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Abstract
Embedded system debuggers deal with

several layers of target system abstraction,
including circuit, machine code, assembly code,
procedural code and extension code layers. The
Luxdbg debugger contains an explicit API for
each of these layers, providing opportunities for
networked distribution at any of them. Having
evolved in an environment of assembly code
debugging for small-footprint signal processing
systems, Luxdbg has concentrated on distributing
the machine code layer of abstraction. Network
efficiency is achieved by using a demand paging
mechanism borrowed from operating systems.
Paging minimizes network traffic and system call
overhead in exchanging processor state between
the debugger and its remote target processors.
Luxdbg also uses an extension of the Composite
Design Pattern to aggregate and to synchronize
multiple processors and processes. A research
version is adding networked distribution at the
procedural code abstraction layer, based on the
Java™ Debug Interface. It is also adding
extension code distribution in support of multiple,
communicating debuggers.

1. Introduction
Our group within Bell Labs designs and

builds the LUxWORKS set of development tool
for Lucent Microelectronics’ embedded system
processors. For most of the 1990’s these proc
sors consisted of fixed-point, assembly-coded d
ital signal processor (DSP) cores, together wi
application-specific peripherals and custom mem
ory configurations. They have supplied signal pr
cessing capabilities in applications such a
modems, wireless telephony and telepho
answering devices.

We began building networked debuggin
capabilities in 1994, initially as a means of usin
TCP/IP to connect a UNIX-resident debugger t
DSP debugging hardware housed in a PC. O
current embedded system debugger, Luxdbg [
uses TCP/IP to provide distributed access to low
level processor data and control functions for on
or more target embedded processors. Distribut
access takes the form of fetches and stores of t
get processor state such as register values, me
ory contents and breakpoint triggers. Symbo
based interpretation of this state for C and asse
bly programs resides strictly within the debugge

Ongoing application trends are increasing th
need for distributed and concurrent debuggin
capabilities in Luxdbg. Older wireless system
configured their code statically, before deploy
ment to the field, making it possible to perform
fairly exhaustive testing and debugging at th
development site. With the advent of distributio
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infrastructure such as JINI™ [2] and Bluetooth™
[3] we anticipate a growth in demand for distrib-
uted debugging. Novel, untested combinations of
software modules will arise dynamically, thanks
to distributed, dynamic loading. Demand for con-
current debugging within embedded telephony
systems is on the rise, both because of the bun-
dling of microcontroller and DSP cores within a
single silicon die for mobile units, and because of
the synchronization of hundreds of DSPs in server
systems such as cellular basestations.

Section 2 of this paper gives an overview of
the layers of processor abstraction with which
Luxdbg works. Section 3 shows how we have dis-
tributed one of these layers, the processor
machine code layer, to support distributed debug-
ging of small-footprint embedded systems. Sec-
tion 4 outlines a design pattern-based approach to
debugger synchronization of multiple processors
that scales from embedded multiprocessors in a
single chip to multiple processes distributed
across the Internet. Section 5 examines distribu-
tion of other Luxdbg layers and discusses related
work. Section 6 concludes.

2. Virtual machine debug interfaces
Figure 1 gives a schematic representation of

the layers of abstraction in which Luxdbg debug-
ging of an embedded application occurs. Each
layer corresponds to an explicit Luxdbg applica-
tion programming interface (API). Luxdbg users
interact directly with the outer layer, and each
layer provides access to portions of the layers sup-
porting it.

The circuit layer represents integrated circui
pins, registers, memory regions, peripher
devices and timing information. It may be embod
ied by C++ circuit modeling objects such as mem
ory models in a processor simulation model, or
may be embodied by electronic circuits in a hard
ware processor. Luxdbg users can interactive
read and write circuit scalar and vector values.

Themachine code layeradds the abstractions
of an instruction streamand asystem clock. Arti-
facts such as an instruction pointer (a.k.a. progra
counter), program memory, hardware interrup
and breakpoints become evident at this level. Wi
a system clock comes synchronization of multip
processor cores on a single chip.

Theassembly code layeradds symbolic inter-
pretation on top of programs running within th
machine code abstraction. Unlike time-sharin
systems, embedded systems typically do not ca
much symbolic, source code information in th
run-time environment. Often the run-time syste
is bereft even of a loader; programs then reside
ROM. Luxdbg’s assembly layer adds a loade
symbol resolver and assembly expression evalu
tor to each machine being debugged.

Theprocedural code layeris a more powerful
variant of the assembly code layer, adding co
structs such as stack frames, data structures
objects that come with source languages such a
and C++. Both the assembly and procedural la
ers map symbolic commands to machin
addresses and binary values.

The extension language layerrefers to the
existence of an embedded extension langua
within Luxdbg [4]. The production version of
Luxdbg, written in C++, uses Tcl as its extensio
language [5, 6]. A Luxdbg user can write exten
sion languagescriptsthat interact with target pro-
cessors to drive tests, to extend simulatio
models, and to synchronize execution of multip
processors from the debugger. The extension la
guage adds a programming language interprete
the set of commands provided by lower layer
With this layer a user can add additional, applic
tion-oriented debugging layers without requirin
modifications to the underlying layers.

Any of the layers of Figure 1 could be distrib
uted over a computer network. Distribution
clearly puts the Luxdbg user on a system that
different from a target processor system. Dua

Figure 1: Layers of virtual machines

circuit

machine code processor
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procedural code processor

extension language processor
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systemcross-debuggingis typical for embedded
systems, but Luxdbg also supports debugging a
target system that is itself distributed across a net-
work. The remainder of this paper looks at effi-
ciency and synchronization issues in the
distribution of these layers.

3. Distributed machine code layer
Distribution of the machine code layer of

Luxdbg began in 1994 with its predecessor, an
assembly-level debugger for Lucent’s DSP1600
processor. Users could debug programs running
within simulation models on both UNIX® and
MS-DOS® computers. Unfortunately for UNIX
users, debugging programs running on hardware
required a PC-hosted interface card, necessitating
moving to a PC. We distributed the machine code
API of Figure 1 across TCP/IP using a custom
remote procedure call (RPC) mechanism on top of
sockets. WinSock sockets version 1.1 had recently
arrived for Window 3.1® [7]; we built our own
RPC because there was no viable commercial
RPC package for connecting big-endian UNIX
machines to little-endian PCs. Once we elimi-
nated a major performance problem, UNIX users
were free to avoid MS-DOS.

The performance problem came to light dur-
ing testing of the distributed debugger. Debugger
regression tests ran as much as 30 times slower
when distributed over a local TCP/IP network
than they did when executed stand-alone on an
MS-DOS PC. Investigation uncovered a log-log
relationship between the size of messages and
their frequency. A typical regression test created
on the order of 64K 8-byte messages and 1 64K-

byte message. Small messages corresponded
assembly level reads and writes of individual reg
isters and memory locations. They increased co
tention and collision rates on busy TCP/IP
networks, and they increased the overall syste
call overhead within the debugger and hardwa
server. The few, large messages were less o
problem, but they still contributed communica
tions overhead for blocks of data that the debu
ger did not always use. Each large messa
decomposed into several TCP/IP packets, wi
multiple socket system calls per message, and
debugger often used only a fraction of this data.

Figure 2 diagrams the mechanism that w
prototyped in this earlier debugger and genera
ized in Luxdbg. Luxdbg maintains a machin
code levelmodelwithin the debugger process; this
model is partially redundant with the state of th
target processor. For the case of stand-alone sim
lation, where Luxdbg drives simulation activities
this model may be a completesimulation model
capable of simulating execution. For the case
remote execution, on the other hand, the debu
ger’s needs are met by astate-bearing model, a
model that represents the state-bearing entities
the target processor, such as registers and me
ory, but which is not capable of simulation. A
state-bearing model is essentially astructured
buffer.

Luxdbg establishes initial contact with a
remote processor by contacting atarget processor
serverthat is capable of serving multiple machin
code processors. Our hardware server process
called TargetView™, provides debug access to
multiple processors in a target system. TargetVie

circuit

machine code processor

Figure 2: Luxdbg distribution of the machine code layer

machine code model
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manages connection setup, tear down, and device
driver scheduling. Each debugger connection
issues commands, queries and state changes to its
target processors. The target server can also be a
circuit simulator, where each target processor is a
simulation model. In this case Luxdbg simulation
models manage target TCP/IP connections and
debugger interactions, avoiding coupling the off-
the-shelf simulator to the Luxdbg debugger.

Once a connection is established, Luxdbg can
eitherdownloadthe state of its model to the target
environment, oruploadthe state of the target to its
model. Download is useful for RAM-based pro-
grams; Luxdbg loads itsmemory modelsfrom an
executable file, and then flushes these memory
models to the target, thereby serving as a loader.
Upload is useful for ROM-based programs that
reside on a target embedded system; Luxdbg
loads symbol table information from an object
file, and matches the file’s memory contents to the
uploaded ROM contents to ensure consistency.

Demand paging operates when a target pro-
cessor is stopped at a breakpoint and the state of
Luxdbg’s model of that processor is in agreement
with the state of the target processor. User interac-
tion occurs with the local model. Memory models
are C++ objects withfetch and store operations.
Every user store operation into a memory model
object causes that object to mark thepageof the
stored location asdirty. Modification of nearby
locations, for example fields in a contiguous data
structure, modify only one or a few pages. When
the user later invokes theresumecommand to
resume processor execution, Luxdbg’s model for
that processor calls theflush method for each of
that model’s memory objects, and flush in turn
calls apager to write the dirty pages to the target.

After a target processor reaches a breakpoint,
every debugger fetch invocation for a memory
model checks theresidentstatus of the page hold-
ing the fetch location. The aforementioned flush
of model memory to its target system sets resident
status toremote. When a user requests the con-
tents of a location residing in a remote page, the
model memory object obtains the necessary page
from the target processor and marks its resident
status aslocal. Subsequent fetches from that page
do not entail communications with the target pro-
cessor. A store to memory requires that the store
location’s page is local; after storing a value, the

memory model marks the page as dirty. Process
resumption repeats the cycle.

Paging is transparent to the debugger us
The procedural and assembly code layers transl
symbolic inspection and modification command
into memory fetches and stores, with any resultin
memory paging hidden within memory models.

This is precisely the demand paging strateg
that operating systems use, and it works here
essentially the same reason:locality of reference.
Memory accesses by a Luxdbg user or Tcl exte
sion script tend to cluster within a small numbe
of pages per breakpoint. Paging avoids incurring
set of network request and reply packets for ea
storage access for nearby locations, and a reas
able page size avoids transferring unneeded me
ory blocks for a single socket message.

Empirical experimentation determined that a
8K page size works well for typical debugge
usage. The impact on regression tests dropp
from 30 times slower to 2 times slower for distrib
uted debugging when compared to non-distribut
debugging, and then only for worst case, aut
mated regression tests with a high volume
debugger-to-processor memory interaction
Interactive user access to memory does not suf
from any noticeable delay.

Each memory model is a C++ memory objec
from the circuit level of abstraction, such as on
chip RAM as illustrated in Figure 3. Each proces
sor model records the offsets of memory mode
in its linear address space, and each memo
model records the processors and memory offs
at which it is visible. A memory model pages its
contents to and from its remote execution enviro
ment, but paging to hardware may require exec
tion of debugger code on the target system, a
this code refers to a linear address space, not t
primitive block of memory. In Figure 3, for exam-
ple, the block of shared RAM appears at one loc
tion for the DSP and at another location for th
microcontroller. Each processor model includes
pager object that is specific to its processor.
translates a memory model’s page location to
logical address in the linear data space of its targ
processor, and it communicates this address to
target. For Figure 3 either target processor cou
assist with paging shared RAM by communica
ing with the pager in its Luxdbg processor mode

The shared RAM block of Figure 3 provides
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an example of parallel processor debugging in
Luxdbg. Consider the case where multiple proces-
sors share a block of memory, and a C data struc-
ture in shared memory is being over-written by an
invalid pointer-based assignment. A debugger
user can set a breakpoint that triggers whenever
the structure’s range of locations is written by any
processor; the breakpoint then identifies the pro-
cessor. Both our processor hardware and simula-
tion models include this capability. By conveying
the processor ID to Luxdbg as part of the break-
point information, Luxdbg is able to locate the
offending processor and code quickly.

4. Multiprocessor synchronization
Luxdbg supports debugging of multiple pro-

cessing cores within a system on a chip (SoC).
Unlike most source code debuggers, Luxdbg
interacts with two types of target processors —
instruction streams and processor groups. An
instruction stream processes a single sequence of
instructions at some level of abstraction from Fig-
ure 1. A machine code instruction stream pro-
cesses a sequence of binary opcodes and
operands, and assembly and procedural symbol
interpretation add symbolic layers.

A processor group, on the other hand, is an
aggregation of instruction streams and nested pro-
cessor groups used for synchronization. At the
lowest, circuit level, a common master clock con-
trols synchronization by driving all hardware pro-
cessing cores within a chip. Aggregation appears
at more abstract layers as well. Processor group-
ing provides the underlying class for extending
the semantics of serial debugger commands to
support multiprocessor debugging. Grouping

allows commands to be applied to a set of proce
sors instead of a single one at a time.

Figure 4 gives a UML class diagram fo
classes InstructionStream, ProcessorGroup, a
their common base class, Processor. Processo
an abstract class with attributes such as proces
state (running or halted), and operations such
start() and stop(), that are common to its derive
classes. InstructionStream is a concrete class t
adds instruction stream-specific attributes such
program counter and program memory, an
instruction stream-specific implementations o
operations. ProcessorGroup is a sibling of Instru
tionStream. It adds attributes and operations th
allow it to collect instances of any Processor typ
as well as to synchronize the starting and stoppi
of their execution. The diamond-headed conne
tion from ProcessorGroup to Processor signifi
containment of zero or more Processors.

Figure 4 is an example of the object-oriente
Composite Design Pattern [8]. A benefit of thi
pattern is that it allows clients, in this case debu
ger users, to refer to atomic entities (Instruction
Stream) and aggregate entities (ProcessorGro
in a uniform manner. A ProcessorGroup delegat
execution commands such as start() and stop()
its members, and an InstructionStream execu
these commands. Group operations applied to
InstructionStream do nothing or are delegated to
parent ProcessorGroup, depending on the ope
tion. Delegation occurs when the Instruction
Stream belongs to a ProcessorGroup that enfor
synchronization among its InstructionStream
members. InstructionStream-only operation
applied to a ProcessorGroup typically throw

Figure 3: Shared memory mapping & paging

DSP
memory

map

on-chip
RAM

on-chip
ROM

shared
RAM

off-chip
RAM

off-chip
ROM

micro-
controller
memory

map

boot
ROM

R
A
M

Processor

(running or halted)

start()
stop()

ProcessorGroup

start-sync, stop-sync

start()
stop()

InstructionStream

PC, program memory

start()
stop()

children

1

0..*

Figure 4: Classes of Luxdbg processors
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exceptions. This pattern allows a user to issue
commands without regard to processor type, and
the receiving object reacts appropriately. Client
code is simplified, and users view all objects to be
debugged from a single perspective.

The classes of Figure 4 have many concrete
realizations in the world of distributed computing.
Examples include multiple processor cores within
a system on a chip, threads within processes
within an operating system, chips served by a
hardware debug interface, processor simulation
models within a circuit simulator, and computing
nodes within the Internet itself.

These symmetries are more than aesthetic.
Processor servers typically have ways of synchro-
nizing contained processors at some level of tem-
poral granularity. Luxbdg exploits this aspect of
the Composite Pattern as applied to processors to
achieve coarse and fine-grain synchronization.

Luxdbg distinguishes several subtypes of Pro-
cessorGroup, including DebuggerGroups and
ServerGroups. DebuggerGroups exist inside the
debugger. A user can configure a DebuggerGroup
to cause synchronous start or asynchronous start
of its members, and independently, synchronous
stop or asynchronous stop of its members. Start-
ing one member of a synchronous start group
starts execution for all members of that group, and
stopping one member of a synchronous stop
group (e.g., via a breakpoint) stops execution for
all members of that group. Asynchronous groups
start or stop members independently, and issuing a
command at the level of a group itself acts as a
synchronous command, affecting all members.

Default synchronization within a Debugger-
Group has coarse temporal granularity. Luxdbg
issues “start” or “stop” commands for nested Pro-
cessors in a sequence. There are no guarantees
about timing. Nevertheless, the feature is useful
for debugging concurrent processors or processes.
Such processors or processes may share
resources, and by using synchronous start and
stop, a Luxdbg user guarantees that all processors
reach quiescence at a breakpoint, avoiding con-
tention between the debugger and processors for
common resources such as shared memory.

Some run-time environments can support
tighter synchronization, and this is where Server-
Group plays a role. ServerGroups exist in the tar-
get systems being debugged, in the form of

operating systems, hardware servers such as T
getView, circuit simulators or CORBA ORBs.
Luxdbg deals with a ServerGroup first when
establishes a connection to a processor. Luxd
deals with a ServerGroup again when the latter
capable of target-assisted synchronization. In
cases where Luxdbg determines via a query tha
ServerGroup supports fine-grain synchronizatio
Luxdbg replaces its default, sequential start a
stop actions for a DebuggerGroup with targe
assisted synchronized start and stop for memb
of the DebuggerGroup served by that Serve
Group. In this way Luxdbg can take full advan
tage of the temporal characteristics of the targ
execution environment, without over-couplin
itself to the details of a particular target environ
ment.

5. Higher layers and related work
Most of Luxdbg’s networked distribution

occurs at the machine code layer of Figure 1 as
result of the small-footprint nature of embedde
signal processing systems. However, Luxdbg h
dealt with some degree of distribution of the othe
layers of Figure 1.

Distribution at the extension language level
relatively easy because extension language int
preters evaluate textual commands, and text
easy to pass among distributed process
Luxdbg’s graphical user interface (GUI) passe
Tcl command strings to the debugger process v
a socket as its medium of communication. A
research version of Luxdbg is looking mor
deeply at this form of distribution. It is building
support for distributing multipleextension lan-
guage encapsulated debuggersacross a network,
spawning debuggers at remote sites, close to th
target processors. Debugger instances commu
cate by passing extension language comman
and return values. Research Luxdbg treats ea
extension language encapsulated debugger a
ProcessorGroup, i.e., a collection of Processo
that in this case can be manipulated, interactive
by a user or extension language script.

Distribution of assembly language and proce
dural layers of abstraction is common amon
other, non-embedded system debuggers that r
on the presence of an operating system and loa
in the target environment. Debuggers such
gpdb [9] and cdb [10] create a debug agent th
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executes within a target’s operating system envi-
ronment. The agent is similar to Luxdbg’s target
server processes, but it also has access to symbol
table information for its target program. It is capa-
ble of mapping function and variable names to
addresses. In gpdb it can replace entire function
definitions at run time. Given target system loader
and operating system support for symbol manipu-
lation, this larger footprint approach is a viable
alternative to Luxdbg’s small footprint approach
for embedded systems. As embedded systems
come to include more substantial memory
resources and operating systems, this approach
may come to apply to embedded systems as well.

Another upcoming procedural/object level
debug API is the Java™ Platform Debug Archi-
tecture [11]. The lowest level of this three-tier
debug architecture is the Java Virtual Machine
Debug Interface (JVMDI), a native C API that
acts as a powerful reflection interface into a run-
ning Java Virtual Machine.The second layer, the
Java Debug Wire Protocol (JDWP), defines a pro-
tocol that allows remote debuggers to invoke
JVMDI operations. The top layer, the Java Debug
Interface (JDI), is a Java API that operates atop
JDWP. The research version of Luxdbg, written in
Java, is adding a JDI interface as the basis for the
procedural level API of Figure 1. We plan to
derive a C++ debug API from JDI, by defining
C++ semantic interpretations for JDI interfaces,
and by adding C++-specific extensions where
necessary. The result will be a generalized debug
API for the procedural code layer that will work
for multiple object-oriented languages.

6. Conclusion
The partitioning of Luxdbg into an architec-

ture that makes a clean distinction between low-
level, machine-oriented abstractions and high-
level, symbol-oriented abstractions, lends itself
well to multiple types of networked distribution.
The machine code abstraction has worked particu-
larly well for distributed debugging of small-foot-
print embedded systems. As embedded systems
increase in complexity and resources, and as dis-
tribution of embedded systems becomes preva-
lent, Luxdbg should be well positioned to take
advantage of distribution of its other conceptual

layers.
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