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PRIOPS: A real-time production system architecture for programming and learning in embedded systems

ABSTRACT_ __________

The Prioritized Production System - PRIOPS - is an architecture that supports time-constrained,

knowledge-based embedded system programming and learning. Inspired by cognitive psychology’s

theory of automatic and controlled human information processing, PRIOPS supports a two-tiered

processing approach. The automatic partition provides for compilation of productions into constant-

time-constrained processes for reaction to environmental conditions. The notion of a habit in humans

approximates the concept of automatic processing, trading flexibility and generality for efficiency and

predictability in dealing with expected environmental situations. Explicit priorities allow critical

automatic activities to preempt and defer execution of lower priority processing. An augmented version

of the Rete match algorithm implements O(1), priority-scheduled automatic matching. PRIOPS’

controlled partition supports more complex, less predictable activities such as problem solving, planning

and learning that apply in novel situations for which automatic reactions do not exist. The PRIOPS

notation allows the programmer of knowledge-based embedded systems to work at a more appropriate

level of abstraction than is provided by conventional embedded systems programming techniques. This

paper explores programming and learning in PRIOPS in the context of a maze traversal program.

Key words:_ _________ real-time, embedded system, production system, Rete algorithm, reactive processing,

chunking.

1. INTRODUCTION_ _________________

Embedded computing systems do more than consume and produce symbolic text and graphics for

direct human interaction. These systems deal with physical phenomena such as visual images, sound,

motion, pressure and temperature. Measurements enter the computing systems through transducers and

sensors. These systems use effectors and generators, such as robotic arms and lasers, to produce changes
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in the sensed phenomena. While symbolic information may appear at the input and output ports of these

systems, it usually does so alongside more critical signals and actions that constitute direct interactions

with external environments.

A typical embedded computing system must react to important environmental conditions in

predictable time. The system must recognize an important external situation in limited time, and then

respond in limited time. The higher priority work of an embedded system - reading critical sensors,

generating effector control signals, sounding alarms - exhibits this stimulus-response organization. Lower

priority activities, such as accounting and routine report generation, execute in the background during

lulls in environmental interaction. These processes do not have strict time requirements.

Interrupt-driven event interpretation and reaction has traditionally used assembly language

programming. Subsequent work applied the improved constructs of procedural(24) and object-oriented(9)

languages to the problems of time-constrained programming. Recently work has begun on adapting the

notations and architectures of knowledge-based systems for use in real-time embedded applications.(10)

The Prioritized Production System (PRIOPS) is an architecture that supports the programming and

learning of event-driven, constant-time-constrained, preemptive stimulus-response processes. PRIOPS

notation is a derivative of OPS5.(2,5) PRIOPS pattern matching uses an augmented version of OPS5’s

Rete matcher to select productions for execution.(3,4) In earlier papers we reported on the PRIOPS

architecture and matching algorithm,(16,17) relating key aspects of this two-tiered architecture to

cognitive psychology’s concepts of controlled and automatic human information processing.(18,19,20)

Here we use an example PRIOPS program to explore application of the architecture. The example,

which searches a maze for its exit while avoiding dangerous obstacles, presents a method for learning

PRIOPS real-time processes.

2. EMBEDDED REAL-TIME COMPUTING_ _____________________________________

The expression embedded computing system identifies a computer that is part of an encompassing

- 3 -



-- --

piece of machinery or larger physical system. Popular definitions of embedded system do not address

questions of time or space locality, so for precision we enumerate properties of an embedded system:

1) The processing system is embedded in a discrete, functioning physical system.

2) The discrete, functioning system is embedded in an environment.

3) Sensors describe the environment to the processing system.

4) Effectors convey the processing system’s reactions to the environment.

5) The intersection of the current environmental state and the current processing state is non-

empty.

6) Physical localization of the system is important. A restriction on distribution of the

embedded system in space and time, the body concept, is characterized by the remaining

constraints.

7) Intra-system communication speeds for multiple-processor systems are of the same

magnitude as processor speeds. The presence of multiple processors does not necessitate

internal communication queuing delays.

8) A single system clock/time is accurate for all processors within acceptable error. An

embedded system does not require the notion of relativistic, partially ordered time found in

distributed systems.(1)

9) The system’s physical boundary describes an abstract interface to the environment. The

interface is abstract because the sensors do not (normally) exhaustively describe conditions at

the boundary. Sensors supply partial information.

Real-time processing in PRIOPS is equivalent to constant-time-constrained or O(1) processing. The

production compiler can determine worst-case execution time for real-time processes.

3. The TWO-TIERED PRIOPS ARCHITECTURE_ _________________________________________

A PRIOPS programmer partitions the program problem space in two. Problems amenable to solution
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using recognition and reaction processes with O(1) time and space requirements go in the automatic

partition (AP). All other problems go in the controlled partition (CP).

Cognitive psychology’s concepts of automatic and controlled human information processing inspired

the PRIOPS architecture.(18,19,20) Automatic productions are like habits. Habits are akin to reflexes or

instincts, except that they are learned, through practice. Habits develop in response to repetitive,

consistent patterns of interaction with one’s environment. Habits trade flexibility for predictability and

efficiency. Habits trigger in response to familiar conditions, and produce effective responses to

conditions while placing minimal load on the resources of attention and short-term memory. An

automatic process may execute without the conscious awareness of the person, and is difficult to avoid

or preempt. Human controlled processing, in contrast, is thought- and memory-intensive. Controlled

processing is appropriate for novel situations requiring complicated activities such as planning and

learning. This processing is far more complex, and therefore less efficient and predictable, than

automatic processing. The goal-directed, computation-bound processing typical of artificial intelligence

architectures corresponds to controlled processing.

3.1 Data flow in the automatic partition_ ________________________________

Figure 1 illustrates data flow in the PRIOPS architecture. Sensors provide information about the

environment to the system. The system manipulates the environment through its effectors. Reactive

processing stimulus-response production chains guarantee real-time responses to external triggers.

Reactive productions lie wholly within the AP. Reactive processing flows from sensors through

automatic detection to generated actions. There are no unbounded loops in purely automatic data flow,

since a loop implies time indeterminacy. The only feedback loop in the AP is an inherent one, mediated

by the external world. It goes from effectors through the environment to the sensors. (Internal feedback

loops are possible in the CP.)

<INSERT FIGURE 1 ABOUT HERE.>
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The AP handles time-critical input-output, recognition and reaction. Being composed primarily of

PRIOPS productions, it is in effect a symbol-based interrupt handler and device driver. A small amount

of procedural code in a language such as C or Modula-2 may appear for portions of the automatic

problem space readily handled by such code. Simple decoding activities extract some important

environmental information from an individual sensor’s data messages. Combining sensed data through

sensor fusion is necessary for more complex phenomena.

Production systems spend most of their time matching data to conditions (rule left-hand-sides).(4)

PRIOPS’ augmented Rete matcher assures that automatic match time is constant. Automatic conflict

resolution and right-hand-side actions also run in constant time.

Automatic productions show constant-bound space complexity as well. Variable length data buffering

is a means for lowering responsiveness requirements by storing incoming information until the system

has time to attend. PRIOPS assumes a constant-bound responsiveness requirement on each reaction to

incoming information, measured from the instant that a stimulus arrives until the instant that a response

proceeds. Reactive processing must satisfy instantaneous real-time requirements. There is no degradation

of responsiveness through arbitrary-length buffering in the AP. Furthermore, incoming information on a

sensory channel supersedes any earlier information from that channel. Variable-length buffering of

sensory data is again inappropriate, since the AP reacts to the immediate environmental situation.

3.2 The controlled-automatic interface_ _______________________________

The automatic productions of Figure 1 trigger not only from sensory input, but also from enabling

information advanced from the CP. Where short-term memory of stimuli and strategy information is

necessary, the CP performs buffering. The controlled portion of such processing does not guarantee

O(1) responsiveness. Buffering at the automatic-controlled interface delays lower-priority controlled

computation without losing information. PRIOPS places a constant bound on the length of these

buffers, and allocates their space during controlled processing intervals. Automatic processing does not

perform memory management, since the complexity of memory management is normally greater than
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O(1). Control processes draining the buffers cannot react to a particular buffered datum within a

constant time limit, but these processes must drain the buffers at a rate that will keep buffer space from

becoming exhausted. Therefore control processes must drain the buffers at the same average rate at

which automatic processes load them. Interface control processes must satisfy average real-time

requirements.

3.3 Explicit production priorities_ __________________________

We have not yet addressed the issue of sharing central processor time among enabled constant-time

processes in the AP. (The current PRIOPS implementation is for a uniprocessor machine, although

work on multiprocessor production systems(7,21) might be adaptable to PRIOPS’ needs.) If a ready

process must wait for computing resources, then its worst-case response time is the sum of its inherent

worst-case response time and the worst-case sum of time it waits for other processes to release resources

that it needs. Given the difficulties in sharing a single processor among multiple, time-constrained tasks,

explicit preemptive priorities determine the order in which automatic PRIOPS productions get the

processor. Priority levels vary from 1 to 127 for automatic productions, and from 0 to -128 for

controlled productions. Critical tasks and automatic tasks with quick response requirements share the

highest priority levels. Worst case response time for a process of a given priority is the sum of the

inherent process time plus the times for all other processes of equal or greater priority plus context

switching time, over some encompassing time period in which all of these processes may run. Any time

spent servicing hardware interrupts and direct memory access transfers counts as high priority

processing. The danger of losing low priority responses is not a weakness in PRIOPS, but is rather a

weakness of processor sharing. Priorities allow an embedded system designer to identify the processes

that must be guaranteed processor availability. PRIOPS is not unique in applying preemptive scheduling

priorities to a collection of time-constrained tasks. It is unique, however, in applying preemptive

priorities to Rete matching steps.

3.4 Controlled partition activities_ ___________________________
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The CP performs the higher order tasks typical of artificial intelligence architectures. Like controlled

processing in humans, the activities of this partition are complex and adaptable, dealing with unexpected

or uncertain conditions. Search-based, goal and data driven inference can drive CP activities. Problem

solving, planning, and learning occur in the controlled domain. Because controlled processing deals with

the unknown, and because it requires use of memory and other resources to dynamically varying

degrees, we cannot determine a priori constant time and space bounds for control processes. All long-

term information storage resides in the CP.

In a planning or learning system, the CP will generate some of the automatic code. Planning can

design rough automatic reactions that are refined through practice. This paper gives one example of a

means for generating automatic reactions from the results of controlled search activity.

4. THE MAZE DEMONSTRATION PROGRAM_ ________________________________________

In the spirit of Pavlov, we shall observe the behavior of a PRIOPS program in a simulated maze.

Figure 2 shows an example maze as displayed on a PC monitor. Walls are shaded and tunnels are

unshaded; the EXIT appears near the upper right corner. Within the maze we shall place two mobile

entities: the PRIOPS PROGRAM and the HUMAN (letters P and H in Figure 2 denote the respective

starting positions of these two entities). The PROGRAM a priori wants to locate and reach the EXIT.

The HUMAN, under keyboard control, is dangerous to the PROGRAM. It will destroy the PROGRAM

upon contact. So the PROGRAM instinctively avoids the HUMAN.

<INSERT FIGURE 2 (screen shot of a maze) ABOUT HERE.>

Though a toy problem, the maze is rich enough to demonstrate several key ideas of PRIOPS

• Sensor monitoring, here responding to obstacles in the maze.

• Controlled behaviors, notably searching for the EXIT.
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• Automatic behaviors, such as fleeing from the HUMAN.

• Garbage collection, at the automatic-controlled interface.

• Learning, here of a successful path to the EXIT.

• Improved behavior, once learning becomes automatic.

The maze, the keyboard-to-maze interface, and the simulated sensors are implemented in C. The

PROGRAM itself is a set of PRIOPS productions. The PROGRAM receives sensory input upon

beginning execution, upon movement of the PROGRAM, and upon movement of the HUMAN when

this movement reaches the PROGRAM’s sensors. This input comes from maze C functions. A sensors

record reports the identity and distance of the nearest obstacle to the left, right, up and down. Potential

obstacles include a WALL, the HUMAN opponent, and the sought-after EXIT.

4.1 An overview of maze processing_ ______________________________

Figure 3 shows data flow for the PROGRAM during maze traversal. All automatic operations

trigger on immediate sensory information. These productions act during an emergency to move the

PROGRAM within constant-bound time, preempting lower-priority tasks. Automatic maze productions

come in three varieties:

1) EXIT detectors. Excited when a sensor detects the EXIT, they preempt all other productions

and lunge out of the maze.

2) HUMAN detectors. Triggered when a sensor detects the HUMAN, they flee. The

PROGRAM prefers to escape at right-angles to the HUMAN when possible.

3) Learned productions that direct the PROGRAM down the path of escape.

<INSERT FIGURE 3 ABOUT HERE.>

Controlled productions maintain memory of visited maze locations. PRIOPS does not use controlled

priorities (0 to -128) for preemption, so in the absence of automatic activity, all controlled matching
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completes before controlled conflict resolution selects a controlled production instantiation to fire.

Controlled maze productions come in five flavors:

1) Initialization: setting up the maze and PROGRAM for execution.

2) Heuristic search: selecting the next move in search of the EXIT.

3) Record-keeping: accumulating declarative knowledge about the maze in working memory.

4) Garbage collection. Garbage can include outdated and redundant information in CP buffers.

5) Learning.

The overall flow of the maze program as seen in Figure 3 typifies the flow and interaction of

automatic and controlled processing in PRIOPS. During the search phase of the problem, controlled

productions guide the search and collect declarative information. Initial hand-coded automatic

productions deal with time-critical situations by changing the immediate relationship of the embedded

system to other entities in the environment. Garbage collection at the controlled-automatic interface

performs resource reclamation without slowing automatic reactions. Learning takes the results of

controlled search and builds them into reactive automatic productions. The following subsections will

examine productions from each part of Figure 3, from sensory readings and memory, to search behaviors

in the CP, to instinctual behaviors in the AP, to garbage collection at the controlled-automatic interface,

to learning in the CP, and finally to resulting learned behaviors in the AP. The final subsection discusses

execution results for the maze of Figure 2.

4.2 Sensa, memory, and search in the controlled partition_ ______________________________________________

At the top of Listing 1 are three declarations for working memory element classes. Structures are

similar to literals in OPS5. Unlike OPS5, though, PRIOPS is strongly typed. Fields of working

memory elements may be of type int, float, symbol, or a set of symbols. Strong typing avoids run-time

type testing and conversions, which is particularly important for automatic productions. A symbol is

similar to a LISP symbol, and is loosely comparable to a string type in other languages. Each distinct

symbol is stored uniquely and referenced via a unique pointer. Symbol comparisons, like integer and
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floating point comparisons, occur using basic machine operations. Consequently symbol tests are O(1)

operations and do not depend upon symbol lengths. The CP alone acquires new symbols, but both

partitions can use them.

<INSERT LISTING 1 ABOUT HERE.>

The current sensors element registers objects in the maze (WALL, HUMAN or EXIT) and their

location relative to the PROGRAM. Each visited element records how often the PROGRAM has visited

its location. Maze search rules and learning rules examine visited memory. Finally, inspect elements

direct the immediate search from the PROGRAM’s current location.

The rest of Listing 1 shows two controlled productions that help determine the PROGRAM’s next

move. They use both immediate sensory information (giving the current location of the PROGRAM) and

accumulated memories. They trigger additional productions (not shown), implementing a heuristic

strategy. First the PROGRAM rules out such undesirable moves as bumping into WALLS, heading

down known dead ends, or reversing its walk. Then it prefers less visited locations and more distant

walls. Finally it makes an arbitrary pick from remaining possible moves. Priority values in the controlled

range order these heuristics sequentially.

Production newly-arrived initializes a visited record. Its left-hand-side determines that there is no

visited for the current location of the sensors, so its right-hand-side action creates a visited record with a

visits count of zero.

Production look-out triggers when a new sensors element is made at some visited location. Each line

of tests on the left-hand-side of look-out is called a condition element. PRIOPS compiles condition

elements for use by the Rete pattern matcher. When the matcher finds a visited element for the current

sensors location, and finds that there are no inspect records (the third condition element is negated,

signifying a successful match only in the absence of any memory elements matching this condition
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element), the matcher adds an executable instance of this production to the conflict set. (Existing inspect

records would be left over from search preceding the most recent move; look-out must not trigger until

garbage collection productions remove these inspect directives, hence the negated condition element.)

Explicit priority and other criteria such as recency and specificity of matched memory elements identify

a triggered production to execute. (Readers should consult Cooper and Wogrin(2) for more information

on the OPS-based production inference cycle and conflict resolution strategies.) The right-hand-side of

look-out first makes a sequence element (declaration not shown) to serialize the upcoming search. The

next two actions compute and store an incremented visits count. The bind operations compute locations

for the four adjoining spaces, and the make operations assert inspect elements. These elements direct

upcoming search productions to inspect the adjoining spaces. The sequence element advances from value

eliminate-impossible of Figure 1 through values eliminate-deadends, eliminate-loops, eliminate-visited,

eliminate-old, prefer-long, and ready-move, firing productions that eliminate inspect proposals as it goes.

Sequencing productions modify the sequence element as it completes its work at each stage. When only

equally preferable inspect directives remain, an arbitrary one triggers controlled movement. After

movement, controlled garbage collection productions remove the outdated sequence and remaining

inspect records. The cycle beginning at newly-arrived and look-out of Figure 1 then runs again.

The majority of production processing time is spent matching memory elements to left-hand-side

tests. Condition element tests come in two varieties. The first, intra-condition element tests, perform

simple comparisons of memory element fields to constant values, and simple comparisons of element

fields to other fields within the same working memory element. O(1) tests include equality, inequality,

and basic numerical order comparisons. Controlled productions can use additional, O(n) tests such as

variable-length string order comparisons. With all of the former tests being constant-time bounded, and

with a compile-time constant specification of the number of tested fields (the program source), all

automatic intra-condition element test sequences are constant-time bounded. Please consult our earlier

papers for illustrations of the details of this matching process.(16,17)
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However, the tests of newly-arrived and look-out contain no intra-condition element tests. Instead,

they are inter-condition element tests, representing joins of two or more working memory elements. Rete

performs the intra-condition element tests for a working memory element before attempting to join it to

other elements matched by other condition elements. In the case of look-out, no intra-condition

constraints appear for sensors, visited, or inspect elements. The result is that the matcher will perform

the join tests, comparing the ˆx and ˆy locations fields, for each possible sensors-visited pair. In this

program there is normally only one sensors element, but as a sensors element is made or updated, the

join tests of look-out (and all controlled productions that join sensors and visited elements) are applied

between the sensors element and all visited elements in working memory. After some maze exploration

there will be many visited elements subject to these tests. The absence of any compile-time limit to the

number of memory elements tested by a join through the abutment of two condition elements, is the

fundamental source of time indeterminacy in Rete matching.(8)

4.3 Reactive movement in the automatic partition_ ________________________________________

Automatic partition matching trades expressive power for run-time efficiency and reduced

computational complexity.(14) By compiler fiat, at most one working memory element can match an

automatic condition element. Each successfully matched working memory element discards any prior

match. In Rete terms, each condition element in an automatic production contributes at most one

memory element to a join. Such a join reduces to a constant-length sequence of simple O(1) tests.

Prohibiting memory growth eliminates the time indeterminacy of variable-sized joins.

Listing 2 shows three automatic productions from the maze program. The first, panic-left-up, detects

a human to the left. It also determines there is an avenue up from its current location that is further from

a wall than the competing down avenue. Once fired, panic-left-up, removes the sensors element so that

no other production can react to it. It then makes a move element for upward movement, which in turn

triggers the second production shown, automove.
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<INSERT LISTING 2 ABOUT HERE.>

With only one condition element, panic-left-right matching consumes no join time. All tests are

intra-element tests. Note that the tests of this production are extremely specialized. Most automatic

productions have specialized intra-element tests because these tests must safeguard desired matches from

being overwritten. Remember that a new match eliminates any previous match to a condition element.

By the time matching gets to inter-element join tests, the contributing memory elements are unique. The

intra-element tests select each condition element’s unique memory element for join matching.

Leading intra-element test sequences common to more than one condition element execute only once

for a single working memory element. Only when intra-condition element test sequences diverge are

distinct match tests compiled. The result is that automatic intra-condition element tests are compiled into

a decision tree, with a single place register at each leaf storing a reference to the matching working

memory element. For instance, panic-left-up and the third production of Listing 2, panic-left-right, share

the initial test sensors ˆleft-sense human. When the HUMAN appears to the PROGRAM’s left sensors,

this test executes only once, with the two productions’ testing diverging after that point. Both

productions may trigger, but when the first to execute removes the sensors element, the alternative

production will no longer trigger.

Production automove joins two working memory elements. There are no inter-condition element

restrictions, so the most recent move request with an urgency > 0 combines with the most recent

lastmove record to trigger the automatic move. Automove removes the move element, updates lastmove,

and calls the C language move driver. A controlled production with this left-hand-side could match

multiple move request / lastmove record joins. Since automove is an automatic production, it can only

match the most recent elements satisfying its tests. It responds to the immediate sensory and control

information in constant time.

4.4 Garbage collection at the controlled-automatic interface_ ________________________________________________
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Controlled productions that search and learn can generate redundant and outdated working memory

elements that constitute garbage. Also, automatic productions can generate sensory and movement

messages that are buffered in the CP. Outdated messages in these buffers constitute garbage as well.

The classical approach to garbage collection in LISP systems is to bring the system to a halt when

storage capacity is exhausted, and recover all reclaimable memory during this halt interval.(6) Clearly

such an approach is not suited to a reactive, time-constrained system. Incremental garbage collectors

(sometimes called real-time collectors) avoid halting for storage reclamation by distributing reclamation

activities in small, constant-time bound pieces across all calls for storage allocation.(6,15,23) The problem

with such systems is that they exact a small penalty from all processes, both those with and those

without O(1) execution requirements, for storage reclamation activities.

PRIOPS performs garbage collection by using mechanisms built into controlled matching and by

using explicit controlled reclamation productions at the controlled-automatic interface - priority 0

productions. The PRIOPS reclamation strategy avoids penalizing automatic processing. A ready list of

initialized working memory elements is available for automatic productions that send messages into

controlled buffers. During automatic execution productions remove initialized elements from the ready

list and add message elements to controlled buffers in O(1) time. When automatic execution completes,

the controlled matcher replenishes this ready list to prepare for the next burst of automatic activity The

explicit garbage collection productions recover buffered memory elements that, through testing of

contents and time stamps, are found to be redundant or outdated. Replenishing the ready list places an

average real-time requirement on controlled storage management, since the ready list must contain

sufficient elements to satisfy the most demanding burst of automatic activity. The size of the ready list

is coded directly into the PRIOPS program. Dynamic adjustment of ready list size is an area for future

work.

Listing 3 shows an explicit garbage collection production. Collect-old-move recovers an older move

element after a newer one is posted. Remember that an automatic production such as automove from
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Listing 2 will trigger only on the most recently matched move element, so this garbage collection is

necessary only for the CP. Standard OPS5 and controlled PRIOPS conflict resolution strategy results in

an execution for collect-old-move that binds the most recent move element to the first condition element,

and the older move element to the <older> second condition element, which collect-old-move removes

from working memory. This collection occurs after all automatic use of working memory elements,

including the most recent move, is done.

<INSERT LISTING 3 ABOUT HERE.>

4.5 Learning and learned productions_ ______________________________

Learning rules build automatic productions for escape in subsequent traversals of the current maze.

Learning rules execute only upon PROGRAM exit from the maze. They examine visited records in

working memory and write production definitions to a file for later compilation. Their priority allows

garbage collection productions to work before commencing learning.

The maze program learns an escape route by using a primitive form of production chunking.

Chunking uses knowledge acquired during a problem solving episode to build specialized productions

that embody that knowledge, thereby avoiding comparable searches in the future. In the SOAR

production system, chunking is an inherent component of the architecture.(12) SOAR uses both domain

knowledge and generic weak search methods to search problem spaces, and automatically builds chunk

productions that avoid repeated searches.(11,13) The PRIOPS maze program uses maze-specific

productions to build its chunks.

Learned productions trigger on the present location of the PROGRAM. Only when the HUMAN

blocks the escape route will these productions fail to trigger in a learned maze. At other times they

preempt all other matching and actions in the production system. These productions are of course not

present for a novel maze.
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Listing 4 shows learning production learn-pass-up, followed by the learned escape production auto-

24-1-up.

<INSERT LISTING 4 ABOUT HERE.>

Maze learning proceeds after a successful escape by performing a depth-first search from the EXIT

along paths traversed by the PROGRAM. A learn memory element directs the search similarly to the

inspect elements for initial maze exploration from Listing 1. The left-hand-side of learn-pass-up joins a

learn and visited record to build a link from the visited element’s location to a location already

examined in the learning search. For this production, the original escape route included an up move

from the visited location to an adjoining location. Join tests match the ˆx and ˆy fields of the joined

memory elements. The ˆvisits < 10000 test prunes locations that are part of dead-end paths. Dead-end

detection code marks visited records with a ˆvisits value of 10000 during the original maze search.

The write actions on the right-hand-side of learn-pass-up generate production text such as that of

auto-24-1-up in Listing 4. Learn-pass-up builds the location into this learned automatic production,

making it extremely specific. At priority 127, its matching preempts all other matching and, when

matching succeeds, any other queued processing remains queued while the right-hand-side of auto-24-1-

up executes. When auto-24-1-up moves the PROGRAM to an adjacent location that triggers another

priority 127 learned production, all lower priority processing continues to wait. Auto-24-1-up shares its

initial ˆup-sense test with all other auto-X-Y-up learned productions. In addition, this production shares

the ˆup-sense <> human ˆx 24 test sequence with all other auto-24-Y-up productions. Recent work on

chunking in SOAR has concentrated on trading generality for matching speed by generating efficient

unique-attribute chunks instead of generalized multi-attribute chunks that create large join cross-

products.(22) PRIOPS automatic productions take this approach to an extreme, trading generality for both

speed and speed predictability by compiling O(1) unique-event chunks. The next section demonstrates
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performance gains achieved by learning automatic reactions.

4.6 Maze statistics_ _______________

We ran the PRIOPS maze program on an AT&T PC-6300, which contains an 8 MHz. 8086

processor and an 8087 math coprocessor. PRIOPS was compiled using Microsoft® C 5.1 with the "/Oti

/Gs /AL /FPi" compile switches for optimization, memory management, and floating-point library

selection; the maze application itself uses no floating point processing. The current PRIOPS compiler

generates intermediate code for both Rete matching and right-hand-side execution. A planned

modification to PRIOPS will support generation of C source code for compilation to native run-time

code. PRIOPS comprises about 12,000 lines of C code.

An additional 800 lines of C code support the maze environment, and the maze’s PROGRAM itself

is coded in 940 lines of PRIOPS productions. Referring to Figure 3, there are 2 initialization, 9 garbage

collection, 2 declarative memory maintenance, 31 controlled maze search, 1 controlled move, and 14

learning productions. There are 24 HUMAN avoidance, 5 EXIT approach, and 1 automatic move

productions. Learning acquires 116 automatic productions of the type in Listing 4 for the maze of Figure

2.

With no interference from the HUMAN, the PROGRAM takes 909 seconds and 566 moves (1.6

seconds/move) to discover a 104 step path to the EXIT for the maze of Figure 2. Post-exit learning uses

an additional 172 seconds.

Learning automatic behavior improves performance dramatically. Automatic escape productions

reach the EXIT in 34 seconds and 104 moves (.33 seconds/move). Then the PROGRAM sits at the

EXIT for 21 seconds running matching for deferred production tests. Listings 1 and 4 help illustrate the

source of this delay. Note that the two controlled productions of Listing 1 (and many other controlled

productions as well) trigger on sensors elements. Now examine auto-24-1-up in Listing 4; it, too,

matches sensors elements. During learned-production escape from the maze, priority 127 matching of

productions such as auto-24-1-up defers any controlled matching required for sensors elements. Only
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when the PROGRAM reaches the EXIT, and no automatic productions are firing preemptively, can

deferred controlled matching execute. This deferred matching for productions such as newly-arrived

causes the 21 second delay. Optimal coding of controlled productions would eliminate this delay, but the

point here is to illustrate the effect of priority-based matching deferral in PRIOPS.

If we change the priority of learned productions like auto-24-1-up to 0, thereby placing them into the

CP, the escape statistics change. Now learned escape, acting in the CP, takes 64 seconds and 104 moves

(.62 seconds per move), and 2 seconds for termination. There is no deferred matching, since all

controlled matching completes before CP conflict resolution. It is also noteworthy that the total time for

automatic escape is 11 seconds less than the total time for controlled escape. How does automatic

matching achieve this speedup? By combining assertions and retractions of working memory elements

where possible. Since automatic matching allows only one memory element-to-condition element match

per distinct condition element, only the most recent memory element assertion or retraction is queued at

each automatic matching step. Suppose memory element A has matched condition element X. Then a

more recently asserted memory element B also matches X. The match scheduling algorithm will abort

the match of A in joins of X. Condition element X can only match the single most recently asserted

memory element that satisfies its tests, in this example element B. Only B participates in subsequent

joins. The AP insistence on bounded resources forces it to reuse memory, thus avoiding some search as

well as garbage collection. Controlled matching cannot use this enhancement, since multiple memory

elements may match a single condition element at a given time. Therefore the PRIOPS AP provides not

only O(1) matching with preemptive priorities, but also provides opportunities for additional speed

enhancements beyond the capabilities of standard Rete.

5. CONCLUSIONS_ ________________

Although we have tested PRIOPS using only simple experimental problems to date, we feel

confident that it will scale to meet the needs of genuine knowledge-based embedded applications. The
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synthesis of O(1) preemptive match processing and the production system notation provides the ability

to specify important environmental conditions and timely reactions at a more appropriate level of

abstraction for knowledge-based problems than is provided by traditional embedded software techniques.

The fact that humans use a comparable two-tiered approach to timely interaction with physical

environments indicates that the PRIOPS fundamental approach is correct. Research in learning, both in

human automatic process acquisition and production system learning mechanisms such as chunking,

offers promise of methods for machine construction of appropriate automatic productions.

Future work on PRIOPS will include research on dynamic learning. The maze learning discussed

here relies on hand coding of application-specific, ad hoc learning productions. Human automatic

behavior acquisition relies almost entirely on practice. Learning should involve incremental refinement

of controlled processing into automatic productions. Other planned work includes construction of tools

for analysis of automatic partition data flow and more complete examination of activities belonging to

the controlled-automatic interface.
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-- --

(structure sensors ; 4 pseudo-sendors of program
symbol left-sense ; object-to-left: WALL or HUMAN or EXIT
int left-distance
symbol right-sense int right-distance
symbol up-sense int up-distance
symbol down-sense int down-distance
int x int y ; current PROGRAM x,y location

)

(structure visited ; remembered history of a location
int x int y ; location
int visits ; number of visits to here

)

(structure inspect ; possible single move destination
int x int y ; location of proposed move
symbol direction ; direction from current sensor

)

(p newly-arrived -60
(sensors ˆx <myx> ˆy <myy>)
- (visited ˆx <myx> ˆy <myy>)
->
(make visited ˆx <myx> ˆy <myy> ˆvisits 0)

)

(p look-out -60
(sensors ˆx <myx> ˆy <myy>)
{(visited ˆx <myx> ˆy <myy> ˆvisits <seen>) <books>}
- (inspect)
->
(make sequence ˆcurrent eliminate-impossible) ; 1st step of search
(bind <newseen> (compute <seen> + 1))
(modify <books> ˆvisits <newseen>) ; update memory of loc. myx,myy
(bind <left> (compute <myx> - 1))
(bind <right> (compute <myx> + 1))
(bind <up> (compute <myy> - 1))
(bind <down> (compute <myy> + 1))
(make inspect ˆx <left> ˆy <myy> ˆdirection left) ; init. the search
(make inspect ˆx <myx> ˆy <up> ˆdirection up)
(make inspect ˆx <right> ˆy <myy> ˆdirection right)
(make inspect ˆx <myx> ˆy <down> ˆdirection down)

)

Listing 1 - Declarations and controlled productions for a new maze location



-- --



-- --

(p panic-left-up 125 ; prefer right angle turns from human
{(sensors ˆleft-sense human

ˆup-distance {<escape> > 1} ˆdown-distance <= <escape>)
<sense>}

->
(remove <sense>)
(make move ˆdirection up ˆurgency 125)

)

(p automove 127
{(move ˆurgency > 0 ˆdirection {<way> <> nil}) <moving>}
{(lastmove) <former>}
->
(modify <moving> ˆdirection nil ˆurgency 0)
(modify <former> ˆdirection <way>)
; each "call move" generates a new "sensors" element
(call move <way>)

)

(p panic-left-right 124
{(sensors ˆleft-sense human ˆright-distance > 1) <sense>}
->
(remove <sense>)
(make move ˆdirection right ˆurgency 125)

)

Listing 2 - Two automatic productions for emergency reactions



-- --

(p collect-old-move 0 ; 2 moves shown, 1 outdated
(move ˆdirection <way>)
{(move ˆdirection <> <way>) <older>}
->
(remove <older>)

)

Listing 3 - A priority 0, controlled garbage collection production



-- --

(p learn-pass-up -2 ; translate declarative memory into auto production
{(learn ˆstatus learning ˆdirection up

ˆfromx <endx> ˆfromy <endy>) <passed>}
{(visited ˆvisits < 10000 ˆx <endx> ˆy <endy>) <memory>}
; spot was visited
->
; first write the learned production
(write learnfile "(p auto-" <endx> "-" <endy> "-up 127\n")
(write learnfile "{(sensors ˆup-sense <> human ˆx "

<endx> " ˆy " <endy> ") <sensing>}\n")
(write learnfile "{(lastmove) <oldmove>}\n")
(write learnfile "->\n")
(write learnfile "(remove <sensing>)\n")
(write learnfile "(modify <oldmove> ˆdirection up)\n")
(write learnfile "(call move up)\n)\n\n")
; learned production written, now make this the new dest.
(remove <memory>) ; not needed any longer
(modify <passed> ˆstatus done)
(bind <up> (compute <endy> - 1))
(bind <down> (compute <endy> + 1))
(bind <left> (compute <endx> - 1))
(bind <right> (compute <endx> + 1))
(make learn ˆstatus learning ˆfromx <endx> ˆfromy <up>

ˆdirection down)
(make learn ˆstatus learning ˆfromx <endx> ˆfromy <down>

ˆdirection up)
(make learn ˆstatus learning ˆfromx <left> ˆfromy <endy>

ˆdirection right)
(make learn ˆstatus learning ˆfromx <right> ˆfromy <endy>

ˆdirection left)
)

(p auto-24-1-up 127
{(sensors ˆup-sense <> human ˆx 24 ˆy 1) <sensing>}
{(lastmove) <oldmove>}
->
(remove <sensing>)
(modify <oldmove> ˆdirection up)
(call move up)

)

Listing 4 - Maze escape learning and a learned escape automatic production
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