeds its local cache.

Run-time analysis shows separating
query string generation and knowledge base
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updating with a factory design pattern reduced
application overhead from the Symmetric to
Asymmetric implementations. The outlying
slowest run-time observed is nearly half the
slowest run-time of the Sequential and
Symmetric models.

Another result of testing shows a large
amount of variance application run-time. It is
unclear whether these outlying results stem
from latency in accessing the network file
system for the ontology definitions or pre-
emption caused by the order of committed
updates. The calculated variance for the
Sequential and Symmetric models combined is
nearly 7.5 hours when compared to the
Asymmetric model variance of nearly 1.5 hours.
The reduced variance is important for a scalable
application as a predictable run-time is
necessary for network managers to be able to
efficiently use the application. Although a
significant reduction in application throughput
was achieved, the improvements have not been
great enough to allow the application to detect
complex attacks in real-time.

Conclusion

Two parallel implementations were
developed to address the scalability of a
sequential version of a Traffic-based Reasoning
Intrusion Detection System using Ontology. The
specific goal of the development was to
increase application throughput such that the
application could be deployed for real-time
attack detection. Reducing application
overhead for populating the knowledge base
resulted in increased application throughput of
up to 35 percent. Although this is a significant
improvement, more research is needed to
further reduce the application’s run-time to be
deployed for real-time complex attack
detection.

Although the database used for the
ontology model did not support internal
concurrency, two areas could be addressed to
seek further improvements. The first is possible
restructuring of the update query strings to

create greater parallelism. The second is to
implement an update scheduler based on the
pre-emption duration caused by each update.
We believe that these options could further
reduce overhead and created better run-time
predictability resulting in a more scalable
application.

A second proposal for continued
research is to use an alternate semantic model
to represent the attack definitions currently
defined for the ontology. Replacing Jena as the
database for the current ontology model with a
database that supports internal concurrency
could mitigate the query restructuring and
scheduler implementation previously described.

Computer networks will continue to
provide availability and access to information.
As networks continue to develop, vulnerabilities
in these networks will be exposed. Continued
research in both simple and complex attack
detection and prevention is needed. Finally,
continuing development of scalable systems
capable of detecting zero day attacks is needed
to prevent information loss.
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