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[57] ABSTRACT

A method, apparatus and system for simulating the operation
of a circuit using a computer-based simulator comprising:
(a) distributing at least one signal upon to one or more
simulation model subcircuit functions, which use the signal,
upon a change in the signal; (b) scheduling one or more
subcircuit functions that use the signal for execution accord-
ing to a priority assigned to each subcircuit function; and (c)
providing an output value to the simulator when no subcir-
cuit functions are scheduled, otherwise, executing one or
more subcircuit functions with the highest priority and
returning to step (a) to repeat the process.

24 Claims, 8 Drawing Sheets
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1

SIMULATION MODEL USING OBJECT-
ORIENTED PROGRAMMING

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a computer-
based simulation model for simulating the operation of an
electrical circuit. More specifically, the invention relates to
a method, apparatus, and system of employing an object-
oriented programming convention for simulating hierarchi-
cal circuits.

2. Background of the Invention

During the manufacture and testing of electrical circuits,
simulators are often constructed to simulate the operation or
behavior of such circuits. These circuit simulations are used
to detect flaws in a circuit’s design and to check a compo-
nent’s interaction with other components in a larger circuit.

The term “simulator” as used herein broadly refers to a
software program that simulates actions of electronic cir-
cuits by exercising interconnected simulation models. The
term “simulation model” broadly refers to a software rep-
resentation of a circuit component. It also should be noted
that the term “circuit” as used herein broadly refers to a
combination of electrical components that cooperate to
perform a particular function. The type of circuit that may be
simulated according to the present invention ranges from a
simple on/off switch to a complex super computer.

Traditionally, circuits have been described using netlist
languages which are well known in the art. A netlist lan-
guage is characterized by a number of constructs. First, a
netlist language defines input and output ports of a subcir-
cuit. A port is a connection to a subcircuit. Second, a netlist
language represents connections between ports. Third, it can
represent a nested subcircuit within a circuit. And fourth, a
netlist language has some measure of extension capability
for tagging properties to ports, connections, and/or subcir-
cuits.

Conventional netlist model languages used for simulating
hierarchical circuits include, for example, EDIF netlist view
(EDIE Electronic Design Interchange Format, Standard 2.0,
Electronic Industries Association, Washington, D.C.,
December, 1993); structural VHDL (IEEFE Standard VHDL
Language Reference Manual, Std 10761993, IEEE, New
York, 1993); and VERILOG (IEEE Standard 1364-1995).

Although these model languages are suitable usually for
traditional simulation applications, such as detecting faults
in circuit designs, they tend to be inadequate for newer
applications, such as debugging application code running on
a simulated processor. Netlist language simulation models
tend to be monolithic. A circuit modeler is limited to data
formats and run-time signal propagation strategies hard
coded into the simulation engines. Consequently, in non-
traditional application, hand coding usually is required.

Hand coding is problematic for a variety of reasons.
Among the more significant shortcomings is the high cost
and time it requires. Rather than turning to a convenient
library of precoded simulation modules, a modeler must
examine a particular component to be simulated, and then
develop a programming approach on an ad hoc basis. Such
an investment of time tends to discourage the development
of unique and highly specialized models.

Hand coding not only is time consuming and expensive,
but also results in a lack of standardization which has several
detrimental effects. For example, it results in disparate
programming techniques and approaches. This necessarily
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means that some components will be more skillfully mod-
eled than other components. Since all the simulation models
must cooperate, however, one substandard model can com-
promise the entire simulation model.

Aside from a lack of standardization, the disparate pro-
gramming techniques render simulation analysis or modifi-
cation difficult. For example, to analyze a potential problem
in the circuit, the modeler must first become acquainted with
the modeling approach taken to simulate the behavior of a
particular component. When models simulate circuit behav-
ior in different ways, it also is difficult to determine readily
where a problem lies. In other words, there is no systematic
approach to debugging; there is no standardized “tap” to
plug into to determine the step-wise propagation of a signal.

Therefore, a need exists for a simulation model that not
only provides the familiarity of conventional netlist
languages, but also runs efficiently without incurring the
traditional netlist overhead and offers flexibility with exten-
sion capability. The present invention fulfills this need
among others.

SUMMARY OF THE PRESENT INVENTION

The present invention provides for a computer-based
simulation model that offers flexibility and efficiency in
simulating a circuit while maintaining the same basic struc-
ture and notation as netlist languages. More specifically, the
simulation model employs a unique, object-oriented pro-
gramming convention. The programming convention used
to express circuit design is similar in appearance and usage
to hierarchical netlist languages, such as VHDL, but the
convention’s object-oriented environment gives the circuit
modeler considerably more flexibility in customizing fea-
tures and increasing execution speed than is possible under
commercially available simulation environments.

One aspect of the invention is a method for simulating the
operation of a circuit using a computer-based simulator. The
process basically comprises (a) a constructing a simulation
model using an object-oriented programming convention;
and (b) simulating the circuit using the constructed simula-
tion model. In the construction phase, object constructors are
used to emulate a netlist language, and object-oriented
aggregation or containment techniques are used to maintain
a circuit’s hierarchy. In the simulation phase, signal values
are distributed among interconnected models only on value
changes, and then, only to those non-hierarchical models
that use the changed signal values in their function.
Additionally, circuit topology is used to assign optimal
execution priorities to sub-circuit models. During simulation
model functions are scheduled and executed according to
their priority to improve run-time efficiency.

Another aspect of the invention involves an apparatus for
performing the above process. In one embodiment, the
apparatus comprises (a) a processor; (b) user interface
means operatively connected to the processor for receiving
input from and conveying output to a user; and ¢) memory
operatively connected to the processor. The memory con-
tains means for instructing the processor to perform the
aforementioned process in a simulation of a circuit’s opera-
tion.

Yet another aspect of the invention comprises a computer
readable medium containing instructions for instructing the
processor to perform the aforementioned process for simu-
lating a circuit’s operation.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the present invention, which are believed
to be novel, are set forth with particularity in the appended
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claims. The invention may best be understood by reference
to the following description taken in conjunction with the
accompanying drawings, wherein like reference numerals
identify like elements, and wherein:

FIG. 1 shows a schematic diagram of a preferred simu-
lation process of the present invention;

FIG. 2 shows a schematic diagram of a preferred appa-
ratus of the present invention;

FIG. 3 shows an infrastructure of generic classes of the
present invention;

FIG. 4 shows a preferred process for constructing the
infrastructure of the simulation model;

FIG. 5 shows a schematic diagram of an acyclic combi-
national circuit;

FIG. 6 shows a schematic diagram of an cyclic combi-
national circuit;

FIG. 7 shows a flow chart of a preferred simulation
process of the present invention;

FIG. 8 shows a flow chart of a preferred clocked model
sequence;

FIG. 9 shows a schematic diagram of a simple processor;
and

FIG. 10 shows a schematic diagram of a component of the
simple processor of FIG. 9.

DETAILED DESCRIPTION

The present invention provides for a computer-based
simulation model that offers flexibility and efficiency in
simulating a circuit while maintaining the same basic struc-
ture and notation as netlist languages such as VHDL. More
specifically, the invention establishes a programming con-
vention for an object-oriented programming language for
constructing a simulation model.

Section I of the Detailed Description describes the present
invention in terms of its basic features and simple embodi-
ments. Sections II provides a description of the simulation
model’s construction phase. More specifically, this section
describes a generic class infrastructure of a preferred
embodiment and provides a preferred approach in generat-
ing the infrastructure from a conventional netlist represen-
tation of a circuit. In Section III, the simulation phase of the
invention is described. Section IV exemplifies the coding
convention in terms of a circuit-specific model. It does so by
illustrating one possible VHDL representation of a simple
processor compared to a representation using the coding
convention of the present invention.

L.

A simulation model constructed according to the coding
convention of the present invention has a number of features
that distinguish it over prior art simulation models. First, it
represents hierarchical circuits using a unique object-
oriented programming convention that is structurally
equivalent to industry-standard netlist notations used by
circuit designers and circuit capture and synthesis tools. This
feature is referred to herein as the “notational feature.” This
feature renders the construction of the simulation model
straightforward for circuit designers. Additionally, this fea-
ture facilitates automatic generation of circuit simulation
models because many existing circuit capture and synthesis
tools and methodologies deliver their output in the form of
hierarchical netlist. Second, the simulation model represents
hierarchical digital circuit design information as contained
model objects. Circuit hierarchy is not lost by “flattening”
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the model during simulation. This feature is referred to
herein as the “structural feature.” Third, the simulation
model uses a data flow convention to distribute signal values
among model functions only on value changes, and only to
those non-hierarchical models that use the signal values in
their function. This feature is referred to herein as the
“dataflow feature.” Fourth, the simulation model assigns
optimal execution priorities to subcircuit model functions,
and executes such functions accordingly. This feature is
referred to herein as the “scheduling feature.” Thus, the data
flow feature and the scheduling feature cooperate to provide
for the efficient propagation and execution of signals in the
simulation model.

The aforementioned features result from the coding con-
vention of the present invention, and, more specifically, from
the convention’s utilization of the particular programming
properties found in a suitable programming language.
Among these properties is inheritance, which refers to the
ability of a subclass to inherent properties of the class from
which it depends. Another property is aggregation or
containment, which refers to the ability to group or contain
objects in a hierarchy according to function. And finally, the
language should have encapsulation which refers to the
ability to incorporate implementation details within objects.
Suitable object-orientated languages include, for example,
C++, Smalltalk, and Java.

According to the present invention, a method, apparatus
and system are provided for simulating the operation of a
circuit using a computer-based simulator and a simulation
model that has a combination of one or more of the afore-
mentioned features.

A preferred process embodiment of the present invention
has two basic steps: (1) constructing a simulation model of
a circuit using an object-oriented programming language;
and (2) simulating the circuit using the simulation model. It
should be obvious to those skilled in the art that the
simulation model must be constructed before it can be run,
and that, once constructed, it can be run repeatedly without
being “reconstructed.” Consequently, these steps may be
performed jointly or individually.

The notational and structural features of the invention are
utilized in the construction phase of the simulation model.
According to the notational feature, the process of construct-
ing a simulation model comprises representing hierarchical
circuits using an object constructor coding convention that is
very similar in appearance to industry standard netlist rep-
resentations such as EDIF netlist view and structural VHDL.
In one embodiment, this involves emulating netlist lan-
guages by using constructor parameters that accept bound-
ary signal addresses as port parameters, and by maintaining
netlist subcircuit names and netlist connection names even if
the same names are used to describe difference subcircuits
and connections. Unlike conventional non-netlist models,
unique names are not required in the model of the present
invention because the model retains its structure during
simulation. Structure provides another parameter, aside from
a name, by which to identify a connection or subcircuit.
According to the structural feature of the invention, the
hierarchical properties of the circuit, if any, are represented
and maintained by the language’s aggregation property. In
one embodiment, this process comprises representing the
hierarchy of a circuit by containing subcircuit models within
circuit models. This may be performed by using model
constructor bodies that build subcircuits by constructing
interconnected nested signal and model objects. Construct-
ing the hierarchy of model objects may include also per-
forming a run-time audit to ensure model object integrity.
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Thus, all of the construction and testing is performed during
the construction phase—separate from the actual circuit
simulation.

The dataflow and scheduling features are utilized in
simulation phase. According to the dataflow feature, the
process of simulating a circuit comprises distributing a
signal only upon a change in the signal, and then only to
those simulation models that use the signal. The signal,
therefore, is only distributed to those functions that use it, as
opposed to traditional netlist simulation models where sig-
nal values are pass up and down the hierarchy during
simulation. According to the scheduler feature, the simula-
tion process comprises assigning a priority to a subcircuit
model function, and executing the function according to its
priority. This ensures that functions are executed in a
sequence that maximizes efficiency and reduces redundancy
or premature function execution.

A preferred embodiment of the process is depicted as a
flow diagram in FIG. 1. Referring to that figure, the process
100 is divided into two domains—construction 110 and
simulation 120. The process begins in the construction
domain 110. In block 101, the process exercises the notation
and structural features of the present invention. In a pre-
ferred embodiment, this involves emulating netlist lan-
guages by using constructor parameters that accept bound-
ary signal addresses as port parameters, and by maintaining
netlist names of subcircuits and connections. Additionally, if
the circuit is hierarchical in nature, then subcircuits may be
contained within circuits or other subcircuits. Optionally, the
construction of the simulation model can be audited in Block
102. Such an audit ensures connectivity and model object
integrity. At this point, the simulation model is constructed
and ready for simulation.

Simulation is performed in a simulation domain 120. In
this domain, Block 103 represents the dataflow feature. This
involves distributing a signal only upon a change in that
signal, and then only to those subcircuit models having
functions that use the signal. Block 104 represents the
scheduling feature. Here, those functions that use a distrib-
uted signal are scheduled for execution. If there is no change
in the signal, or if no model uses the signal, then no
subcircuits are scheduled. Block 105 determines if any
subcircuit model functions are scheduled for execution. If
S0, then one or more functions having the highest priority are
executed in Block 106, and the process returns to Block 103.
If no functions are scheduled according to Block 105, then
the process proceeds to Block 107 where an output is
provided to the simulator.

Another aspect of the present invention provides for a
computer apparatus for simulating the operation of a circuit.
An example of such an apparatus is shown in computer
system 200 is depicted schematically in FIG. 2. Central to
the system 200 is a central processing unit (CPU) 201. The
CPU 201 may be a discrete processor, or a combination of
processors, configured in a personal computer, controller,
work station, main frame or the like. Such CPUs are known
in the art.

Operatively connected to the CPU 201 is a user interface
202. The user interface may contain input means, such as a
mouse, keyboard, touchscreen, which enables the user to
input information into the system 200. It may also include
output means, such as a display monitor, printer, which
provides the user with an indication of the system’s output.

Also operatively connected to the CPU 201 is memory
204 which contains a computer simulator 205 and a simu-
lation model 206. The simulators used by the present inven-
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tion can be any traditional simulator such as ATTSIM
(Lucent Technologies, Allentown, Pa.), Model Technology
(Mentor Graphics, Beavertown, Oreg.), VERILOG
(Cadence Design Systems, San Jose, Calif.). Interfaced with
the simulator 205 is a simulation model 206. The simulation
model 206 provides a modular interface, and thus can be
“wrapped” to execute under the control of the simulator 205.

The simulation model cooperates with the computer simu-
lator to instruct the processor to perform the process as
described above.

Yet another aspect of the present invention is a system of
instructional means in an object-oriented programming lan-
guage for enabling the system 100 to perform the process as
described above.

II. Construction

In the construction phase, a simulation model is con-
structed using the programming convention of the present
invention. This Section describes (A) a preferred infrastruc-
ture of the simulation model, and (B) a preferred process of
constructing the infrastructure.

A. Infrastructure

The simulation model comprises an infra structure of
classes that are used to construct objects using methods
known in the art. The identification and organization of these
classes is an important aspect of the present invention. The
classes are divided into basically two groups (1) models and
(2) signals.

1. Models

The models of the present invention comprise both
generic models and circuit-specific models. The generic
models introduce basic parameters and structure, while
circuit-specific models are customized for a particular cir-
cuit. In this section, a description of a preferred embodiment
of the structure and content of general models is provided.
Circuit-specific models are described by way of analogy in
Section IV. It should be noted that the structure set forth
herein is for illustrative purposes and variations will be
apparent to someone skilled in the art.

FIG. 3 shows the relationship of one embodiment having
five modeling infrastructure classes: (a) a shell model 301,
(b) an active model 302, (c) a leaf model 303, (d) a clocked
model 304 and (e) a scheduler model 305. Central to the
relationships among these models is the concept of inherit-
ance in an object-oriented language such as C++.

For example, C++ defines object contents and behaviors
in terms of class definitions, where a class definition states
the member objects and member functions (behaviors)
found in all objects of that class. Each C++ model type, for
example, a leaf model, has its own class definition. In
addition, each circuit-specific model type, for example, a
circuit-specific leaf model that simulates an arithmetic
circuit, has its own class definition. New C++class defini-
tions use inheritance to inherit default contents and behav-
iors from previously defined classes. For example, a new
class B that inherits from class A provides all of the
capabilities of A that B does not override or eliminate. Class
B can also redefine some capabilities and add extensions.
Class A is known as a “base class” of class B.

The present invention uses inheritance in two ways. First,
the hierarchy of building block classes of FIG. 3 define
generic model contents and behaviors. Subordinate model
classes in this case inherit contents and behaviors from
superior model classes. For example, the active model
inherits contents and behaviors from the shell model. The
second use of inheritance involves defining circuit-specific
class definitions that inherit generic modeling contents and
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behaviors from the generic model classes. A circuit-specific
leaf model, for example, is a circuit-specific class derived
from a leaf model class that contains a circuit-specific
implementation of a subcircuit function along with custom
data needed by that function. This circuit-specific leaf model
therefore inherits part of its definition from the generic leaf
model class, and defines additional parts needed to model its
circuit.

Referring back to FIG. 3, arrows point down from base
classes to derived classes that inherit modeling behavior.
Each generic infrastructure class provides a set of related
modeling capabilities that are examined below. Moreover,
each class in FIG. 3 except the active model can serve as a
base class to circuit-specific model classes. Each of the
remaining subsections of this section discusses a specific
infrastructure class and the circuit-specific classes that
inherit directly from it.

a. Shell model

The shell model serves as the direct base class for
structural netlist levels other than the outermost, scheduler
level and preserves the hierarchical structure of the simula-
tion model. The hierarchy of all the subcircuit representa-
tions is maintained by the shell model using the aggregation
and inheritance features of an object-oriented programming
language. For example, in a hierarchical circuit structure,
one shell model may contain a subcircuit. This shell model
is, in turn, contained by a superior shell model. This arrange-
ment continues until the circuit as a whole is contained by
a single shell model.

Using object-oriented programming containment tech-
niques that are well known in the art, the shell model acts as
a repository for its modeling contents. A circuit-specific
shell model class uses its constructor to construct all of the
signal and model objects it contains. It contains those objects
that appear as nets and subcircuits in its hierarchical netlist.
The dependent model passes these parameters to the shell
model’s constructor. A C++ model object constructor that
conforms to the above notational convention creates a C++
model object hierarchy that is isomorphic to a corresponding
hierarchical netlist structure such as a structural VHDL
model. This simulation model does not discard hierarchical
design information present in hierarchical netlist, i.e., it does
not flatten the design. Since all of its behavior is the
construction-time creation of nested objects, it has no link-
age to the dataflow feature and performs no simulation-time
actions.

In one embodiment, the shell model has three constructor
parameters and stores these constructor parameters in three
data fields. The first field, the message handler, is a pointer
to an object capable of logging modeling error messages.
The shell model saves this pointer so that all derived classes
can log construction errors, function errors, and any other
errors to a standard place. The shell model’s second field is
an instance name that is unique within that containing shell
model for a circuit-specific model derived from it. The shell
model’s third field is a pointer to its enclosing shell model.
That is, if a particular shell model is contained within an
outer shell model, the pointer links the particular shell model
to its outer shell model. For the outermost shell model in a
modeling hierarchy, this container parameter is a NULL
pointer.

The combination of a pointer and an instance name
defines a unique lexical binding for a model instance. This
preserves the hierarchical relationship among various shells
models and, hence, their corresponding subcircuits. The
model instance can use a complete hierarchical design path
in logging its error messages and other messages.
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b. Active model

The active model introduces functions that are common to
the models that depend from it. As such, the active model is
considered an abstract class and a compiler should disallow
construction of an object from it.

In one embodiment, the active model introduces and
defines two specific functions, eval() and scheduleForEval(.
Eval( is a function that models the circuit’s specific behavior
of its active model. As defined by the active model, evall is
a pure virtual function and has no body.

Both the leaf model and the scheduler model use eval(.
Each circuit-specific leaf model supplies a circuit-specific
definition for eval( (simulation function) while the Sched-
uler model defines its eval() to be the scheduler (scheduling
function).

The other function introduced by the active model is a
request for scheduling, herein termed “scheduleForEval().”
When exercised, this function requests that a particular eval(
function be scheduled for execution by the scheduler model.
As part of the dataflow feature, the scheduleForEval() func-
tion is exercised only upon an input change to the leaf model
containing the particular function. Thus, when an input
signal of an active model changes value, scheduleForEval()
enqueues the active model into the active model’s scheduler
model.

If one or more scheduler models are contained by another
scheduler model, then the contained scheduler model uses
the ScheduleForEval) function to schedule its own sched-
uler function for execution. In the preferred embodiment, the
active model takes a pointer to the scheduler model that
schedules eval( for this active model. This scheduler param-
eter is a NULL pointer for an outermost model in a modeling
hierarchy. The active model’s constructor also takes an
integer scheduling priority parameter. Active model saves
both of these parameters, and scheduleForEval) gives this
priority value to the scheduler when it enqueues its model
for eval(). The discussion of scheduler model discusses
scheduling priorities.

c. Leaf model

The leaf model represents an elemental component of a
circuit and contains a circuit-specific evalQ function that
simulates the behavior of that particular elemental compo-
nent. The term “elemental component” as used herein refers
to a circuit component that is represented by its behavior
rather than by a hierarchy of other components. A leaf model
corresponds to a VHDL behavioral model housed within a
structural VHDL design.

In a preferred embodiment, there are two basic leaf
models. One type represents a combinational circuit. Rep-
resentation of a combination circuit is relatively simple and
typically requires manipulating an input signal when the leaf
model’s eval() function is exercised. The other type of leaf
model represents a more complicated sequential circuit,
which may comprise some, possibly empty combinational
circuitry, along with storage model objects such as latches.
Because such models have the capability of storing one or
more input signals, they have an internal state. This type of
leaf model stores an input signal(s) at a particular instant and
then manipulates the signal(s) when its eval) function is
exercised. This latter leaf model requires a clocked model
(described below).

In the preferred embodiment, the leaf model adds no new
member objects or constructor parameters to those of active
model. With certain object-oriented languages, it may be
preferable for the Leaf model, as a class, to provide a
parameter type to bus signal’s evalOnEvent( destination
parameter (discussed below).
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d. Clocked Model

The clocked model contains a timing function, herein
referred to as the “clock(” function, to control the internal
state of a leaf model having an internal state. When this
function is exercised, the input signal(s) on the leaf model
are acknowledged and stored in the leaf model. In this way,
the clock( function controls the leaf model’s input(s).

Controlling the leaf model’s input is preferred in certain
situations. For example, there may be situations where the
leaf model has one or more input signals that change during
the simulation process. These changes, however, are not
important and there is no need to run the eval() function for
each change. In such situations, a clock( function can be
used to control which signals the leaf model accepts and
evals. Additionally, such control is particularly useful in
multiple input leaf models wherein the eval) function
involves more than one value. Eval( functions in this case
often require the synchronization of inputs. The clock(
function can be used to synchronize the eval function to
perform the eval only when all of the input signals are ready
for eval.

In the preferred embodiment, the clocked model adds no
new member objects or constructor parameters to those of
leaf model. Clocked model adds the pure virtual function
clock(, making clocked model an abstract class. Each
circuit-specific class derived from clocked model should
define a clock( function to update the model’s internal state
upon a clock input change, as well as an eval( function to
update bus signal outputs as required for all leaf models.
e. Scheduler Model

The scheduler model supports the scheduling feature. It
schedules eval() functions for execution according to their
priority. The scheduler model defines eval( to be a scheduler
function that calls circuit-specific leaf model/clocked model
eval functions in circuit priority-driven sequence.

Scheduler model is a model infrastructure class represent-
ing the outer or root level of a design hierarchy. It generally
has circuit-specific descendants. Moreover, the simulation
model of the present invention supports the nesting of
scheduler models anywhere in a design hierarchy. In a
preferred embodiment, when scheduleForEvalQ schedules a
leaf model, it checks to determine whether the leaf model’s
scheduler model has its own, superior scheduler. If so, and
if the contained scheduler model is not already scheduled or
running eval(, then the contained scheduler is scheduled in
its scheduler’s queue, and so on, until either the outermost
scheduler model is reached-its scheduler pointer is NULL—
or until a scheduler that is already in eval() or queued for
evall is reached. In this way, hierarchical subcircuits can
bundle their contents within a scheduler, appearing as a leaf
model with respect to scheduling priority.

Scheduler model has several member objects that consti-
tute the scheduling queue. The queue is an extremely
efficient priority heap (Aho, Hopcroft and Ullman, Data
Structures and Algorithms, Section 4.11, “Implementations
of Priority Queues,” Reading, MA: Addison-Wesley, 1983).
Furthermore, in the preferred embodiment, the Schedule-
ForEval( function that enqueues a leaf or clocked model, the
scheduler model’s dequeue( operation that removes the leaf
or clocked model after its been evaled, and the bus and clock
signal dataflow actions (discussed below) are inline C++
functions. Preferably, these functions are short and hand-
optimized to assure efficient signal propagation and model
evaluation.

A final, critical data object for a scheduler model is an
array of priorities containing an entry for each leaf model
instance within the scheduler model. A leaf model instance’s
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scheduling priority is its maximum distance from its sched-
uler model’s outputs. Distance is measured as number of
intervening leaf models between a leaf model and its sched-
uler model outputs. The model translation process of FIG. 4
in the form of the model generator program traverses
hierarchical netlist and determines scheduling priorities. The
search proceeds from each scheduler model output,
upstream into nested model outputs and out nested model
inputs. The search examines each signal propagation path,
assigning the length of the longest acyclic path to a model
as its distance. A leaf model with all outputs connected to
scheduler model outputs has a priority of 0.

For an acyclic combinational circuit topology the effect is
one of scheduling leaf models firings from inputs toward
outputs. A signal change that affects more than one leaf
model causes subsequent leaf model eval() calls in the
optimum order. For example, a change in signal A from
model A 501 in FIG. 5 causes model BS02 to compute signal
B before calling model C503 to compute signal C. If model
C’s eval() were called before model B’s eval(, model B’s
eval() might change signal B, causing another eval() of model
C. For a given set of bus signal value changes in an acyclic
combinational circuit, the scheduling priority assures that
dependent models do not eval() until all of the contributing
models on which they depend, which are known to have
higher priorities than the dependent models, have run eval()
and changed their downstream dataflow. These source mod-
els will not eval( again for this set of bus signal changes
because there are no cycles in the signal flow through which
they could become scheduled.

A combinational cycle such as the one in FIG. 6 works
correctly for a circuit that settles after a finite amount of
cyclic signal change. Models D604 and E605 have higher
priorities than models B602 or C603 because the former are
further removed from the hierarchical output. Of course it is
possible to design a cyclic circuit model that never settles,
just as it is possible to design an unstable digital circuit or
a digital oscillator. This C++ modeling technology relies on
using clock signals driven from outside the bus signal
dataflow for generation of digital clocks. Non-oscillating
combinational circuit designs translate to stable bus signal
dataflow in this modeling technology.

Bus signal connectivity thus determines eval() scheduling
priority of leaf models. Each circuit-specific scheduler
model C++ class has a class static array that houses leaf
priorities for contained leaf model instances. Each leaf
model receives its scaler priority as a constructor parameter.
Each shell model receives a pointer to the subsection of the
scheduler model’s priority array that contains the priorities
for the leaf models contained within that shell model. In this
way each instance of a single shell model gets a unique set
of priorities for the unique leaf model instances contained
within that shell model instance.

2. Signal Objects

The object-oriented simulation model of the present
invention provides two basic signal types that correspond to
basic signals of digital circuits. These primary signal classes
are (a) bus signal and (b) clock signal.

a. Bus signal

The bus signal object supports the dataflow feature. More
specifically, it connects an output of a leaf model that drives
it to one or more leaf models that use it as input, and thus
serves as a placeholder for a signal value. The bus signal can
be of arbitrary width determined at model definition or
model construction time. Bus signal can therefore represent
a bus or bundle, with a one-bit bus signal representing the
case of a one-bit connection. Assorted storage schemes for
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bus signal are possible. In a preferred embodiment, the bus
signal provides signals with per-bit unknown status tags and
word-width defined value processing.

In addition to holding one or more bits of digital
information, the bus signal also contains a function for
prompting the leaf models for which it supplies an input to
schedule themselves for eval(). This function is referred to
herein as the “EvalonEvent()” function. According to the
dataflow feature, the bus signal only prompts leaf models
that use its signal as an input to schedule themselves upon

12

“clockThenEvalonEvent” function. A clock signal’s clock-
ThenEvalOnEvent() function is slightly more complicated
and a bus signal’s EvalOnEvent( function. The clock sig-
nal’s clockThenEvalOnEvent) function takes two
arguments, a pointer to a clocked model that the signal
drives, and a clock transition to which that model is sensi-
tive. Transitions include the values rising, falling, edge and
level, which correspond to low-to-high, high-to-low, both
low-to-high and high-to-low, or any transition respectively.
Level transition includes transitions into and out of unknown

a change in value. More specifically, when the value of a bus ' ; : .
chang : pectiically, A clock signal values. The following pseudo code sensitizes
signal value changes, the bus signal forwards its value to all clocked models to clock signal changes:
leaf models using it by scheduling those leaf models for
evall. The bus signal schedules this change with the outer
scheduler model immediately.
To sensitize leaf models to bus signal changes, a bus 15 (lockSignal::clockThenEvalOnEvent(clockedModel *destination,
signal’s evalOnEvent( function simply saves a pointer to the transition delta) {
calling leaf model in a list that the bus signal maintains. The place destination pointer and delta on this clockSignal’s list of
pseudo code below exemplifies the coding convention: destination-delta
pairs for this signal
20
A clock signal has the following signal propagation code
1 . * 1 1, . . - .
busSignal::evalOnEvent(leafModel *destination) o that implements clock signal’s contribution to the dataflow
place destination pointer on this busSignal’s list of destinations f K
for this signal cature:
. . . o 25
A bus signal can have more than one variant of a write()
function to change its value, but it should have the following clockSignal::write(/* write-variant parameters */) {
signal propagation code that implements the bus signal’s if tfhls Cloﬁksllgfll(ald"alze lhas Cﬁanl_ged R .
contribution to the dataflow feature: Cc;lrarel‘zz clockedModel on the list whose delta is sensitive to this
30 call the clockedModel’s clock( ) function
call the clockedModel’s scheduleForEval( ) function
busSignal::write(/* write-variant parameters */) { . . . .
if this busSignal value has changed The signal and model infrastructure classes discussed in
for each 163?4;’1‘1611 Of{ll\/ihz iYalOEEgelm list 0 fon this section cooperate to provide the mechanism to support
call the leafModel’s scheduleForEval() function 55 yhe ey features of the present invention. Model constructor

b. Clock signal

The second fundamental signal type is a clock signal,
preferably, a one-bit signal. A clock signal sources a leaf
model that preferably has at least two member functions, a
clock( function to update state internal to the model object,
and an eval) function that, like other leaf model eval()
functions, updates the model’s bus signal outputs. A leaf
model that includes clock signals among its connections is
called a clocked model, as described above.

Clock signal serves the distinction between a combina-
tional circuit and a sequential circuit. In the preferred
embodiment, when a clock signal has an active value
transition for a leaf model that it sources, the clock signal
calls the leaf model’s clock( function immediately. The leaf
model’s clock() function changes the model’s internal state,
as stored in latches and or otherwise, based on the model’s
preceding state and current inputs. The leaf model, however,
does not change its bus signal outputs immediately. Rather,
the leaf model is scheduled for subsequent eval(). When that
evall runs, the leaf model changes its bus signal outputs,
consulting its state that updated at clock( time.

Besides latches and other storage models, any model that
transforms a clock signal into another clock signal, for
example a clock divider or phase splitter, accepts one or
more clock signals as input. The model’s clock( function
can write derived clock signal outputs immediately; only bus
signal outputs defer until eval( time. These clock condition-
ers are examples of models that might not have bus signals
among their connections.

In one embodiment, changing the internal state of the leaf
model and scheduling it for eval) are performed by the
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interfaces that accept boundary signal addresses as port
parameters, and model constructor bodies that build subcir-
cuits by constructing interconnected nested signal and model
objects, together provide the notational feature. The hierar-
chical form of the model objects so constructed constitutes
the structural feature. Constructors supply the audit feature
at construction time, and thus before simulation commences,
by checking signal widths and any other dynamic design
parameter. Leaf model constructors call input signal func-
tions to sensitize themselves to changes in these
signals’values, and changing signals schedule these models
at simulation time, thereby providing the dataflow feature.
The outer level of a hierarchical design maps to a scheduler
model that provides an efficient, and for acyclic or clock-
synchronized circuits optimal, scheduling simulation model
constituting the scheduling feature.

B. Stages of Model Construction

The construction of the simulation model of the present
invention can be performed when initially modeling the
circuit, or it can be generated from an existing netlist
description of the circuit. Since many circuits are described
initially by netlist languages such as VDHL during their
design and development phase, converting from netlist to
the coding convention of the present invention is particularly
preferred.

FIG. 4 illustrates one possible process of capturing and
simulating a C++ model under the proposed simulation
model. The process takes as input a traditional description of
a hierarchical circuit stored as hierarchical netlist and pro-
cedural behavioral models in Database 401A. In Block 401,
the process translates netlist and models into corresponding
C++ model code, and stores this code in database 401B. In
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Block 402, the process then compiles this code and links it
to C++ model building block class code in a building block
library 402A, placing the resulting circuit model in a model
library 402B. A vendor simulator or custom simulator
retrieves one or more C++ models from the library 402B and
uses them in circuit simulations in Block 403. The process
represented by Blocks 401, 402 and 403 is considered below
in greater detail.

1. Translation (Block 401)

Block 401 translates netlist and behavioral model lan-
guages into the C++ convention of the present invention.
The information source to this stage in block 401A is
hierarchical netlist+behavioral models. For purposes of dis-
cussion herein, assume that the former takes the form of
VHDL structural information and the latter the form of
VHDL behavioral models. The relevant portions of the
structural VHDL information are translated into C++ nota-
tion using a program called a model generator. Such trans-
lators are known in the art and are readily constructed by one
skilled in the art. Portions of the hierarchical design that
should be omitted from the simulation model can be tagged,
and the model generator ignores them. These portions may
include design branches that are irrelevant to the modeling
needs herein, or low levels of hierarchy that are modeled
behaviorally. The model generator also audits the design for
faults, inserts C++ objects needed for run-time simulation
support, generates drafts of constructor code for hand-coded
behavioral models, and generates some auxiliary informa-
tion for tracking model changes.

Translation of VHDL or C behavioral models into C++
behavioral models under this framework is currently a
manual process, although automation of certain behaviors is
possible. The C++ signal propagation scheme described here
performs only zero-delay combinational and unit-delay
sequential circuit simulation. It does not support the finer
grain delay modeling available with VHDL, a fact that
accounts in part for the faster performance of the C++
models of the present invention. Many VHDL delay features
are irrelevant to the application of the models of the present
invention which avoid the performance impact of these
delay features. Simulation environments that incorporate
timing information via timing tables that are external to their
models, are able to annotate these models with external
timing information. Automatic translation of VHDL behav-
ioral models into C++ behavioral models that draw on the
library of building blocks in FIG. 1 is possible. This trans-
lation preferably discards VHDL timing annotations in much
the same way that VHDL-based circuit synthesis discards
these annotations.

2. Compile and Link (Block 402)

The models described in Section IIA may be C++ class
definitions and class member function definitions. For each
structural and behavioral model, the model generator creates
a set of C++ class declarations in a header file. The generator
also creates a complete set of function definitions for hier-
archical models. No hand coding is necessary for a typical
hierarchical model. The generator creates draft implemen-
tations of leaf model constructors. Often these constructors
are complete and require no hand tuning, although leaf
model eval( functions typically are hand-coded.

Two sets of C++ classes reside in the building block
library. The first set contains fundamental signal represen-
tation types and model infrastructure types as discussed in
Section IIA. Signal types provide the basis for signal value
storage. They determine range and resolution of signal
values. Model infrastructure types support submodel con-
tainment and submodel scheduling activities shared by all of
these C++ models.
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The second set contains reusable helper classes that assist
in the hand coding of behavioral models. For example class
dynamic-signal, derived from a basic signal storage simu-
lation model, supports unlimited precision fixed-point arith-
metic operations. Availability of this class greatly reduces
the work involved in writing a behavioral model for a
fixed-point arithmetic circuit, especially one whose oper-
ands exceed the native word size of the simulation machine.
Dynamic-signal is illustrated in Section IV.

The basic infrastructure classes and the helper classes of
the library along with the coding convention and the C++
language itself, comprise the target language for model
translation. C++ compiling and linking convert C++ model
definitions and library classes into a library of C++ circuit
models available for linking and dynamic loading into
simulation applications.

3. Circuit Simulation (Block 403)

Industry-standard wrappers such as VHDL wrappers
accompany the C++ models into the model library. Com-
mercial simulators can link or dynamically load these
wrapped models. In a preferred embodiment, a modeling
extension environment is provided that uses the Tcl inter-
preted programming language as an extension language. An
extension environment is well known in the art, and refers
to the ability to support customization.

An additional level of temporal granularity in C++ models
that does not appear in FIG. 4 is the distinction between
model construction time and simulation time. Application of
model parameters in setting values such as bus widths and
memory widths and depths can occur at C++ model defini-
tion time or at model link-load time. In the former case,
these parameters are hard-coded, possibly by a model
generator, into C++ model class definitions. In the latter
case, these parameters appear as C++ model constructor
parameters. Model constructors configure model objects
using these parameters at construction time and perform all
run-time audits needed to ensure model integrity, before
eval( simulation time. Auditing within the constructor elimi-
nates audit overhead from a model’s eval() function. At the
time of the first eval) all run-time model configuration and
auditing has completed, thereby speeding simulation.

III. Simulation

In the simulation phase of the present invention, the
constructed simulation model is run, and in so doing, utilizes
the dataflow and scheduling features that speed-up simula-
tion of the circuit.

A key element of both the dataflow feature and the
scheduling feature is the fact that only leaf models, the
behavioral objects that do the work of simulation, are
activated by a scheduler model at simulation time. Interme-
diate layers of circuit-specific shell models build signal and
leaf model object contexts at construction time, but simu-
lation circumvents all shell model layers. The implementa-
tion of scheduling functions as short inline functions assures
that the main overhead for using this scheduling scheme is
the execution of circuit-specific eval) functions. No
simulation-time hierarchy of function calls and argument
passing is necessary, as it would be with most hand-coded
object-oriented or structured-programming implementa-
tions. The hierarchy takes the form of shell models that are
inactive at simulation time. The models link their input and
output signals as data references at construction time, so
there is no need to push signal arguments to a run-time stack
frame before calling leaf models. Eval( takes no arguments,
and circuit-specific eval( runs with the minimum infrastruc-
ture overhead at simulation time.
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One preferred embodiment for simulating the operation of
a circuit using a computer-based simulator is shown in FIG.
7. In Block 701, the at least one value is written to a signal
object of the present invention. This value is written initially
by the simulator, although as the process reiterates, the value
may be written by a model object of the simulation model.
Block 702 prompts one or more leaf model objects having
an eval( function that receives input from the signal object
for scheduling if the value significantly differs from the last
value stored in the signal object. In Block 703, one or more
leaf model objects of Block 702 are scheduled according to
a priority assigned to each leaf model object. In a preferred
embodiment, Block 704 determines if other values have
been written to other signal objects of the simulation model.
If so, then the process of Blocks 702 and 703 is repeated.
When all values written to signal objects are considered,
then the process proceeds to Block 705. There, a determi-
nation is made whether any eval( s have been scheduled. If
so, the process moves to Block 706 where one or more
evalQs having the highest priority are executed. The output
from each of the leaf models which were eval( ed in Block
706 is written to one or more designated signal objects. At
this point, the process returns to Block 701 and repeats itself
until there are no evals scheduled as determined by Block
705.

In the preferred embodiment, there are two conditions in
which no evals are scheduled. First, if a value written to a
signal object is not significantly different from the signal
object’s last value as determined in Block 702, then it is not
stored in the signal object, and the one or more model
objects to which the signal object provides input are not
scheduled for eval). In the second case, the one or more
signal objects to which the one or more model objects write
in Block 706 are output signal objects, meaning they are not
designated inputs for any leaf models. If no evals are
sheduled, then the process proceeds to Block 707 where the
output of the simulation model is provided to the simulator.

Optionally, the simulator may convey results of the simu-
lation to a user via user interface means wherein the results
are based at least partially on the output value of the
simulation model.

Blocks 701 and 702 support the dataflow feature to the
simulation of the present invention. Signal values flow at
simulation time along dataflow networks previously con-
structed and audited by model constructors at construction
time. The set of all signal dataflow paths is isomorphic to the
set of all model connections in an equivalent flattened circuit
netlist. Hierarchical models serve to contain and construct
nested models and dataflow paths, but hierarchical models
do not participate in simulation. Dataflow paths connect
only those models at model hierarchy terminuses, i.e., data
flow paths connect only the “leaves” of a design hierarchy
“tree,” and only these leaf models execute eval( at simula-
tion time. The significance of this feature is even though this
modeling simulation model retains hierarchy in the form that
model objects take, it does not incur the expense of pro-
cessing hierarchical information at simulation eval( time.
Furthermore, each signal dataflow path receives the identi-
ties of all leaf models to which it provides input via
identification messages from these leaf models’ construc-
tors. At simulation time, when and only when a signal value
actually changes, the signal schedules for eval() all leaf
models on its dataflow path.

Block 704 provides the scheduling feature to the simula-
tion. As discussed in Section II, the outermost level of a
circuit hierarchy-the “root” of the netlist “tree” -consists of
a model whose eval() function is the scheduler for all leaf
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models that it contains. In the preferred embodiment, a leaf
model enters its scheduler model’s scheduling queue when
a signal that supplies input to that leaf model changes value.
The scheduler uses a priority-based scheduling algorithm,
where a leaf model’s static priority is its distance from the
outputs of the scheduler model. Distance is measured as
number of intervening leaf models between a leaf model and
scheduler model output. Priority-based scheduling of leaf
model eval) execution eliminates redundant calls to leaf
model eval) functions for a given set of signal value
changes, speeding simulation. Furthermore, the scheduler
model uses a priority heap scheduling queue that minimizes
time spent scheduling leaf models into the queue and
invoking their eval( functions from the queue. In the pre-
ferred embodiment, both insertion of a leaf model and
extraction of the highest priority leaf model from the queue
is based on the function O(log(n)), where n is the number of
elements in the queue.

Scheduler model’s evalQ consults the queue, repeatedly
dequeuing the highest priority queued leaf model and calling
its eval() until the queue is empty. Eval( of a leaf model may
cause the leaf model to change output signal values, causing
subsequent leaf models within this scheduler model to be
scheduled. The scheduler’s eval( does not terminate until all
such subsequent leaf models have exited the queue.

In embodiments having clocked models, a leaf model
object’s internal state changes according to the clocked
model object before performing the its eval function. A
preferred embodiment of changing an leaf model’s internal
state is depicted in FIG. 8 in a block diagram. Block 801
writes a clock value from the simulator to a clock signal
object. In Block 802, the clock value is stored in the clock
signal object if the value differs from the clock signal’s last
value. Block 803 then calls a clocked model object of a leaf
model object having a clock function sensitive to a change
in the clock value. The internal state of the leaf model object
is then changed in Block 804 using the clock function prior
to performing the eval function of the leaf model object.
Finally, Block 805 calls a scheduler model object via an
active model object to schedule the leaf model object’s eval
function.

Priority calculation of the scheduler model does not
consider clock signals. A changing clock signal value trig-
gers immediate calls to clocked model clock( functions,
updating clocked model-internal state immediately. The
propagation of resulting bus signal changes from clocked
model outputs happens as a result of scheduled eval( calls
using the priority scheduler.

A clocked model, such as a clock divider, can write a
clock value change to a clock signal output from within the
clock() function. Only bus signal outputs preferably await
eval(. In this way derived clock signals advance through
clock signal dataflow immediately on clock value change. A
model generator audit checks hierarchical designs to assure
acyclic clock signal topology.

When a clock signal changes it calls clock( and sched-
uleForEval( as already discussed. Boundary bus and clock
drivers, typically external to the scheduler model, preferably
call the scheduler’s eval( after any collection of bus signal
changes, and before and after any clock signal change. Bus
signal changes can be evalled together in combinational
logic. Each clock signal change should occur only when all
scheduled eval( calls have been executed, in order to present
the correct current inputs to latches. Model clock( calls then
update clocked model internals, requiring a subsequent
eval( call to flush changed clocked model state to outputs.
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Note that highly synchronous circuits, where latches
update state on a set of common clock transitions and cyclic
circuits are mediated by clock transitions, have very low
potential for instability under this modeling technology.
Higher levels of processor circuit hierarchies have this form,
and lower levels, where combinational cycles might appear,
are typically implemented as behavioral models.

This completes the generic overview of the construction
and simulation aspects of the present invention. Section IV
illustrates circuit-specific code that use the infrastructure of
the present invention to model a processor circuit.

IV.

In Section A, this example first illustrates the hierarchical
design of a simple four-instruction processor in schematic
form. Such a simple circuit avoids cluttering the example
with an excess of circuit-specific details. It should be noted,
however, that the basic modeling approach outlined herein
can be applied to circuits having a high degree of complexity
as well. For comparison purposes, the example next illus-
trates a possible structural VHDL implementation of the
example circuit in Section B. Finally, in Section C, an
implementation using C++ code according to the present
invention is provided to demonstrate the key features
described above.

A. Example Circuit Schematic Hierarchy

FIG. 9 provides the top level of design hierarchy for a
particular circuit 900 named “alupipe.” It has four boundary
ports: rst, clk, sigin and sigout. At the outermost level
alupipe works by reading sigin, transforming its value
according to a stored program, and writing output to sigout.
Both sigin and sigout are 16-bit bus signals. The parenthe-
size annotations next to signal and port names give their
sizes, where “(n)” denotes a parameterized port size and
“(c)” denotes a clock signal. Inputs clk and rst are clock
signals that respectively drive and reset the circuit.

Subcircuits in the hierarchy appear as boxes and connect-
ing signals as lines. Each subcircuit has a type name
followed by an instance name in bold print. Instance reg 901
sinks input sigin and sources output sigout. In addition to
these boundary ports reg 901 houses three 16-bit registers.
Each processor instruction can supply one of the three
registers from within reg 901 or sigin as a source operand.
Most instructions take two source operands. Each processor
instruction can store its result into one of the three registers
in reg 901 or into sigout.

The smallalu block 902 provides four machine code
operations: outdate=topdata+botdata, outdate=topdata—
botdata, outdata=topdata<<botdata and outdate=botdata.
There are no other processor instructions. The definition of
smallalu 902 does not constrain the widths of input and
output bus signal operands to a constant. It does constrain
them to be an identical size “n.” Examination of generated
constructor code for smallalu 902 in an upcoming section
shows how this constraint is audited at construction time.

Splitp 903 is a phase splitter that copies alternating cycles
of clk to outputs phase0 and phasel. Rst provides splitp’s
initialization at the start of phase0.

Control block ctrl 904 is the only hierarchical subblock in
this design, and is depicted in greater detail in FIG. 7.
Control houses a 16-bit program counter 1004 and a 6-bits-
per-wordx16-word read only memory that contains proces-
sor instructions. The processor contains no jump
instructions, so control simply loops from location 0, ini-
tialized into the program counter upon rst assertion, to
location 15 and back to 0.

The ripper instances 1001a, 10015, and 1001c¢ of FIG. 10
are artifacts of the signal representation technology. A ripper
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model copies a subset of its input bus signal to an equal-size
subset of its output bus signal. Ripper instances take con-
structor parameters that determine the bit positions of their
input and output signals. The C++ model generator auto-
matically inserts rippers for schematic systems that use
notational conventions to represent subset and superset
connections to buses and bundles.

In FIG. 10, r1 1002 takes the bottom 4 bits of the program
counter and feed them to the address input of memory block
xmem 1003. Xmem produces a 6-bit instruction from that
location at its output, from which rippers r2, r3 and r4 extract
operand addresses and an opcode.

Timing for FIGS. 9 and 10 works as follows: Rst is an
active-low clock signal that resets the program counter to
and resets the phase splitter to the start of phase 0. When rst
goes high transitions on clock signal clk drive the circuit.

The rising edge of phase0, which corresponds to the rising
edge of every even-numbered clk pulse starting with pulse
number 0, causes reg to latch the operand (internal register
or sigin) addressed by topaddr into topfetch, and the operand
addressed by botaddr into botfetch. The combinational alu
operates on these operands using the opcode present on
signal opsel, forwarding the result to outdate.

Phase0 clock returns to 0 and then phase 1 has a rising
transition. The rising edge of phase 1 causes reg to store the
result of the alu operation into the destination register or
sigout represented by the same topaddr already used for one
of the source operands; the first source operand also speci-
fies destination. The rising edge of phase 1 also advances the
program counter inside ctrl.

All boundary signal writing and reading external to alu-
pipe 900 occurs using drivers and monitors of a simulator.
B. VHDL Hierarchy

This section provides one possible VHDL representation
of this circuit. The first subsection describes the structural
VHDL models, while the second subsection describes only
those parts of behavioral models that illustrate the innova-
tions of the modeling technology of the present invention.
1. Structural VHDL

This example uses a plain VHDL integer to represent bus
signals. This approach limits expressiveness of signal
representation, since unknown bit values and buses that
exceed integer bus width cannot be represented. The C++
model that follows the VHDL example uses a signal repre-
sentation scheme that does not impose these limits. This
approach was taken with VHDL simply to make construc-
tion and execution of this example fast. The C++ code
presented here runs about 11.5 times faster than the VHDL
code simulating the same processor using a state-of-the-art
VHDL simulator with both running on the same Sun
SPARCstation 20 workstation with comparable process
load. Replacing the VHDL integer representation of bus
signals with bit vector representations capable of expressing
unknown bit values and larger than-integer buses would
probably slow the VHDL simulation another order of mag-
nitude. The slowing would occur because each integer bus
operation in this VHDL model would translate to 16 bit
operations with a bit vector representation.

The structural VHDL code for alupipe is provided in code
block 1 below:

entity alupipe is

port(sigin: in integer; clk, rst: in bit; sigout: out integer);
end alupipe;
architecture alupipe of alupipe is
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signal p0, p1: bit;
signal aa, ab, opsel, opa, opb, opout: integer;
begin
reg: regio port map (sigin, aa, ab, p0, opout, p1, sigout, opa, opb);
splitp: split2 port map (clk, rst, p0, p1);
alu: smallalu port map (opa, opb, opsel, opout);
ctrl: control port map (p1, rst, aa, ab, opsel);
end alupipe;

The structural VHDL code for control is illustrated in
Code Block 2 below:

entity control is
port(riseclk, rst: in bit; addra, addrb, opcode: out integer);
end control;
architecture control of control is
signal pcbig, pcsmall, instr: integer;
begin
pclS: progetr port map (riseclk,rst,pcbig);
rl: ripper generic map (4,0) port map (pcbig, pesmall);
12: ripper generic map (2,2) port map (instr,addra);
13: ripper generic map (2,4) port map (instraddrb);
r4: ripper generic map (2,0) port map (instr,opcode);
xmem: mem 16x6 port map (pesmall,instr);
end control;

The ripper model in this code uses VHDL generics to
determine ripped bus widths and bit offsets. VHDL generics
correspond to C++ constructor parameters beyond the signal
port parameters already discussed. C++ model programmers
can add such parameters by hand; the translator creates them
automatically from schematic annotations.

2. Behavioral VHDL

This section provides only the behavioral VHDL for
selected submodels above. In Code Block 3 below, the
behavior code for model regio, which is the VHDL equiva-
lent of a clocked model, is illustrated:

entity regio is
port(pipein, topaddr, botaddr: in integer;
clkf: in bit; store: in integer;
clks: in bit; pipeout, topfetch, botfetch: out integer);
end regio;
architecture regio of regio is
begin
process
type regiostore is array (0 to 2) of integer;
variable storehouse: regiostore;
begin
wait until (((not clkfstable) and (clkf = 1))
or ((not clks'stable) and (clks = ‘17)));
if ((not clkf'stable) and (clkf = <17)) then
if topaddr = integer'left then
topfetch < = integer'left;
elsif topaddr = 3 then
topfetch < = pipein;
else
topfetch < = storehouse(topaddr);
end if;
if botaddr = integer'left then
botfetch < = integer'left;
elsif botaddr = 3 then
botfetch < = pipein;
else
botfetch < = storehouse(botaddr);
end if;
else -- clks has risen
if topaddr = 3 then
pipeout < = store;
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elsif topaddr / = integer'left then
storehouse topaddr) := store;

end if;
end if;

end process;
end regio;

The three internal registers reside in variable regiostore.
Upon the rising edge of clkf the model inspects topaddr,
where value “integer’left” represents an unknown bus signal
in this example. When topaddr is unknown output topfetch
receives an unknown value, otherwise topfetch receives the
register or pipein input addressed by topaddr. Addressing of
botfetch’s value via botaddr is similar. The rising edge of
clks triggers the storage of an operation’s result similarly.

The “delta delay” associated with VHDL signal assign-
ments such as the assignment to output port pipeout works
comparably to the clock(/evall) delay in C++ clocked mod-
els under proposal. (see, J. Bhasker, A VHDL Primer,
Revised Edition, Section 4.5, “Signal Assignment
Statement,” Englewood Cliffs, N.J.: Prentice Hall, 1995)
While the assignment to internal state variable storehouse
takes effect immediately when it occurs, the signal assign-
ment to pipeout takes effect only after a delta delay, i.e., after
all sequential circuits that trigger off of this rising edge of
clks have triggered.

Code Block 4 below illustrates the VHDL equivalent of a
combinational leaf model for smallalu (again, “integer’left”
represents an unknown value):
entity smallalu is

port(topdata, botdata, opcode: in integer; outdata: out integer);
end smallalu;
architecture smallalu of smallalu is
begin
process(topdata, botdata, opcode)
begin
- integer'left is undefined value
if (botdata = integer'left or opcode = integer'left) then
outdata < = integer'left;
elsif opcode = 3 then
outdata < = botdata;
elsif topdata = integer'left then
outdata < = integer'left;
elsif opcode = 0 then
outdata < = topdata + botdata;
elsif opcode = 1 then
outdata < = topdata — botdata;
else

- cannot shift integers, must do it with **
outdata < = topdata * (2 ** botdata);
end if;
end process;
end smallalu:

C. Modeling Hierarchy of the Present Invention

The first subsection gives hierarchical models generated
from netlist data automatically. The second subsection gives
C++ leaf models whose class definitions, constructors and
destructors were generated automatically from netlist, and
whose eval(, clock) and auxiliary functions were hand
coded.

1. Scheduler and Shell Models

Code Block 5 below shows the generated C++ class
definition for alupipe_ e, where “awmpEncapsulatedPssr” is
the actual C++ base class name for scheduler model:
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#ifndef ALUPIPE_H
#define ALUPIPE_H
#include “awmpsgnl.h”
#include “awmpipsr.h”
#include “alumake.h”
#include “smallalu.h”
#include “control.h”
#include “regio.h”
#include “split2.h”
class alupipe__e: public awmpEncapsulatedPssr {
protected:
const awmpClockSgnl &clk ;/* input */
const awmpClockSgnl &rst ;/* input */
const awmpSgnl &sigin ;/* input */
awmpSgnl &sigout ;/* output */
awmpSgnl aa, ab, opa, obp, opout, opsel;
awmpClockSgnl p0, pl;
smallalu_ 1 alu; control__s ctrl
regio_1 reg;
split2__1 splitp;
static const int schedulingPriorities[9];
public:
alupipe__e(const char *instName,
awmpShellPssr *lexicalContainer,
awmpEncapsulatedPssr *schedulingContainer,
awmpMonDrvTbl *call911, int schedulingPriority,
awmpClockSgnl &clk /* input */,
awmpClockSgnl &rst /* input */,
awmpSgnl &sigin /* input */,
awmpSgnl &sigout /* output */

virtual ~alupipe__e( );

b
#endif /* model header for alupipe */

The generator creates necessary #ifdef and #include state-
ments and then proceeds with the class definition. The
generator has counted nine leaf models contained within
alupipe, accounting for the size of the schedulingPriorities
array. In addition to port information, the constructor takes
generated instance name, shell model container, scheduling
model container and error reporting parameters (instName,
lexicalContainer, schedulingcontainer and call911
respectively). Alupipe’s scheduling priority is meaningful in
cases where an alupipe instance is nested within an enclos-
ing scheduler’s design.

This exemplary code displays the notational feature and
part of the structural feature of this proposal. There is
obviously a one-to-one correspondence between port param-
eters and internal signal and model objects in the VHDL
model of Code Block 1 and the C++ model of Code Block
5. Code Block 5 adds C++ construction-time and simulation-
time constructor parameters that are standard, and hence
readily generated, in this architecture.

Code Block 6 below shows the generated C++ member
function definitions for alupipe:

/* file testalu/alupipe.cxx generated by modelgen for model alupipe */
#include “alupipe.h”
alupipe__e::alupipe__e(const char *instName,
awmpShellPssr *lexicalContainer,
awmpEncapsulatedPssr *schedulingContainer,
awmpMonDrvTbl *call911, int schedulingPriority,
awmpClockSgnl &clk_parm, awmpClockSgnl &rst__parm,
awmpSgnl &sigin__parm, awmpSgnl &sigout__parm

awmpEncapsulatedPssr(instName,lexicalContainer,schedulingContainer,
call911,schedulingPriority),

clk(clk__parm), rst(rst__parm), sigin(sigin__parm), sigout(sigout__parm),

aa(2,my911), ab(2,my911), opa(16,my911), opb(16,my911),
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opout(16,my911), opsel(2,my911), pO(my911), p1(my911),
alu(“alu” this,this,my911,schedulingPriorities[0],
opb, opsel, opa, opout),
ctrl(“ctrl” this,this,my911,&(schedulingPriorities[1]),
pl, rst__parm, aa, ab, opsel),
reg(“reg” this,this,my911,schedulingPriorities[ 7],
ab, p0, p1, sigin_parm, opout, aa, opb, sigout_ parm, opa),
splitp(“splitp”,this,this,my911,schedulingPriorities[ 8],
clk_ parm, rst_parm, p0, p1)
{
}
alupipe__e::~alupipe__e( ){
}
const int alupipe_ e::schedulingPriorities[9] = {
1 /* [0] alupipe.alu */,
5/*[ 1] alupipe.ctrl.pc 1 5 */,
4 /* [2] alupipe.ctrl.rl */,
1 /* [3] alupipe.ctrl.r2 */,
1 /* [4] alupipe.ctrl.r3 */,
2 /* [5] alupipe.ctrl.r4 */,
3 /* [6] alupipe.ctrl.xmem */,
0 /* [7] alupipe.reg */,
0 /* [8] alupipe.splitp */

The constructor initializes its underlying scheduler model
infrastructure object via the “ampEncapsulatedPssr” con-
structor call. It initializes a set of member signal references
with the addresses of the corresponding boundary ports, in
order to keep these addresses available for simulation-time
functions. It then constructs signals with their width infor-
mation and a pointer to the error reporting object, and finally
it initializes nested models alu, ctrl, reg and splitp with their
standard C++ parameters and their port addresses. Construc-
tion of nested signals should occur before construction of
nested models, since the latter should register with the
former’s dataflow feature. The initialization code for alu,
ctrl, reg and splitp completes the demonstration of the
notational feature and the structural feature for alupipe. The
notation and structure of nested model interconnection via
constructor parameters is identical to the VHDL model
interconnection in Code Block 1.

Class static array schedulingPriorities shows the gener-
ated set of priorities and comments for all leaf models
contained inside alupipe. Note that alupipe’s constructor
passes scalar priorities directly to leaf models alu, reg and
splitp from schedulingPriorities. Alupipe’constructor passes
an address within schedulingPriorities to ctrl because ctrl is
a hierarchial shell model that houses six leaf models within
its body. Ctrl’s constructor parcels these out to nested leaf
models as shown below. Ctrl contains no nested shell
models, but if it did it would pass a pointer to that model as
alupipe passes to ctrl here. This nesting of hierarchical
models can occur to arbitrary depth.

Array schedulingPriorities helps demonstrate both the
structural feature and scheduling feature of this architecture.
Generated comments next to schedulingPriorities’ definition
shows that the design hierarchy is intact. The priorities
themselves, which are distances from alupipe’s output ports,
show that the hierarchy has effectively been flattened as far
as simulation time processing is concerned. Only leaf mod-
els enter alupipe’s scheduling queue for eval(, and their
positions in alupipe’s flattened topology give their evall
priorities.

The generator generates both shell and scheduler defini-
tions for all hierarchical models. Alupipe, for example,
could be included as a shell model in a higher order
hierarchical design. Code Blocks 7 and 8 below give the
C++ definition and implementation of hierarchical block
control.
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/* file testalu/control.h generated by modelgen for model control */

).

#ifndef CONTROL_H
#define CONTROL_H
#include “ awmpsgnl.h”
#include “awmpipsr.h”
#include “alumake.h”
#include “progctr.h”
#include “ripper.h”
#include “memblock.h”
class control__s: public awmpShellPssr {
protected:
const awmpClockSgnl &riseclk ;/* input */
const awmpClockSgnl &rst ;/* input */
awmpSgnl &addrb ;/* output */
awmpSgnl &addrb ;/* output */
awmpSgnl &opcode ;/* output */
awmpSgnl instr, awmpSgnl pc, awmpSgnl pcbig;
progetr_1 pc 15;
ripper__1 11, 12, 13, r4;
memblock | xmem;
public: static unsigned long * xmemMap;
public:
control__s(const char *instName,
awmpShellPssr *lexicalContainer,
awmpEncapsulatedPssr *schedulingContainer,
awmpMonDrvTbl *call911, const int *schedulingPriorities,
awmpClockSgnl &riseclk /* input */,
awmpClockSgnl &rst /* input */,
awmpSgnl &addra /* output */,
awmpSgnl &addrb /* output */,
awmpSgnl &opcode /* output */

;
irtual ~control__s( );

#endif /* model header for control */
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/* file testalu/control.cxx generated by modelgen for model control */

#include “control.h”

control__s::control__s(const char *instName,

awmpShellPssr *lexicalContainer,

awmpEncapsulatedPssr *schedulingContainer,
awmpMonDrvTbl *call911, const int *schedulingPriorities,
awmpClockSgnl &riseclk__parm, awmpClockSgnl &rst__parm,
awmpSgnl &addra_parm, awmpSgnl &addrb__parm,

)

awmpSgnl &opcode__parm

awmpShellPssr(instName,lexicalContainer,call911),

riseclk(riseclk__parm), rst(rst__parm), addra(addra__parm),

addrb(addrb__parm),

opcode(opcode__parm),

instr(6,my911), pc(4,my911), pebig(16,my911),

pel5(“pe 157 this,schedulingContainer,
my911,schedulingPriorities[ 0],

1!

iseclk__parm, rst_parm, pcbig),

r1(“r1”,this,schedulingContainer,
my911,schedulingPriorities[ 1],
pebig, pc, 3, 0, 3, 0 /* ripper generic parameters */

r2(“r2” this,schedulingContainer,
my911,schedulingPriorities[ 2],
instr, addra_ parm, 3, 2, 1, 0),
r3(“r3”,this,schedulingContainer,
my911,schedulingPriorities[ 3],
instr, addrb__parm, 5, 4, 1, 0),
r4(“r4” this,schedulingContainer,
my911,schedulingPriorities[4],
instr, opcode__parm, 1, 0, 1, 0),
xmem(“xmem”,this,schedulingContainer,
my911,schedulingPriorities[ 5],
pc, instr, 16, control__s::xmemMap/* actual parameter */, 6)
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control s:~control s( ) {

}

The constructor of Code Block 7 takes a pointer to an
array of schedulingPriorities because control_s is a shell
model. It does not define an array of schedulingPriorities
because it is not a scheduler model. Instead it receives
schedulingPriorities from its enclosing scheduler model,
which is alupipe in this example, and which could be another
scheduling modeling in another design that uses control as
a subcircuit. There is one priority for each nested leaf model,
which Code Block 8 passes in leaf model constructor calls.
The additional member object “xmemMap” appears because
the constructor for the C++ memory block requires a
memory configuration parameter, comparable to a VHDL
generic, in its construction of xmem. A schematic annotation
inside control provides the information needed to generate
xmemMap and pass it to xmem. The VHDL example of
control could have used a generic for a configurable memory
block.

The ripper constructor calls in Code Block 8 show generic
parameters, and xmem’s constructor call shows generic
memory depth of 16 and width of 6 parameters. Schematic
annotations support generation of this code.

2. Leaf and Clocked Models

Code Block 9 shows the generated C++ code and Code
Block 10 shows the hand code corresponding to the regio
VHDL model of Code Block 3. The class definition contains
a number of private data members generated from netlist
annotations. They are used by the hand-coded clock( and
eval( functions in directing leaf model signal flow.

Code Block 9:

#ifndef REGIO_H
#define REGIO_H
#include “awmpsgnl.h”
#include “awmpipsr.h”
#include “alumake.h”
class regio_l: public awmpClockedPssr {
protected:
const awmpSgnl &botaddr 3/* input */
const awmpClockSgnl &clkf ;/* input */
const awmpClockSgnl &clks ;/* input */
const awmpSgnl &pipein ;/* input */
const awmpSgnl &store 3/* input */
const awmpSgnl &topaddr ;/* input */
awmpSgnl &botfetch ;/* output */
awmpSgnl &pipeout ;/* output */
awmpSgnl &topfetch ;/* output */
private: awmpSgnl botlatch;
private: const awmpSgnl * fetchtab[4];
private: void initFetchTab(void);
private: awmpSgnl outlatch;
private: int postfetch;
private: int postout;
private: awmpSgnl sig0;
private: awmpSgnl sigl;
private: awmpSgnl sig2;
private: awmpSgnl * storetab[4];
private: awmpSgnl toplatch;
public:
regio__I(const char *instName,
awmpShellPssr *lexicalContainer,
awmpEncapsulatedPssr *schedulingContainer,
awmpMonDrvTbl *call911, inst schedulingPriority,
awmpSgnl &botaddr /* input */,
awmpClockSgnl &clkf /* input */,
awmpClockSgnl &clks /* input */,
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awmpSgnl &pipein /* input */,
awmpSgnl &store /* input */,
awmpSgnl &topaddr /* input */,
awmpSgnl &botfetch /* output */,
awmpSgnl &pipeout /* output */,
awmpSgnl &topfetch /* output */
)
virtual ~regio_1();
virtual void eval(void);
virtual void clock(const awmpClockSgnl *source);
3
#endif /* model header for regio */
#include “regio.h”
regio_ l:regio_I(
const char *instName,
awmpShellPssr *lexicalContainer,
awmpEncapsulatedPssr *schedulingContainer,
awmpMonDrvTbl *call911, int schedulingPriority,
awmpSgnl &botaddr__parm /* input */,
awmpClockSgnl &clkf_parm /* input */,
awmpClockSgnl &clks__parm /* input */,
awmpSgnl &pipein_ parm /* input */,
awmpSgnl &store__parm /* input */,
awmpSgnl &topaddr__parm /* input */,
awmpSgnl &botfetch__parm /* output */,
awmpSgnl &pipeout_parm /* output */,
awmpSgnl &topfetch__parm /* output */

awmpClockedPssr(instName,lexicalContainer,schedulingContainer,
call911,schedulingPriority),

botaddr(botaddr__parm) /* input */,

clkf(clkf parm) /* input */,

clks(clks__parm) /* input */,

pipein(pipein_parm) /* input */,

store(store__parm) /* input */,

topaddr(topaddr__parm) /* input */,

botfetch(botfetch__parm) /* output */,

pipeout(pipeout_parm) /* output */,

topfetch(topfetch__parm) /* output */,

botlatch(16,my911),

outlatch(16,my911),

postfetch(0),

postout (0),

sig0(16,my911),

sigl(16,my911),

sig2(16,my911),

toplatch(16,my911)

if (botaddr__parm.width( ) !=2) {
sgnlErrLog(“botaddr™);

clkf_parm.ClockThenEvalOnEvent(this,awmpClockSgnl::rise);
clks_ parm.ClockThenEvalOnEvent(this,awmpClockSgnl::rise);
if (pipein_parm.width ()!=16) {

sgnlErrLog( “pipein”);

if (store__parm.width( ) != 16) {
sgnlErrLog(“store™);

if (topaddr_parm.width() != 2) {
sgnlErrLog(“topaddr™);

if (botfetch__parm.width( ) != 16) {
sgnlErrLog(“botfetch™);

if (pipeout_parm.width( ) != 16) {
sgnlErrLog(“pipeout™);

if (topfetch__parm.width( ) != 16) {
sgnlErrLog(“topfetch™);

initFetchTab( );

The above constructor code shows leaf model participa-
tion in the audit feature and dataflow feature. At present only
C++ leaf models audit signal widths at construction time.
Hierarchical models could also audit signal width, but since
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all signal propagation occurs at the leaf level, the model
generator currently saves some construction time by limiting
these audits to leaf models. They are there to assure design
integrity, primarily for designs that incorporate leaf model
instances through hand coding. The generator audits all
constant-width signal constraints at generation time. The
auditor cannot audit widths constrained by run-time param-
eters; these are audited in the above fashion.

The dataflow feature above consists of calls to Clock-
ThenEvalOnEvent for clkf and clks, comparable to the
VHDL wait statement of Code Block 3. Rising edges on
these clocks trigger regio clock(/evall calls. Regio is strictly
a sequential circuit that performs no action except when
clocked, so no EvalOnEvent( calls appear for bus signals
such as topaddr. This constructor saves its scheduler feature
priority via its call to base class awmpClockedPssr’s con-
structor.

Hand coded function initFetchTab() below initializes a
table of operand pointers at construction time. The clock(
function logic corresponds to the logic of the VHDL behav-
ioral model of Code Block 3. Private data members post-
fetch and postout are set in clock( to communicate sequen-
tial behavior to eval(. After clock( finishes the scheduler
calls evalQ according to priority, and eval) completes either
a fetch or store, depending on the last clock( action. The
write( actions to output ports topfetch, botfetch and pipeout
cause their dataflow feature to schedule models to which
they provide input.

Code Block 10:

regio_ lu~regio_1() {

/* HAND CODED FUNCTIONS:*/
void
regio_1:initFetchTab(void) {
fetchtab[0] = &sig0;
fetchtab[1] = &sig 1;
fetchtab[2] = &sig2;
fetchtab[3] = &pipein;

storetab[0] = &sig0;
storetab[1] = &sig 1;
storetab[2] = &sig2;
storetab[3] = &outlatch;
}
void

regio_ 1:eval(void) {

if (postfetch) {
topfetch.write(&toplatch);
botfetch.write(&botlatch);
postfetch = 0;

} else if (postout) {
pipeout.write(&outlatch);
postout = 0;

}
void
regio_1:clock(const awmpClockSgnl *source) {
// fetch clock fetches top & bottom operands
awmp WORD locaddr;
if (source = = &clkf) {
if (topaddr.isUndefined( )) {
toplatch.setUndefined( );
}else {
locaddr = *(topaddr.read( ));
toplatch.write(fetchtab[locaddr]);

if (botaddr.isUndefined( )) {
botlatch.setUndefined( );

}else {
locaddr = *(botaddr.read( ));
botlatch.write(fetchtab[locaddr]);
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postfetch = 1;
} else {

awmpSgnl *dest;

if(topaddr.isBinary( )) {
dest = storetab[ *(topaddr.read( ))];
dest->write(&store);
// internal dests don’t need flushing, outlatch does
if (dest = = &outlatch) {

postout = 1;

Code Blocks 11 and 12 give the generated and hand code
respectively for the other VHDL leaf model examined,
smallalu of Code Block 4. Smallalu is a combinational
circuit, so the body of class smallalu_1 contains no state
variables, and smallalu_1 has an eval) function but no
clock( function.

Code Block 11:

#ifndef SMALLALU_H
#define SMALLALU_H
#include “awmpsgnl.h”
#include “awmpipsr.h”
#include “alumake.h”
class smallalu__1: public awmpLeafPssr {
protected:
const awmpSgnl &botdata ;/* input */
const awmpSgnl &opcode ;/* input */
const awmpSgnl &topdata ;/* input */
awmpSgnl &outdata ;/* output */
public:
smallalu_ 1(const char *instName,
awmpShellPssr *lexicalContainer,
awmpEncapsulatedPssr *schedulingContainer,
awmpMonDrvTbl *call911, int schedulingPriority,
awmpSgnl &botdata /* input */,
awmpSgnl &opcode /* input */,
awmpSgnl &topdata /* input */,
awmpSgnl &outdata /* output */
);
virtual ~smallalu_1();
virtual void eval(void);
I
#endif /* model header for smallalu */
#include “smallalu.h”
smallalu__1::smallalu__1(
const char *instName,
awmpShellPssr *lexicalContainer,
awmpEncapsulatedPssr * schedulingContainer,
awmpMonDrvTbl *call911, int schedulingPriority,
awmpSgnl &botdata__parm /* input */,
awmpSgnl &opcode__parm /* input */,
awmpSgnl &topdata_ parm /* input */,
awmpSgnl &outdata__parm /* output */

awmpLeafPssr(instName,lexicalContainer,schedulingContainer,
call911,schedulingPriority),

botdata(botdata__parm) /* input */,

opcode(opcode__parm) /* input */,

topdata(topdata_ parm) /* input */,

outdata(outdata__parm) /* output */

if (botdata__parm.width( ) != outdata.width()) {
sgnlErrLog(“botdata™);
} else {

botdata__parm.EvalOnEvent(this);

if (opcode_parm.width( ) !=2) {
sgnlErrLog(“opcode™);

} else {
opcode__parm.EvalOnEvent(this);
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}

if (topdata_ parm.width( )!= outdata.width( )) {
sgnlErrLog(“topdata™);

}else {
topdata__parm.EvalOnEvent(this);

smallalu_ 1::~smallalu__1() {

Smallalu’s constructor like regio’s displays the audit feature.
Opcode is constrained to a constant width, but schematic
annotations constrain ports topdata, botdata and outdata only
to share the same width, resulting in their audits above. The
three bus signal ports connect this model into the dataflow
feature via EvalOnEvent( calls. This constructor saves its
scheduler feature priority via its call to base class awm-
pLeafPssr’s constructor.
Code Block 11:

void
smallalu__1::eval(void) {
awmpWORD operation;
// don’t need topdata to implement rA = 1B
if (opcode.isUndefined( )) {
outdata. setUndefined( );
my911->logE(AWMP_BAD_ PSSR__OP_ CODE);
return;

operation = *(opcode.read( ));
awmpArithSgnl::setMessageHandler(my911);
//incidental setup for dyna-signal
awmpDynaSgnl retval(topdata);
switch(operation) {
case 0:
retval += botdata;
break ;
case 1:
retval —= botdata;
break:
case 2:
retval <<= botdata;
break ;
case 3:
retval.copy (botdata);
break;

retval.outcopy(outdata);

The hand code of Code Block 11 corresponds closely to the
behavioral VHDL code of Code Block 4. This eval( function
uses utility library class awmpDynaSgnl to manipulate the
result value as an unlimited precision integer value. The
outcopy() operation at the end fits this variable-length signal
into the fixed-size outdate port, issuing a warning via the
error handler my911 if significant guard bits are discarded.
This outcopy triggers downstream dataflow.

COMPARATIVE EXAMPLE

A benchmark simulated processor was tested running
applications code using a hierarchical VHDL description
running under a state-of-the-art commercial VHDL
simulator, and using a custom C++ description running
under the proposed simulation model. The proposed simu-
lation model runs one to two orders of magnitude faster than
the VHDL simulation; the variability depends upon the
degree of resolution of unknown signal value status in the
VHDL model, where resolution in the C++ model is at the
bit level. The first order of magnitude improvement is due to
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simulation scheduling strategies discussed in this document,
as well as elimination of VHDL features not needed to
support the custom application of these models. The second
order of magnitude improvement comes from processing
signal changes at the bus level (i.e., word level) of resolution
instead of at the bit level whenever possible. This word-level
processing of signal changes is not part of the proposed
simulation model, but it is an example of a non-standard
modeling extension readily incorporated into this extensible
C++ modeling infrastructure.

What is claimed is:

1. A method for simulating the operation of a circuit in a
simulation model using a computer-based simulator, said
simulation model having at least one nested subcircuit
function and an output, said simulator using said output for
generating results on the simulation of the operation of said
circuit, said method comprising:

(2) upon a change in an initialized signal in said simula-
tion model, distributing said signal to one or more
subcircuit functions that use said signal;

(b) scheduling said subcircuit functions for execution
according to a priority assigned to each subcircuit
function, wherein the priority of a particular subcircuit
function is determined by the number of interceding
subcircuit functions between the output of said particu-
lar subcircuit function and the output of the simulation
model, wherein the highest number is given the highest
priority; and

(c) executing one or more subcircuit functions with the
highest priority to obtain function output, if said func-
tion output is the output of said simulation model, then
providing the simulator with said function output,
otherwise, providing said function output as a signal to
one or more subcircuit functions that use said signal
and returning to step (b).

2. The method of claim 1, further comprising:

prior to step (a), constructing said simulation model using
an object-oriented language wherein a constructor of
said subcircuit accepts at least one signal address from
a constructor of said simulation model.

3. The method of claim 1, wherein said circuit is

hierarchical, and wherein said method further comprises:
prior to step (a), containing at least one subcircuit within
another circuit.

4. The method of claim 3, wherein containing at least one
subcircuit within another circuit comprises at least:

constructing signal objects and at least one hierarchy of
model objects, wherein said hierarchy contains at least
one leaf model object; and

constructing a function of said leaf model object by
associating a signal object with said function.

5. The method of claim 4, wherein constructing said
hierarchy of model objects includes performing a run-time
audit to ensure model object integrity.

6. The method of claim 1, wherein at least one subcircuit
function has an internal state and an associated clock
function, said method further comprising:

controlling said subcircuit function’s internal state with
said clock function.

7. The method of claim 1, further comprising:

providing results of the simulation of the operation of said
circuit to a user interface, said results depending at least
partially on said output of said simulation model.

8. The method of claim 1, further comprising:

prior to step (a), writing at least one signal from said
simulator to said simulation model.

30

9. A method for simulating the operation of a circuit in a
simulation model using a computer-based simulator, said
simulation model having an initialized output value, said
simulator using the output of said simulation model for

5 generating results on the simulation of the operation of said
circuit, said method comprising:

(a) writing at least one value from said simulator to a

signal object;

(b) prompting one or more leaf model objects, each

10 having an eval( function that receives input from said
signal object, to be scheduled if said value differs from
the last value stored in said signal object;

(¢) scheduling one or more leaf model objects of step (b)

according to a priority assigned to each leaf model
15 object, wherein the priority of a particular leaf model
object is determined by the number of interceding each
leaf model objects between the particular leaf model
object and the output of said simulation model, wherein
the highest number is given the highest priority;
20 (d) providing said output value to said simulator if no leaf
model objects are scheduled otherwise,
executing the eval( function of one or more leaf models
objects having the highest priority according to step
(c); to obtain at least one calculated value and
25 writing said value to one or more signal objects des-
ignated to receive output from said one or more leaf
models and
returning to step (b) to repeat the method for said one
or more signal objects of step (d).
30 10. The method of claim 9, further comprising:
determining, prior to step (d), whether another value has
been written to a signal object; and

repeating steps (b)—(c) for said another value if said
another value has been written to a signal object.

11. The method of claim 10, wherein said simulation
model comprises at least one scheduler model having a
scheduler function, and wherein said scheduler function uses
a priority-based scheduling algorithm to assign each leaf
model object’s priority as a function of its distance from the
output of the scheduler model object.

12. The method of claim 9, wherein at least one leaf model
object is associated with a clocked model object, said
process further comprising:

i. writing a clock value from said simulator to at least one

clock signal object;

ii. calling at least one clocked model object having a clock
function sensitive to a change in said clock value if said
clock value is significantly different from the last clock
value in said clock signal object;

iii. changing an internal state of a leaf model associated
with said clocked model object of step ii. using said
clock function prior to performing the eval function of
said leaf model object; and

55 1iv. calling a scheduler model object to schedule the eval
function of said leaf model of step iii.

13. The method of claim 9, wherein said process further
comprises:

prior to step (), constructing said simulation model using

60 an object-oriented language wherein a constructor of
said eval( function accepts at least one signal address
from a constructor of the simulation model containing
said eva( function.

14. The method of claim 9, wherein said circuit is

65 hierarchical, and wherein said method further comprises:

prior to step (a), containing at least one subcircuit within
another circuit.
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15. The method of claim 9, wherein, prior to writing to
step (a), said method further comprises:

constructing signal objects and a hierarchy of model

objects; and

constructing an eval function of a leaf model object by

storing a pointer in a signal object for a leaf model

object having an eval function that uses said signal
object.

16. The method of claim 9, further comprising:

providing results of the simulation of the operation of said

circuit to a user interface, said results depending at least
partially on the output of said simulation model, said
output representing the output of said circuit for an

input of a value equal to said value of step (a).

17. An apparatus for simulating the operation of a circuit,
said apparatus comprising:

a processor;

user interface operatively connected to said processor for

receiving input from and conveying output to a user;

and

memory operatively connected to said processor, said

memory containing a simulation model having at least

one nested subcircuit function and an output and
instructions for enabling said processor to perform the
following steps in a simulation of a circuit’s operation:

(a) upon a change in an initialized signal in said
simulation model, distributing said signal to one or
more subcircuit functions that use said signal;

(b) scheduling said subcircuit functions for execution
according to a priority assigned to each subcircuit
function, wherein the priority of a particular subcir-
cuit function is determined by the number of inter-
ceding subcircuit functions between the output of
said particular subcircuit function and the output of
the simulation model, wherein the highest number is
given the highest priority; and

(c) executing one or more subcircuit functions with the
highest priority to obtain function output, if said
function output is the output of said simulation
model, then providing the simulator with said func-
tion output, otherwise, providing said function out-
put as a signal to one or more subcircuit functions
that use said signal and returning to step (b); and

(d) providing results of the simulation of the operation
of said circuit to a user interface, said results depend-
ing at least partially on said output of said simulation
model.

18. An apparatus for simulating the operation of a circuit,
said apparatus comprising a computer-based simulator hav-
ing at least:

a simulation model having one or more subcircuit func-

tions and an output; and

means for performing at least the following steps:

(a) upon a change in an initialized signal in said
simulation model, distributing said signal to one or
more subcircuit functions that use said signal;

(b) scheduling said subcircuit functions for execution
according to a priority assigned to each subcircuit
function, wherein the priority of a particular subcir-
cuit function is determined by the number of inter-
ceding subcircuit functions between the output of
said particular subcircuit function and the output of
the simulation model, wherein the highest number is
given the highest priority; and

(c) executing one or more subcircuit functions with the
highest priority to obtain function output, if said
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function output is the output of said simulation
model, then providing the simulator with said func-
tion output, otherwise, providing said function out-
put as a signal to one or more subcircuit functions
that use said signal and returning to step (b); and

(d) reporting results of the simulation of the operation
of said circuit, said results depending at least par-
tially on said output.

19. A method for simulating the operation of a circuit in

a simulation model using a computer-based simulator, said
simulation model having an initialized output, said simulator
using the output of said simulation model for generating
results on the simulation of the operation of said circuit, said
method comprising:

(a) writing at least one value from said simulator to a
signal object in said simulation model;

(b) prompting one or more leaf model objects in said
simulation model to be scheduled if said value differs
from the last value stored in said signal object, each leaf
model object having an eval( function that receives
input from said signal object;

(¢) scheduling one or more leaf model objects of step (b)
according to a priority assigned to each leaf model
object, wherein said simulation model comprises at
least one scheduler model having a scheduler function,
said scheduler function uses a priority based scheduling
algorithm to assign each leaf model object’s priority as
a function of its distance from the output of the sched-
uler model object, and wherein said scheduler model
object comprises a hierarchy of at least two scheduler
model objects wherein a subordinate scheduler model
object is scheduled as an evalQ function in a superior
scheduler model object;

(d) determining whether another value has been written to
a signal object, and, if so, repeating steps (b)—(c) for
said another value, otherwise, proceeding to step (e);
and

(e) providing the output of said simulation model to said
simulator if no leaf model objects are scheduled,
otherwise, executing the eval function of one or more
leaf models objects having the highest priority accord-
ing to step (c) to obtain at least one calculated value and
writing said calculated value to at least one signal
object designated to receive output from said one or
more leaf models and returning to step (b) to repeat said
process for said signal object.

20. The method of claim 19, further comprising:

providing results of the simulation of the operation of said
circuit to a user interface, said results depending at least
partially on said output of said simulation model.

21. A method for simulating the operation of a circuit in

a simulation model using a computer-based simulator, said
simulation model having an initialized output, said simulator
using the output of said simulation model for generating
results on the simulation of the operation of said circuit, said
method comprising:

(a) writing at least one value from said simulator to a
signal object in said simulation model, said signal
object being a bus signal object, wherein one or more
values are written to said bus signal object before said
bus signal object calls each leaf model object that uses
said bus signal object as input;

(b) prompting one or more leaf model objects in said
simulation model to be scheduled if said value differs
from the last value stored in said signal object, each leaf
model object having an eval) function that receives
input from said signal object;
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(c) scheduling one or more leaf model objects of step (b) 22. The method of claim 21, further comprising:
according to a priority assigned to each leaf model
object; and

(d) providing the output of said simulation model to said
simulator if no leaf model objects are scheduled,
otherwise, executing the eval function of one or more
leaf models objects having the highest priority accord- ; ] e R
ing to step (¢) to obtain at least one calculated value and 24. The method of claim 1, wherein said signal is dis-
Wriﬁng said calculated value to at least one Signal tributed to Only those subcircuit functions that use said
object designated to receive output from said one or 10 signal.
more leaf models and returning to step (b) to repeat said
process for said signal object. ¥k ® % %

providing results of the simulation of the operation of said

circuit to a user interface, said results depending at least
partially on said output of said simulation model.

23. The method of claim 1, wherein said results are used

to debug application code running on a simulated processor.
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