
-- --

A Real-time Computational Substrate for Embedded Intelligent Systems

by

Dale Edward Parson

A Dissertation Presented to the Graduate Committee

of Lehigh University in Candidacy for the Degree of

Doctor of Philosophy in Computer Science

Lehigh University

1990

-- --

This thesis is accepted and approved in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

_ ___

Dr. Glenn Blank Date
Committee Chairperson and Advisor
Department of Computer Science and Electrical Engineering

_ ___

Dr. Robert Barnes Date
Committee Member
Department of Computer Science and Electrical Engineering

_ ___

Dr. Susan Barrett Date
Committee Member
Department of Psychology

_ ___

Professor Samuel Gulden Date
Committee Member
Department of Computer Science and Electrical Engineering

ii

-- --

ACKNOWLEDGMENTS

Let me begin by thanking my wife, Linda, and our daughter and son, Sierra

and Jeremy, for their patience in letting me work on this research at times when I

might have been interacting with them. I believe that setting an example is one of

the most powerful methods of instruction that an adult can use with children, and I

feel certain that the diligence with which I have attacked this doctoral work has not

been lost on our kids.

My thanks to Dr. Glenn Blank, advisor, for encouraging this work and for

providing sound suggestions and criticisms. Dr. Blank contributed important help

in getting the results of this work into the world of AI research publication. I thank

the committee members, Professors Robert Barnes, Susan Barrett, and Samuel

Gulden, for directing me to useful information sources and giving other good

advice. I also want to thank two unofficial committee members. Dr. Herbert

Rubenstein, now retired from Lehigh, convincingly urged me to go on for my

Ph.D. when I took his Human Information Processing course in 1984 as part of my

master’s program. He gave me early advice when I started back to Lehigh. And

Dr. Leon Levy of AT&T Bell Laboratories gave me excellent editorial feedback

and valuable assistance in pursuing publication.

Finally, I thank AT&T, whose Tuition Assistance Program paid my way

through half of my undergraduate program and all of my graduate work. Besides

iii

-- --

providing monetary support, the company has given me time to work during

critical periods in my doctoral program.

iv

-- --

CONTENTS

Abstract 1

1 Introduction 3

1.1 Introduction to Reactive, Embedded Intelligence 3

1.2 Definitions for Real-time, Embedded Computing 7

2 Controlled and Automatic Human Information Processing 10

2.1 Attention and Memory 12

2.2 Priorities and Interruption 14

2.3 Practice and Learning 15

2.4 The Controlled-Automatic Interface in Skilled Performance 17

2.5 Computer-based Modelling of Controlled and Automatic Processing 20

3 The Controlled-Automatic PRIOPS Architecture 27

3.1 The Automatic Partition 27

3.2 The Controlled Partition 35

4 A Prioritized Production System 37

4.1 An Application of Controlled-Automatic Processing 39

4.2 PRIOPS Preliminaries 39

4.3 PRIOPS Controlled Productions 43

4.4 PRIOPS Automatic Productions 53

5 The Maze Demonstration Program 66

5.1 An Overview of Maze Processing 68

5.2 Sensa, Memory and Search in the Controlled Partition 71

v

-- --

5.3 Reactive Movement in the Automatic Partition 75

5.4 Garbage Collection at the Controlled-Automatic Interface 77

5.5 Learning and Learned Productions 79

5.6 Maze statistics 83

6 PRIOPS Internals 87

6.1 Working Memory 90

6.2 Matching Priority Queues 94

6.3 Conflict Set Priority Queues 98

6.4 The Rete Network 100

6.5 The Pre-join Test Node 105

6.6 Controlled Memory Node Types 114

6.7 The Controlled Join Node 124

6.8 The Controlled Not Node 130

6.9 The Controlled Instance Node 133

6.10 Automatic Register Node Types 135

6.11 The Automatic Join Node 144

6.12 The Automatic Not Node 146

6.13 The Automatic Instance Node 148

6.14 Ready Lists and Garbage Collection 150

6.15 Inference Drivers 152

6.16 The Compiler and Generated Code 159

7 Related Work and Future Directions 161

7.1 Related Work 161

7.2 Enhancements to Current PRIOPS 168

7.3 Future Research Directions 170

vi

-- --

7.4 Conclusions 174

Annotated Bibliography 176

Appendix A: PRIOPS Syntax and Semantics 242

Appendix B: PRIOPS Source File Organization 264

Vita 267

vii

-- --

FIGURES

1 The CAP1 system level structure 24

2 The two-tiered PRIOPS Architecture 28

3 Three varieties of constant-time-constrained processing 34

4 A temperature sensor driven example 40

5 Controlled partition Rete net 51

6 Automatic partition Rete net 59

7 The maze 67

8 PROGRAM data flow during maze traversal 70

9 Automatic Rete logical view 103

10 Automatic node linkage 104

11 Standard and balanced Rete nets 116

12 Working memory element self-joins 128

viii

-- --

EXAMPLE LISTINGS

1 Working memory type declarations in PRIOPS 42

2 Controlled partition productions 45

3 Automatic partition productions 55

4 Macro expansion of react-to-overtemp 56

5 Declarations for PROGRAM sensors and a maze location 71

6 Controlled productions for a new maze location 73

7 Three automatic productions for emergency reactions 76

8 A priority 0, controlled garbage collection production 79

9 Maze escape learning and a learned escape automatic production 81

10 Two productions with shared tests 102

ix

-- --

A Real-time Computational Substrate for Embedded Intelligent Systems

ABSTRACT

The Prioritized Production System - PRIOPS - is an architecture that supports

time-constrained, knowledge-based embedded system programming and learning.

Inspired by cognitive psychology’s theory of automatic and controlled human

information processing, PRIOPS supports a two-tiered processing approach. The

automatic partition provides for compilation of productions into constant-time-

constrained processes for reaction to environmental conditions. The notion of a

habit in humans approximates the concept of automatic processing, trading

flexibility and generality for efficiency and predictability in dealing with expected

environmental situations. Explicit priorities allow critical automatic activities to

preempt and defer execution of lower priority processing. An augmented version of

the Rete match algorithm implements O(1), priority-scheduled automatic matching.

PRIOPS’ controlled partition supports more complex, less predictable activities

such as problem solving, planning and learning that apply in novel situations for

which automatic reactions do not exist. The PRIOPS notation allows the

programmer of knowledge-based embedded systems to work at a more appropriate

level of abstraction than is provided by conventional embedded systems

programming techniques. This thesis presents requirements, psychological

- 1 -

-- --

inspiration, architectural basis, implementation, and application of PRIOPS. A

major contribution is the design of time-constrained, priority-driven match

scheduling for the augmented Rete algorithm.

- 2 -

-- --

1. INTRODUCTION

1.1 Introduction to Reactive, Embedded Intelligence

Human intelligence acts within the context of sensorimotor interaction with a

physical environment. While a person may process considerable information that is

independent of the immediate situation - including planning for the next day,

planning for upcoming years, worrying about problems, and fantasizing about

prospective achievements - the world does not pause and allow this processing to

proceed uninterrupted. The oncoming car preempts the driver’s daydream. The

crying baby interrupts the parent’s reading. The human must respond to

environmental conditions, often in predictably constrained time. When ongoing

thoughts and emotions compete with urgent physical demands for attention and

response, the urgent demands win. Fortunately for our concentration, many time-

constrained interactions with the physical world are not preemptive; while response

may be important or even critical, the nature of the response is straightforward and

stereotyped. Experience with the environment - practice - builds a repertoire of

habits. Though an individual habit is inflexible and restricted in its range of

applicability, a coordinated collection of habits insulates the higher order cognitive

system from many of the demands on processing made by the interacting world.

Habitual activity is a form of processing, one which differs both qualitatively and

quantitatively from more complex cognitive activities such as problem solving,

- 3 -

-- --

planning and learning. It is simple, efficient, and occurs in multitudinous instances.

Traditional artificial intelligence processing architectures are predominately

complex organizations designed to address the needs of multifaceted cognitive

activities. Many AI researchers have considered questions of computational

complexity and run-time responsiveness to be secondary issues in the higher-order

quest for powerful, general-purpose mechanisms. Using sophisticated architectures

such as augmented transition nets for language recognition [96] and predicate

calculus for planning [97],* researchers have tackled tough problems in symbol

manipulation, but have largely ignored the basic problems of an intelligent physical

entity interacting with an often dangerous environment. During interactions with

the world, an intelligent physical system must not only decide what do to about a

condition in which it is situated, but then must act in time. Many of the problems

not only do not require elaborate architectures, they cannot be solved using them.

The architectures are too sluggish.

Levesque and Brachman have presented the tradeoff between expressiveness

and tractability as fundamental [57]. Pseudo-solutions to unbounded computational

problems, such as acquiring faster computing systems or prematurely terminating

search, do not address the problem of intractability. Moreover, in many artificial

_ ______________

* Even the programming substrate upon which many of these systems are built -
LISP - is noted for its generality, power, and execution-time inefficiency.

- 4 -

-- --

intelligence applications the expressiveness traded for tractability may be

unnecessary expressiveness. As a result of performance problems, there is an

increasing effort to improve tractability in AI systems. Recent work on natural

language processing [11] and planning [47,56] has focused on reducing

computational complexity and improving performance predictability while

providing adequate functionality. Research into knowledge representation has

sought to transform complex descriptions into simple atomic predicates (a

relational database) for fast query performance [23]. Environmental conditions

trigger lookup of simple reactive functions in the Pengi system [2,19]. In many

cases human performance of time-constrained tasks provides hints and suggestions

for realistic computing architectures. Potential applications of real-time inference

mechanisms to embedded computing problems abound [48].

This thesis presents a two-tiered architecture for performing constant-time-

constrained inference in embedded systems: the Prioritized Production System

(PRIOPS) [72,73,74]. The architecture is inspired by an existing model of human

activity, that of controlled and automatic human information processing. Controlled

processing is complex, flexible, and usually time-consuming behavior analogous to

the types of machine processing normally proposed by artificial intelligence

architectures. In contrast, the notion of a habit approximates the concept of

automatic processing; it trades flexibility and generality for efficiency and

predictability in dealing with expected environmental situations. The PRIOPS

- 5 -

-- --

system uses its automatic partition of productions to handle time-restricted,

stereotyped interactions with an external environment, reserving use of costly

declarative memory and search-based strategies for the more versatile (and slower)

controlled partition. I propose that PRIOPS is a viable software architecture for

implementing reactive knowledge-based systems. It is not primarily a tool for

cognitive modelling, but a tool for writing software systems.*

The next section defines some terminology for use in this thesis. Chapter 2

examines the underlying psychological theory of human controlled-automatic

processing. Chapter 3 introduces the two-tiered PRIOPS computing architecture.

Chapter 4 expands this introduction, presenting PRIOPS notation and augmented

Rete pattern matching by way of a simple example. Chapter 5 continues in this

vein, using code excerpts and execution statistics from a 940 line PRIOPS

demonstration program to show application of PRIOPS constructs.

Chapter 6 is the most technical of the thesis, examining PRIOPS matching

algorithms in detail. The chapter is important for rigor in specifying exactly how

PRIOPS’ implementation accomplishes its goals. There is enough information in

Chapter 6 to guide writing of PRIOPS Rete matching operations. Non-

programming readers may wish to skip all but the introductory section of this

_ ______________

* I will discuss several existing software approaches to cognitive modelling of
controlled and automatic processing.

- 6 -

-- --

chapter.

Chapter 7 summarizes the work, discusses related research, and points the way

to future work with PRIOPS. Following Chapter 7 is an annotated bibliography.

Last come two appendices that document the current PRIOPS program.

1.2 Definitions for Real-time, Embedded Computing

Embedded computing systems do more than consume and produce symbolic

text and graphics for direct human interaction. These systems deal with physical

phenomena such as visual images, sound, motion, pressure and temperature.

Measurements enter the computing systems through transducers and sensors. These

systems use effectors and generators, such as robotic arms and lasers, to produce

changes in the sensed phenomena. While symbolic information may appear at the

input and output ports of these systems, it usually does so alongside more critical

signals and actions that constitute direct interactions with external environments.

A typical embedded computing system must react to important environmental

conditions in predictable time. The system must recognize an important external

situation in limited time, and then to respond in limited time. The higher priority

work of an embedded system - reading critical sensors, generating effector control

signals, sounding alarms - exhibits this stimulus-response organization. Lower

priority activities, such as accounting and routine report generation, execute in the

background during lulls in environmental interaction. These processes do not have

- 7 -

-- --

strict time requirements.

The expression embedded computing system identifies a computer that is part of

an encompassing piece of machinery or larger physical system. Popular definitions

of embedded system do not address questions of time or space locality, so for

precision I enumerate properties of an embedded system:

1) The processing system is embedded in a discrete, functioning

physical system.

2) The discrete, functioning system is embedded in an environment.

3) Sensors describe the environment to the processing system.

4) Effectors convey the processing system’s reactions to the

environment.

5) The intersection of the current environmental state and the current

processing state is non-empty.

6) Physical localization of the system is important. A restriction on

distribution of the embedded system in space and time, the body

concept, is characterized by the remaining constraints.

7) Intra-system communication speeds for multiple-processor

systems are of the same magnitude as processor speeds. The

presence of multiple processors does not necessitate internal

communication queuing delays.

- 8 -

-- --

8) A single system clock/time is accurate for all processors within

acceptable error. An embedded system does not require the notion of

relativistic, partially ordered time found in distributed systems [1].

9) The system’s physical boundary describes an abstract interface to

the environment. The interface is abstract because the sensors do not

(normally) exhaustively describe conditions at the boundary. Sensors

supply partial information.

Some definitions of real-time responsiveness are intuitive, while others are

formal. Wirth provides this definition [98, p. 577]:

"If we depart from this rule (execution time independence) and let
our programs’ validity depend on the execution speed of the utilized
processors, we enter the field commonly called ’real-time’
programming."

Application requirements determine the dependence on execution speed and

speed predictability. PRIOPS is designed to achieve constant-time-bound reactivity

to predictable environmental events and event combinations. Consequently, real-

time processing in PRIOPS is equivalent to constant-time-constrained or O(1)

processing. The production compiler can determine worst-case execution time for

real-time processes.

- 9 -

-- --

2. CONTROLLED AND AUTOMATIC HUMAN INFORMATION PROCESSING

The lack of an artificial intelligence programming approach for designing time-

constrained, reactive systems led me to look at the fundamental requirements of

these systems. I concentrated on studies of the most successful embedded

intelligent systems presently in operation: people. Humans operate in a wide

variety of environments. They can learn to respond to significant, and particularly

to dangerous environmental phenomena without engaging in excessive, time-

consuming mentation. Practice of consistent activities enhances performance.

Finally, humans can usually perform high-level, symbolic processing

simultaneously with habitual procedures. Literature search led me to the theory of

controlled and automatic human information processing.

Schneider and Shiffrin first proposed their theory of controlled and automatic

human information processing in 1977 [81,89]. Controlled processing is the

complex cognitive activity often modelled in artificial intelligence programs. It is

flexible, is capable of problem solving and learning, but is serial in nature and

inefficient when dealing with reactive problems. Automatic processing is the

formal name for habitual perceptual, cognitive, and motor activity. Schneider and

Shiffrin originally applied this two-level architectural theory to human performance

on practiced recognition and recall tasks. Later research dealt with practice and

skilled performance of sensorimotor tasks [84]. An overview and general definition

- 10 -

-- --

of automatism is found in Shiffrin and Dumais [90]. Schneider and Shiffrin

originally enumerated the following characteristics for controlled processing [89, p.

159-160]:

1) Control processes are limited-capacity processes requiring
attention.

2) The limitations of short-term memory cause the limitations of
controlled processing.

3) Humans adopt control processes quickly, without extensive
training, and modify them fairly easily.

4) Control processes show a rapid development of asymptotic
performance.

5) Control processes direct the flow of information between short-
term and long-term memory.

These characteristics are in direct contrast to those originally enumerated for

automatic processing [89, p. 160-161]:

1) The capacity limitations of short-term memory do not hinder
automatic processes. These processes do not require attention.

2) A person may initiate some automatic processes, but once
initiated all automatic processes run to completion.

3) Their speed and automaticity will usually keep their constituent
elements hidden from conscious perception.

4) These processes require considerable training to develop and are
most difficult to modify, once learned.

5) They do not directly cause learning in long-term memory,
although they can indirectly affect learning through forced allocation
of controlled processing.

- 11 -

-- --

Automaticity fulfills the requirements for reliable reactive processing among

humans. It is predictable, efficient, takes priority over controlled processing, and

does not consume short-term memory. These characteristics prove to be important

features of time and memory restricted, reactive computer processing as well.

Features 1 through 3 of automatic processing are reminiscent of interrupt

handlers in conventional computing systems. Interrupt handlers do not normally

require the attention of the processes they interrupt. Interrupt handling can be

largely transparent to higher level processing that is occurring. Alternatively,

because interrupt processing priorities are typically greater than other processing

priorities in a system, an interrupt handler has the capability of diverting or

preempting the higher level processing when the interrupting event calls for such

actions.

Features 1 and 2 of controlled processing, along with feature 1 of automatic

processing, relate to the use of attention and memory. The next two characteristics

of automatic processing have to do with priorities and interruption of competing

processes. The remaining features relate to practice and learning. I will treat these

topics in turn.

2.1 Attention and Memory

Controlled processing requires attention. In this theory, attention is a serially

reusable, limiting resource. Attention acts as a bottleneck. As a result, controlled

- 12 -

-- --

processing is serial. Automatic processing, on the other hand, does not require this

serial resource. Automatic processes are free to act in parallel, at least in cases

where they do not conflict or compete. Conflicts may arise over use of the

sensorimotor system. Two automatic processes that require a turn of the head and a

redirection of vision, but in opposite directions, obviously cannot successfully

operate concurrently. Non-competing automatic processes can operate in parallel,

while controlled processing is by nature competitively serial: only one, centralized

controlled system exists, and all controlled processing uses it.

Controlled processing also requires use of limited short-term memory;

automatic processing does not. Attention directs controlled processing, while

short-term memory records its state. Does this imply that automatic processing is

undirected and unrecorded? In fact, automatic processing is directed by the

contents of the sensory field in contact with accumulated experience. Accumulated

experience is long-term memory achieved through repetitive practice, so automatic

processing is a form of reactive long-term memory. Automatic processing is not

directed through the focusing of higher, problem solving attention, but through the

reliving of past experience in the present environment. Automatic processing does

not require explicit state recordings for its examination.

An example is in order. When you first learned to tie your shoes, you used

controlled processing. Attention directed the activities of the novel task, relying on

short-term memory to provide information about how to cross the shoestrings.

- 13 -

-- --

Short term memory also stored the intermediate states of the tying process, so you

knew what to do next at each stage. After many shoe tying episodes, however, you

committed the complete sequence to long-term memory. This was possible because

the complete sequence was invariant and therefore predictable. You did not need

to use attention to search for each step, because each intermediate step had been

memorized. You did not use short-term memory to record each intermediate state

as it occurred, because you knew all intermediate states well in advance. The

parallel activity of automatism is limited by the sensorimotor system. Since the

hands cannot tie shoes and turn pages at the same time, there is a sensorimotor

bottleneck. You can, however, look at, think about and remember something else

while tying your shoes. You may not remember stopping to tie your shoes at all.

Automatic processing handles the shoe tying, while controlled processing proceeds

independently.

2.2 Priorities and Interruption

Circumstances arise where automatic processing forcibly redirects controlled

processing’s attention. Indeed Shiffrin and Dumais define automatic processing as

including any activity that does not consume attentional capacity, or that always

consumes attentional capacity whenever a given set of external initiating stimuli

are present, regardless of the person’s attempt to ignore or bypass the distraction

[90]. The second, alternative characterization leads us to a notion of automatic

- 14 -

-- --

processing as prioritized interrupt handling. It is prioritized because it is given

greater priority than controlled processing in situations that must be attended. It is

capable when necessary of preempting and diverting the flow of controlled

processing. From the perspective of controlled processing, automatic processing is

seen as atomic. Once initiated all automatic processes run to completion, but their

speed and automaticity usually keep their constituent elements hidden from

conscious (controlled) perception [89, p. 160]. The idea of automatic processing as

complex interrupt handling capable of operation independent from controlled

processing, and capable of redirection of controlled processing in urgent situations,

is fundamental to the use of priorities to focus matching and reactive activities in

PRIOPS.

2.3 Practice and Learning

Habits are inflexible activities that require consistent practice to develop,

operate efficiently within the applicable situations, and are difficult to ignore or

abandon. In comparison, analytic thought is flexible, slow, and at times creative.

The degree to which a person can learn automatic responses is directly related to

the degree to which she can practice these responses in situ [83]. Consistency is

important for O(1) processing because it is a prerequisite to predictability. If a

processing system must react to an important environmental situation within

predictable time, then the environmental situation must itself be predictable. Only

- 15 -

-- --

then can a predictable response (and response time) be determined. Practice

collects information about predictability of environmental conditions. Variants

within these situations will not be automated; they will require the search focusing

and short-term state saving capabilities of controlled processing. Consequently any

complex situation will require a mix of controlled and automatic processing. Only

the latter, however, will be predictably responsive. The responsiveness of

controlled processing, because it deals with unpredictable and novel stimuli, will

be largely unpredictable. Some combinations of automatic and controlled

processing may be statistically predictable, especially when automatic processing

dominates.

With the emphasis on planning that exists in artificial intelligence, a question

arises: why should people acquire automatic processing exclusively through

practice? Practice collects information about the consistency of elements of

environmental situations. If reliable information about a situation is available

without practice, why should a planning process be unable to generate a reliable

plan for time-constrained reactive processing? I believe that the answer is, for any

realistically complex environmental situation, that short-term storage capacity is

insufficient to hold all of the information necessary for a priori planning of a

complete sequence of reactions. Practice makes modest, immediate demands on

short-term store. The environment itself acts as a reliable long-term store. Practice

searches this store a region at a time, and the importance of a region is determined

- 16 -

-- --

as it is examined. For demanding situations, practice can proceed in a watered-

down version of the eventual interactive environment. For example, when first

learning to drive an automobile, the novice driver practices on slow streets or back

roads with little traffic. These situations are less demanding than those that the

driver will eventually face, yet they help build prerequisite skills incrementally.

In contrast, exhaustive planning requires advance storage of all potentially

pertinent information, making much more severe demands on limited short term

memory. It may be that reactive computer systems can efficiently maintain a large

short-term store for planning of detailed, predictable responses. For humans,

however, planning generates first approximations that must be refined through

experience. Practice is more robust in that the reliability of its information is

known through contact with the environment. Planning must take larger portions

on faith, making its output less reliably predictable.

A final word about learning is that automatic processing does not perform any

[24]. This follows from the fact that automatic processing does not use short-term

store. If no temporary trace of automatic reactions is maintained, then no new

information can be saved as a result of the automatic interaction. The automatic

reactions are simply replays of old situation responses.

- 17 -

-- --

2.4 The Controlled-Automatic Interface in Skilled Performance

Application of the controlled-automatic theory to skilled activities more

complex than simple recognition and recall tests is important to PRIOPS, because

an embedded knowledge-based system may be required to perform skilled

activities. In discussing skilled performance, Schneider and Fisk concentrate on

interaction of the two types of processing [84]. They make three points, the first

relating to controlled enabling of groups of automatic productions [84, p. 135]:

"The first function of controlled processing is the maintenance of
strategy information in short-term store to enable sets of automatic
productions. Skilled performers exhibit a great deal of flexibility. A
performer can rapidly change strategies that substantially alter
performance ... The subject cannot change the productions quickly,
but can rapidly change the enabling conditions. For example, in a
tennis game, a player may switch from trying to tire an opponent to
forcing the opponent to the rear of the court. Such a strategy shift
would be presumed to change the contents of short-term store, and
thus enable or tune different classes of automatic productions. In the
same sense that external stimulus conditions, such as the speed of
the ball, should determine how the resulting production is executed,
internal conditions such as strategy nodes should also determine
which productions are executed."

Controlled processing thus allows automatic productions to use short-term

memory by providing enabling or gating triggers for automatic productions.*

_ ______________

* Note that at the time of this paper (1983) [84], Schneider and Fisk were using
the word production to label the form of controlled and automatic processing.
Schneider has since switched to a connectionist implementation model. I discuss
pre-PRIOPS computer-based models of the controlled-automatic theory in the
next section of this chapter.

- 18 -

-- --

Automatic processing takes much consistent practice to build, but when automatic

reactions are built in the presence of enabling triggers from controlled processing’s

short-term memory, these memory-based triggers become part of the stimulus

situation that activates the automatic reactions. Consequently controlled processing

can rapidly enable and disable sets of automatic productions, requiring short-term

memory to do so.

Schneider and Fisk also discuss a second way in which controlled processing

uses short-term memory to assist automatic tasks [84, p.137]:

"A second function of controlled processing in skilled performance
is the maintenance of time varying information in short-term store.
Automatic processing may activate information in short-term
memory, but, without additional controlled processing, that
information will decay in several seconds. In sports, for example,
the player may have to maintain information not currently available
to the sensory system such as the positions of key players who are
not visible. Automatic processes may determine what information is
encoded and in what form, but controlled processing resources must
be used to maintain that information."

Here controlled processing is performing an adjunct service for automatic

processing, providing the latter with short-term records of recently sensed

information. With the additional level of indirection through short-term store,

automatic productions that rely on controlled processing for this service are less

responsive than automatic productions triggering directly off of incoming sensory

information.

The third point about skilled performance discusses the overall function of

- 19 -

-- --

controlled processing [84, p. 137-138]:

"A third function of controlled processing is skilled behavior in
problem solving and strategy planning. Problem solving is an
extensive area of psychology which cannot be covered in any detail
here. We wish only to make three points. First, the skilled performer
must solve problems such as ’what is the strategy of my opponent
and what is my best counter strategy?’ Second, that such problem
solving requires extensive controlled processing resources. Certain
performance situations are often novel and hence, are unlikely to
evoke automatic productions. And third, that effective strategic
planning occurs either when not engaged in the task (e.g., between
plays in football), or when the task can be performed almost entirely
by automatic productions alone."

Note that in at least some performance situations, strategic controlled

processing must wait for lulls in automatic interaction with the environment.

Maintenance of short-term store for controlled-automatic interaction - the first two

major operations of controlled processing in skilled performance - can occupy a

substantial percentage of controlled processing’s time, necessitating the deferment

of strategic controlled planning until breaks in activity.

2.5 Computer-based Modelling of Controlled and Automatic Processing

2.5.1 Production System Modelling of Controlled and Automatic Processing

As seen in the last section, Schneider’s and Fisk’s work on modelling

controlled and automatic activity used a form of production system [84, p. 120-

121]:

"Practice leads to the development of a large vocabulary of
automatic productions which perform consistent stimulus to

- 20 -

-- --

response transformations. We are using the term ’productions’ in
the Newell sense [68] of a generalized condition-action rule that,
when its appropriate stimulus conditions are satisfied, performs a
given action. You might think of this as a generalized stimulus-
response mechanism. The terms stimulus and response are not
interpreted in the limited sense of a physical stimulus and motor
response. Rather, the stimuli and responses can be either internal or
external and may refer to classes of conditions and responses as well
as individual instances."

Production systems were popular notations for cognitive modelling at the time.

Schneider and Fisk did not construct a computer-based model of their theory of

skilled behavior, nor did they refine the production system concept to elaborate the

fine detail of their theory. My research shares this general notion of reactive

stimulus-response productions, while exploring detailed mechanisms for supporting

time- and memory-constrained implementation as a reactive computer

programming notation.

Hunt and Lansman actually implemented a production system model of

controlled-automatic processing [40]. Sensory and short-term memory records

consist of simple feature-weight fields. Each field in a record represents a simple

feature, and a field’s weight determines the degree of presence or absence of the

corresponding feature. The system determines productions to fire based on

production activation levels that are set, in turn, by feature strengths in records

examined by the production left-hand-sides. Automatic productions are hand-coded

into a semantic net. Production activation determines the extent of spreading

activation in the net. Production notation allows performance of right-hand-side

- 21 -

-- --

actions, in addition to semantic net activation propagation. This model does not

address details of controlled-automatic interaction in skilled performance discussed

in the last section.

PRIOPS shares the Hunt and Lansman model of memory-less automatic

productions, but does not use spreading activation for production selection.

PRIOPS sensory and working memory fields consist of arbitrary numbers, symbols,

or user-defined sets that allow more complex operations than simple feature-weight

sampling. The Hunt and Lansman model does not address questions of constant-

time restrictions or priority-based production scheduling. The differences in the two

architectures comes largely from the difference in their purposes: Hunt and

Lansman set out to hand-code a model for simulating some results of choice

reaction time experiments. With PRIOPS I am providing an architecture to support

symbolic, knowledge-based computation for software development.

With its use of feature weights and spreading activation, the Hunt and Lansman

model is actually closer to the connectionist model currently used by Schneider

and Detweiler than it is to PRIOPS. The next subsection discusses this

connectionist model.

2.5.2 Connectionist Modelling of Controlled and Automatic Processing

Schneider and Detweiler use the Controlled Automatic Processing Model 1

(CAP1) program to simulate controlled and automatic processing [85,86,87]. The

- 22 -

-- --

model, illustrated in Figure 1, is composed of a number of processing modules,

each module structured as a neural network. There are visual, auditory, tactile,

spatial, speech, motor, semantic, and context (a form of short-term memory)

modules in the current simulation. Like the Hunt and Lansman model, each

module receives input in the form of a vector of feature weights. Like other

connectionist models, each module maps input weight vectors to output weight

vectors by passing the input into a network of simple, interconnected processing

nodes. Learning determines the degree of attenuation performed by node

interconnections. Nodes themselves perform summation of input and input

threshold determination, firing and passing output signals down connections to

subsequent nodes when input exceeds the firing threshold. Neural nets share a

stimulus-response mode of operation with production systems, but use a non-

symbolic, signal processing model for elementary operations. Interested readers

should consult Rumelhart and McClelland [79] for an introduction to

connectionism.

Schneider’s and Detweiler’s neural model has two distinctive organizational

features. First, modules communicate by passing output vectors of weights across

an inner communications loop to receiving modules. For example, if the spatial

module recognizes a dangerous incoming stimulus - an input vector representing a

rapidly approaching object - the spatial module might attempt to send a vector for

rapid avoidance along this inner loop to the motor module. The motor module

- 23 -

-- --

semantic

tactile

auditory

visual

context

motor

speech

spatial

central
control

communications
inner

loop

neural
processing
modules

Figure 1 - The CAP1 system level structure

would internally transform this input vector into a vector capable of driving motor

neurons connected to muscles. The inner loop is parallel in that it can carry

complete vectors, but is serial in that a portion of the loop can carry only one

message vector at a time. During intervals when neural modules are transforming

information internally, they do not use the communication loop, and can act in

parallel. The loop introduces serial delays and dual-task interference for inter-

module communications.

- 24 -

-- --

A similarity of this model and PRIOPS is that priorities help determine

scheduling of automatic activities. Priorities are a component of the information

learned within each neural module. If the spatial-to-motor reaction described in

the above paragraph were learned with sufficient consistency, and therefore

priority, within the spatial module, the priority of the spatial output would override

any contending modules and send the message over the inner loop. Sufficiently

high learned priority establishes automaticity, and consistency of successful

stimulus-response reactions determines learned priorities. When intra-module

priorities are low - representing novel situations or other reasons for uncertain

responses - hardware inhibition on module output suppresses message transmission

until controlled processing can select appropriate module messages for

transmission. Controlled processing is the second distinctive organizational feature

of this model. In addition to the eight modules mentioned above, a central control

structure has connections to all modules and the inner loop. This hardware

structure performs conflict resolution when no module priority is high enough to

override output inhibition. The central control also determines controlled message

sequencing to avoid message collisions (and resulting interference) on the loop.

As with the Hunt and Lansman model, PRIOPS’ biggest difference from this

connectionist model is its use of symbol manipulation as the basis of computation.

The CAP1 simulation’s use of priorities is analogous to PRIOPS’ use of priorities

(as we shall see) for scheduling production matching and actions. The work of

- 25 -

-- --

Schneider and Detweiler is an application of neural network concepts, but they do

not address the issue of O(1) stimulus-to-response mapping.

When beginning the research that has led to PRIOPS, the stimulus-response

characteristics of both production systems and neural networks led me to consider

both as candidates for reactive real-time architectures. After some exploration I

chose to pursue research into a reactive production system architecture for a

number of reasons. Production system matching concepts are reasonably mature,

allowing me to concentrate on computational complexity-related enhancements to

an existing body of knowledge, rather than performing fundamental research that

connectionism would have entailed. I wanted to focus on real-time specific

problems. Nevertheless, research into constant-time-bound input-to-output vector

mapping for neural nets could certainly provide the basis for a useful real-time,

embedded connectionist architecture. An O(1) implementation of a neural

stimulus-response network would have to consider the mapping of the abstract

neural net onto processing hardware. It is not enough to assure a constant-length

signal path through a network, if the network is simulated using non-O(1) time-

sharing of available processors across simulated network nodes.

Perhaps a hybrid architecture, one that applies production system mechanisms

to symbol-based subproblems and neural mechanisms to signal-based subproblems,

could be amenable to practical application. This is a potential area for future

research.

- 26 -

-- --

3. THE CONTROLLED-AUTOMATIC PRIOPS ARCHITECTURE

The preceding chapter presents how humans have applied division of labor to

complex tasks, factoring out important but consistent activities for automatic

processing. The PRIOPS notation allows the production system programmer - be it

a human programmer or a machine learning algorithm - to do the same for a

symbol manipulation program. Automatic partition activities include time-

constrained tasks that react to the environment and controlled enabling information.

The controlled partition houses complex operations typically studied in artificial

intelligence research.

Figure 2 illustrates data flow in the PRIOPS controlled-automatic architecture.

The controlled partition is in the top half of the figure, the automatic partition in

the bottom. This system monitors the surrounding environment through a collection

of sensors; the sensors may be polled, and at least some are capable of interrupting

ongoing processing by the usual hardware means. The system manipulates the

environment through a collection of effectors. Input and output may include

terminal based, ASCII data, but will also include physical sense measurements and

motor actions in appropriate embedded systems.

3.1 The Automatic Partition

The automatic partition is a programmable extension of the combinational

- 27 -

-- --

digital logic circuitry connecting the computing system to the sensors and effectors.

Like combinational circuitry and unlike sequential circuitry, the automatic partition

lacks persistent memory. The automatic partition does not store information about

its previous state configurations.* The state of automatic data represents the current

state of the sensors, combined with the state of enabling and disabling inputs from

the controlled partition. The decoding processes of Figure 2 serve as an extension

to hardware interrupt recognition and detection. In a conventional computer system,

incoming interrupt lines often enjoy a one-to-one correspondence with important

conditions that must be attended. Essential feature detection and recognition is

hard-wired.** In an intelligent system, recognizing complex phenomena requires

programming or learning. The input decoding software must take on part of the job

of interrupt generation, driving automatic reactions and informing the controlled

partition.

Along with lack of persistent memory, key features of the automatic partition

are O(1) complexity for all code segments, non-iterative composition of code

segments, and the use of priorities to accelerate critical response processing.

_ ______________

* Persistent memory is analogous to long-term memory in humans. Memories
about details of an episode remain after the episode is complete. This contrasts
with short-term memory, which provides transient buffering. Persistent memory
will be discussed more thoroughly in the section on O(1) space complexity.

** Hard-wired reactive circuits correspond to reflexes in humans. Acquired
automatic processes are more complex than reflexes, and they may augment
built-in reflexive processing.

- 29 -

-- --

3.1.1 O(1) Time Complexity

Time and memory requirements for code in the automatic partition never grow

beyond a predetermined constant limit. The compiler will impose these limits.

Verifiable O(1) code is non-iterative. That is, it is code that can be rewritten in a

form that consists strictly of contiguous, sequentially fetched-and-executed code,

combined with forward conditional and unconditional jumps. Iterations bounded by

constants are equivalent to non-iterative code. While constructing non-iterative

execution paths, the code generator can calculate worst-case time bounds. The

limitations inherent in non-iterative code restrict the range of size and complexity

across which input data to the code may vary.

The compiler disallows iterative composition of automatic functions. Data flow

in the automatic partition takes the form of an acyclic directed graph. Unrestricted

cycles would create indeterminacies in execution time bounds. In Figure 2, cycles

in the data flow may occur where information is passed through the controlled

partition, but such data flow is not bound by constant time. Data flow within the

automatic partition does not loop.

One inherent feedback loop connects to the automatic partition, mediated by

the external world. It goes from the effectors through the environment to the

sensors. This cycle conveys the effect of external system actions back to the

system.

- 30 -

-- --

3.1.2 O(1) Space Complexity

Lack of persistent memory means that the automatic partition does not buffer

information. The partition does not require the services of dynamic storage

allocation. Allocation is static, as with a FORTRAN program. Each data flow path

has the capacity to store exactly one datum of the type that flows along that path.*

Where data are combined by intersecting paths (e.g., sensor fusion), exactly one

composite datum can be stored. Consequently the state of the automatic partition

represents the composite present state of the input sensors and inputs from the

controlled partition.

3.1.3 Automatic Priorities

Until now I have not addressed the issue of sharing central processor time

among enabled processes in the automatic partition. If a ready process must wait

for computing resources, then its worst-case response time is the sum of its

inherent worst-case response time and the worst-case sum of time it must wait for

other processes to release resources that it needs.

The design of PRIOPS is based on an underlying uniprocessor machine,

_ ______________

* O(1) space complexity does not require PRIOPS to restrict storage capacity to
exactly one datum, only to a constant bound amount. I have chosen a limit of
one in order to force the automatic partition to represent the current state of the
sensors, without history.

- 31 -

-- --

although work on multiprocessor production systems [31,32,33,92] might be

adaptable to PRIOPS’ needs. Given the difficulties in sharing a single processor

among multiple, time-constrained tasks, preemptive priorities determine the order

in which automatic tasks get the processor. Critical tasks and automatic tasks with

quick response requirements must share the highest priority levels. Worst case

response time for a process of a given priority is the sum of the inherent process

time plus the times for all other processes of equal or greater priority plus context

switching time, over some encompassing time period in which all of these

processes may run. For example, suppose a process P is triggered once per second

and can produce its response in one millisecond. However, P’s low priority may

force it to wait up to 100 milliseconds every second for all higher and equal

priority processes to complete. Then P’s worst case response time is 101

milliseconds. Any time spent servicing hardware interrupts and direct memory

access transfers counts as high priority processing. The danger of losing low

priority responses is not a weakness in PRIOPS, but is rather a weakness of

processor sharing. Priorities allow an embedded system designer to identify the

processes that must be guaranteed processor availability. PRIOPS is not unique in

applying preemptive scheduling priorities to a collection of time-constrained tasks;

it is unique, however, in applying preemptive priorities to Rete matching steps.

- 32 -

-- --

3.1.4 Varieties of Automatic Code

Figure 3 shows three varieties of non-iterative code: reactive, record and

predictive. Reactive code processes information in a path from sensors to

effectors. The constant-time bound applies to this complete path. The purpose of

reactive code is the generation of time constrained reactions to environmental

phenomena. Since the time constraint applies from the instant that the sensation

arrives until the instant that the system reacts, I refer to this as an instantaneous

real-time requirement. This is the variety of automatic code with the tightest

response time requirements.

Because the time requirement on reactive code is not averaged across multiple

incoming events, there is no need for dynamically varying buffers in a reactive

processing sequence. Variable length data buffering is a means for lowering

responsiveness requirements by storing incoming information until the system has

time to attend. PRIOPS assumes a constant-bound responsiveness requirement on

each automatic reaction to incoming information. There is no degradation of

responsiveness through arbitrary-length buffering in the automatic partition.

Furthermore, incoming information on a sensory channel supersedes any earlier

information from that channel. Variable-length buffering of sensory data is again

inappropriate, since the automatic partition reacts to the immediate environmental

situation. Besides simplifying memory management and timing analysis, this

arrangement is attractive because it corresponds to the memory-less character of

- 33 -

-- --

IN OUT

O(1)PROC

IN OUT

O(1)PROC

IN OUT

O(1)PROC

IN OUT

O(1)PROC

ENQ

DEQ

O(1)QUEUE

ENQ

DEQ

O(1)QUEUE

SENSORY INPUT EFFECTOR OUTPUT

SENSORY INPUT

EFFECTOR OUTPUT

HIGHER LEVEL PROCESSING

HIGHER LEVEL PROCESSING

REACT

RECORD

PREDICT

Figure 3 - Three varieties of constant-time-constrained processing

human automatic processing.

Record code conveys data, with possible transformations, from the sensors to

dynamic buffers in the controlled partition. The leftmost arrow in the automatic

partition of Figure 2 illustrates the location of record code. Timing requirements

for this processing are simpler than for reactive processing. The instantaneous

- 34 -

-- --

real-time constraint applies only to capture of incoming information in a buffer.

The buffer smooths variations in the speed of the incoming information flow. In

order to avoid buffer overflow, the control process draining the buffer must

consume information at the same average speed as that of incoming information.

Therefore, this process must fulfill an average real-time requirement. Real-time

analyses that focus on the device driver interface typically refer to this type of

processing.

Predictive code transmits predetermined actions from controlled partition

buffers to effector outputs. These actions are fully predictable at compile time;

unlike reactive code, its is not conditioned directly by sensory input. Transferral of

output information may be subject to interval timer-based triggering. Like the

input portion of record code, the output portion of predictive code is bounded by

constant-time limits. The rightmost arrow in the automatic partition of Figure 2

illustrates the location of predictive code. The control process that supplies the

action buffer may need to meet an average real-time requirement to prevent the

predictive output code from draining the buffer.

3.2 The Controlled Partition

The controlled partition performs the higher order cognitive tasks of the

system. Like controlled processing in humans, the activities of this partition are

flexible and powerful; they deal with novel or ambiguous tasks. Search-based, goal

- 35 -

-- --

and data driven inference can drive controlled partition activities. Problem solving,

planning, and learning occur in the controlled domain. Because controlled

processing deals with the unknown, and because it requires use of memory and

other resources to dynamically varying degrees, the compiler cannot determine a

priori constant time and space bounds for control processes.

All persistent storage resides in the controlled partition, including record and

predictive code buffers. With the automatic partition acting as a complex device

driver for controlled processing, these interface buffers serve as short term

sensorimotor storage. Any garbage collection associated with dynamically

allocated memory occurs as a controlled partition operation. The automatic

partition does not incur the execution overhead of dynamic storage reclamation.

In a planning or learning system, the controlled partition may generate some of

the automatic code. Planning can design rough automatic reactions that are refined

through practice.

- 36 -

-- --

4. A PRIORITIZED PRODUCTION SYSTEM

Forward-chaining production systems have a stimulus-response organization.

They are a form of knowledge representation that is closer to the idea of reactive,

non-iterative code strings than other artificial intelligence programming

architectures. The patterns of interconnection of nodes in semantic nets often

result in exponential search time for approaches such as spreading activation; also,

semantic nets may contain cycles. Frame systems share these characteristics, and

also permit procedural attachments of arbitrary computational complexity. The

computational complexity of first order logic as a representation language are well

known. In contrast, individual production instantiations in a forward-chaining

production system do not iterate. Iteration is achieved through composition of

productions, when data flow dependencies among productions form a cycle. A

compiler can readily detect iterative composition of productions.

This stimulus-response structure led me to investigate using a forward-chaining

production system for the controlled-automatic embedded architecture. Acyclic

composition of productions appeared promising for reactive, automatic processing.

Compiler-driven inspection of dataflow promised to be straightforward. Also,

interactions of executing productions can achieve controlled partition behavior,

such as goal-directed search and learning. Production system working memory

supports controlled data buffering with minimal explicit programming. The

- 37 -

-- --

stylized syntactic format of individual productions make them convenient for

programmed manipulation in planning and learning [7,52,55,59,67,71,77].

Unfortunately, the algorithms implementing the run-time environments for

existing production systems do not guarantee constant-time bounded

responsiveness. The Rete pattern matching algorithm [25,27] is a popular and

efficient approach for matching working memory changes to changes in the conflict

set of instantiated productions. However, Rete matching can consume time that

cannot be predicted when the program is compiled. Production systems typically

spend the majority of their execution time performing pattern matching.

PRIOPS augments OPS5 notation [15,21,26] with novel, time-constrained

semantics. Support for this augmentation comes in the form of an enhanced Rete

matching algorithm. Enhancements include the use of time- and memory-

constrained matching for automatic productions, and priority-based scheduling and

preemption of production matching, conflict resolution and actions.

This chapter introduces PRIOPS notation and matching by way of a

hypothetical example: an embedded system that monitors environmental

temperatures and drives a wheeled vehicle in response to these temperatures. I

discuss PRIOPS declarations, controlled productions, controlled Rete, automatic

productions, and automatic Rete. A discussion of the internal structure of PRIOPS

and its use of augmented Rete matching follows in the next chapter.

- 38 -

-- --

4.1 An Application of Controlled-Automatic Processing

Figure 4 shows the data flow for a system that monitors temperature sensors.

One automatic behavior reacts to dangerously high readings by triggering effector

motions - turning wheels - away from the heat source in constant-bound time. An

alternative low priority behavior records abnormally high temperature readings into

a controlled partition buffer. (Not all high readings are immediately dangerous.)

From the controlled partition, abnormal temperatures trigger the creation of a goal

to inspect the hot areas. This goal in turn directs effectors to advance toward the

hot area - unless emergency motion (the automatic behavior) is already in progress.

The controlled partition establishes temperature thresholds for both partitions at

program initialization time.

Important problems within this example include constant-time constrained

matching and reaction for automatic productions, and synchronization of efforts

between the two partitions. First I introduce the PRIOPS notation and type

declaration preliminaries. Next I examine Rete matching as applied in the

controlled partition; controlled matching comes first because it is closer to standard

Rete. Then I examine preemptive matching for the automatic partition.

4.2 PRIOPS Preliminaries

The syntax and much of the semantics of PRIOPS derive from OPS5

[15,21,26]. Productions represent long term store, working memory elements

- 39 -

-- --

represent short term store. Inference is a match and act cycle, where one of a set of

instantiated productions (the conflict set - productions whose left hand side

conditions are met by working memory elements) is fired, causing execution of its

right hand side actions. These actions may include changes to working memory,

and hence to the conflict set. After a fired rule has completed, the cycle begins

again. PRIOPS defers and may cancel low priority portions of this match and act

cycle. The PRIOPS compiler and run-time support functions are written in C.

Unlike OPS5, PRIOPS applies strong data typing to its working memory

element fields. OPS5 is LISP-like in allowing any atomic type to occupy a memory

element field. Strong typing eliminates run-time type checking overhead; type

checking occurs at compile-time. A future version of PRIOPS could make

compile-time type declarations optional; the run-time type tests can be made

constant-time bounded, but certain type incompatibilities would not be found until

run-time for untyped fields.

Listing 1 shows working memory type declarations in PRIOPS. A memory

element field type may be one of integer, float, symbol or a user defined set type.

Listing 1 declares set all-sensors with a universe of t1, t2, t3, t4, tremote1, and

tremote2. These six temperature sensors provide the input which drives this

example. PRIOPS represents user defined sets as bit maps. The PRIOPS compiler

translates a set declaration into a word and bit position mapping for all members of

the universe. The size of the universe, and therefore the number of words in a set

- 41 -

-- --

representation, are known to the compiler. The execution times to perform set

operations are available at compile time; primitive machine instructions support

these operations.

(set all-sensors ; set of all sensors
t1 t2 t3 t4 ; short range temperature sensors
tremote1 tremote2 ; long range, infrared temperature sensors

)

(structure limit ; limits on sensor readings
symbol limit-type ; class of limit determines response
set all-sensors target ; sensor set targeted by this limit
float limit-value ; threshold

)

(structure sensor ; sensor reading representation
symbol sensor-id ; unique sensor identification
float reading ; measurement
float direction ; direction of sensor from vehicle

; center in degrees, 0 is due north
)

Listing 1 - Working memory type declarations in PRIOPS

Following the set declaration are structure declarations for structured types

limit and sensor. PRIOPS structure declarations take the place of OPS5 literalize

statements. Each PRIOPS working memory element is an object of one of these

structured types, and each field is one of the atomic types already discussed.

Listing 1 shows type limit containing three fields, limit-type (a symbol which

determines the use of the limit), target (a set of sensors to which this limit

- 42 -

-- --

applies), and limit-value (a floating point threshold value which is the actual limit).

Likewise type sensor contains three fields, sensor-id (a symbolic name for the

sensor), reading (a floating point measurement), and direction (floating point

direction of the sensor from the vehicle center, in degrees). Like Pascal records

and C structures, PRIOPS computes field address offsets at compile time, and

fields are strongly typed; unlike OPS5, a field name may not be used for a working

memory element type that does not declare that field.* PRIOPS supports typed

vector fields similar to singly dimensioned Pascal and C arrays.

The production examples in upcoming sections also use structured types goal,

alarm-move, alarm-record, and action. Listing 1 does not show these structure

declarations because they are very similar to the two already discussed; the field

types can be determined from usage.

4.3 PRIOPS Controlled Productions

Listing 2 shows the four controlled productions that correspond to the

controlled partition activity of Figure 4. The first production, attend-to-hitemp,

responds to temperature sensor readings that exceed some hi-interest limit. Readers

_ ______________

* Two valid OPS5 type declarations are (literalize cat purr) and (literalize mouse
squeak). The first defines type cat with field purr, the second, type mouse with
field squeak. After declaring these working memory types, the OPS5
programmer is free to manipulate the squeak field of cat and the purr field of
mouse, even though these field names were not declared for these types.

- 43 -

-- --

familiar with OPS5 will notice an unexpected -10 after the production name. This

number is a production priority. Priorities range from -128 to 127; a priority less

than or equal to 0 places the production into the controlled partition, a priority

greater than 0 places the production into the automatic partition.

A temperature sensor interrupt handler (code not shown) generates the working

memory element matched in the sensor test of attend-to-hitemp. The complete

sensor test, which matches a sensor memory element, is known as a condition

element. PRIOPS provides mechanisms for C or assembly language device drivers

to assert, modify, and retract working memory elements. Normally a sensor input

driver will modify its previous reading by removing an outdated working memory

element and asserting a new one. The bracketed <longtemp-id> and <hi-reading>

symbols in the sensor test are variables that are bound to the value of the

respective fields the first time they appear. Attend-to-hitemp tests a hi-interest

limit in working memory to see whether the sensor reading equals or exceeds the

limit value, and whether the identified sensor is in the set of target sensors for this

limit. The >= test here reads is a superset. Note that variable <longtemp-id> is

bound to the ˆsensor-id field value of the sensor memory element, a field which we

know from Listing 1 is a symbol. The limit test of attend-to-hitemp, however,

compares a set containing this variable to the limit’s ˆtarget field value, a value of

type set all-sensors.

- 44 -

-- --

(p attend-to-hitemp -10 ; notice an unusually hi reading
(sensor ˆsensor-id <longtemp-id> ˆreading <hi-reading>)
(limit ˆlimit-type hi-interest

ˆlimit-value <= <hi-reading>
ˆtarget >= [<longtemp-id>])
; target set is SUPERSET of set containing <longtemp-id>
; [f1 f2] reads: "a set containing f1 and f2"

-->
(make goal ˆaction inspect ˆtarget <longtemp-id>)

)

(p move-to-inspect-target -10 ; move to find cause of hi reading
(goal ˆaction inspect ˆtarget <interesting>)
(sensor ˆsensor-id <interesting> ˆdirection <way>)
- (alarm-move)
-->
(make action ˆaction-type move ˆaction-target wheels

ˆdirection <way> ˆspeed slow ˆurgency -10)
)

(p trace-goal-inspect -1 ; trace inspect goals for debugging
(goal ˆaction inspect ˆtarget <inspecting>)
-->
(write Goal: Inspect <inspecting> (crlf))

)

(p report-alarm 0 ; report alarms from automatic partition
{(alarm-record ˆalarm-type <type> ˆalarmed-sensor <sensor>

ˆlimit <limit> ˆreading <reading>) <alarmrec>}
-->
(write Alarm type <type> on sensor <sensor> ",")
(write limit = <limit> "," reading = <reading> "." (crlf))
(remove <alarmrec>)

)

Listing 2 - Controlled partition productions

- 45 -

-- --

PRIOPS allows symbol variables to appear in user defined set fields in

controlled productions. The value of the variable is matched at run-time against the

symbols supplied as the universe of the set type at compile-time. Comparison of

constant or variable set objects to other set objects is valid in automatic

productions, but this coercion of a symbol variable to a component of a set

variable is not allowed in automatic productions because of run-time overhead.

When attend-to-hitemp succeeds in finding a targeted sensor reading that

exceeds a high interest threshold, the production makes a goal type working

memory element that identifies the target. The creation of the goal triggers any

productions designed to work on that goal, including move-to-inspect-target and

trace-goal-inspect. The former production takes the target of the goal and resolves

its direction in space by consulting the sensor memory element. Move-to-inspect-

target will not fire, however, if an emergency move, represented by an alarm-move

element, is under way. If no such emergency is in progress, the production asserts

an action element to effect the movement. Trace-goal-inspect is a simple

debugging production that reports the assertion of an inspect goal.

Finally, report-alarm reports alarms generated in the automatic partition to the

user console. This production is not in the automatic partition because it is not

part of a constant-time bound reaction to the alarm. It has a priority of 0 because it

acts as a garbage collector for alarm-record elements, deleting them after reporting

the alarm. With a priority of 0 it will execute (when satisfied) before all lower

- 46 -

-- --

priority controlled productions. Explicit memory element garbage collection

belongs most appropriately within priority 0 productions; garbage is collected

before controlled productions make further dynamic storage requests.*

4.3.1 Rete Network for Controlled Productions

Early production systems were extremely inefficient because they performed

redundant matching. With each new modification to working memory, a production

system selected all productions whose tests might be satisfied by the working

memory change, and performed all tests in those productions’ left hand sides.

These tests included condition elements not related to the current memory change,

because these unrelated condition elements appeared in productions with other

condition elements related to the change. Other redundant tests were identical tests

required for different condition elements [25,27].

The Rete algorithm eliminates redundant matching. PRIOPS, like OPS5,

compiles productions in source code form into a Rete network. Rete uses two

devices to gain efficiency. The first is a form of common subexpression

elimination. When distinct condition elements share identical leading tests, the

compiler generates a single test code sequence for the shared tests. Distinct test

_ ______________

* The next two chapters discuss, in turn, explicit memory element garbage
collection (as in report-alarm) and garbage collection internal to PRIOPS.

- 47 -

-- --

code is necessary only when condition element tests diverge. This sharing is

without regard to the position of a condition element in a production.

For example, the goal condition elements of productions move-to-inspect-target

and trace-goal-inspect in Listing 2 both test for an ˆaction of inspect. Since they

share an identical leading test, the compiler generates code to test ˆaction = inspect

only once.

Code sharing can extend across several condition elements. If two productions

share identical leading condition elements, then the compiler generates one set of

tests for the shared elements. In addition to tests for a single memory element, the

productions share tests across multiple memory elements - join tests. In move-to-

inspect-target, variable <interesting> joins an inspect goal memory element to a

sensor memory element when their respective ˆtarget and ˆsensor-id fields are

equal. Since trace-goal-inspect does not have a sensor condition element, it does

not require this join test.

Rete also improves efficiency by saving intermediate results of match testing,

rather than recalculating intermediate results with each working memory change.

For example, assume several limit working memory elements match the second

condition element of attend-to-hitemp. Rete saves references to these partial

matches, so that if a subsequent memory change matches another condition

element - perhaps asserting a sensor memory element - there is no need to repeat

the limit element tests before doing the sensor-limit join tests.

- 48 -

-- --

The Rete net of Figure 5 has five types of nodes, distinguished graphically and

processed differently. Circles are pre-join nodes, which are tests that apply to just

one memory element. Each such test compares an element field value against a

constant, or compares two fields within a single working memory element. The

latter test occurs when a variable appears multiple times within a single condition

element. Ovals are join nodes, which compare fields in multiple memory elements.

The appearance of a single variable in more than one condition element in a

production produces a join test across the corresponding memory elements (e.g.,

move-to-inspect-target’s <interesting>). An oval with a backslash is a not node,

the inverse of a join. A not succeeds only when its inter-condition element

comparisons fail. Boxes represent memory nodes that hold the results of condition

element and join successful matches. Finally, production names at the bottom of

Figure 5 signify instance nodes. When a combination of working memory elements

consistently match all condition elements on a production’s left hand side, the

production’s instance node contributes an instantiation of the production - the

production paired with the matched working memory token - to the conflict set of

triggered productions.

Figure 5 shows the limit ˆlimit-type = hi-interest constant test from attend-to-

hitemp, and the shared goal ˆaction = inspect constant test from move-to-inspect-

target and trace-goal-inspect. Dynamic behavior flows through a Rete net when a

production or device driver produces new data - asserts or retracts a working

- 49 -

-- --

memory element. A reference to the altered element propagates down the path for

its type. A limit element, for example, advances to the pre-join ˆlimit-type test

node of Figure 5. Other production condition element tests that test limit objects

differently, would cause branching in this test path. A production testing limit

ˆlimit-type = hi-danger would generate an alternative limit path that branches

before the hi-interest path. Condition elements generate matching paths that are

shared to the point where the condition elements themselves differ; identical

condition element prefixes generate one path, which diverges at their first point of

difference.

Memory element assertions and retractions propagate identically through the

pre-join paths. In Figure 5, no pre-join testing of sensor elements occurs because

none appear in the controlled productions.

At the end of a pre-join path these memory element references (called tokens)

are stored in an unbounded memory buffer. Following the first level of memory,

the first level join nodes perform inter-condition element tests. The threshold limit

and target tests of attend-to-hitemp appear in the right elliptical join node of Figure

5. Token pairs that satisfy these inter-element tests are joined and propagated

forward through the network. Attend-to-hitemp contains only two condition

elements, so only one join occurs. Production move-to-inspect target contains three

condition elements, so two consecutive joins occur. The second join in that path is

an alternative join, or not node, because it succeeds only for tokens arriving at its

- 50 -

-- --

left input that cannot be joined to tokens on its right input using the inter-element

tests. In the example there are no inter-element tests, so the mere presence of an

alarm-move token is enough to halt token propagation. Except for not nodes,

successfully matched assertions of tokens results in propagating assertions of

joined tokens; successfully matched retractions of tokens results in propagating

retractions of joined tokens. Successfully matched not tests can result in the

retraction of left input tokens that were previously asserted for asserted right input

tokens, and in the assertion of left input tokens that were previously inhibited for

retracted right input tokens.

Tokens successfully tested and joined to the end of a path contribute production

instantiations to the conflict set. At the bottom of Figure 5 are conflict set entry

points for attend-to-hitemp, move-to-inspect-target, and report-alarm test paths.

PRIOPS augments OPS5 usual methods for determining which member of the

conflict set to fire (the conflict resolution strategy). OPS5 uses recency of

participating memory element assertions and specificity of condition element tests

to select a production instantiation to fire. For controlled productions, PRIOPS

uses production priority as the main conflict resolution criterion, and uses recency

and specificity to break ties.

4.3.2 Worst case times for Standard (and Controlled) Rete.

As Haley [34] has pointed out, a compiler can compute weak worst-case

- 52 -

-- --

execution times for a single memory change for pre-join portions of a Rete net at

compile-time. The most pessimistic estimate is the sum of the time to execute all

pre-join tests for a specific working memory element class. A better estimate is

available when paths are mutually exclusive in the elements they will match. The

compiler can detect such exclusions by scanning the successors to a node in a pre-

join chain. It must look for distinct constant values, non-overlapping numeric

ranges, or non-intersecting set values. The goal of PRIOPS is acceptable as well as

constant time bounds.

Haley has also shown that the time to compute joins dominates the matching

time of Rete. The compiler cannot determine worst-case join times because

traditional Rete does not restrict the size of memory nodes. In Figure 5, for

example, many hi-interest limit tokens might propagate to the first limit memory

node. A sensor token entering the left side of the join node matches against all

limit tokens stored to the right. Join time is therefore a function of both the sizes

of contributing memories, and the tests performed within the join node. Memory

sizes are unknowable at compile-time. We see here at the detailed matching level

that persistent memory contributes to execution time indeterminacy. PRIOPS

eliminates unbounded memory nodes from the Rete net in the automatic partition.

- 53 -

-- --

4.4 PRIOPS Automatic Productions

Listing 3 shows the three automatic productions that correspond to the

automatic partition activity of Figure 4. The three productions implement a reactive

path through the automatic partition for response to dangerously high temperature

readings; they also coordinate with the controlled partition. Priorities greater than 0

identify these as automatic productions.

Production react-to-overtemp, with a priority of 10, recognizes a dangerous

temperature condition and responds by initiating several activities. The ˆsensor-id

test @ [t1 t2 t3 t4] <target-id> @ constitutes a PRIOPS macro. Values t1, t2, t3,

and t4 direct alternative expansions of the macro. When the PRIOPS compiler

parses a macro, it replaces the base production (react-to-overtemp in this case)

with a distinct production for each distinct expansion of the macro. Each

production will test the field differently. Expanded production react-to-overtemp-t1

will test ˆsensor-id t1, production react-to-overtemp-t2 will test ˆsensor-id t2, and

so on. Generation of condition elements that diverge at the point of the macro,

results in generation of mutually exclusive Rete matching paths that diverge at the

point of the macro. Listing 4 shows one possible expansion of base production

react-to-overtemp from Listing 3.

The identifier <target-id> within the macro call appears to be a regular PRIOPS

variable. In fact, <target-id> here is a macro tag. For each expansion of the

- 54 -

-- --

(p react-to-overtemp 10 ; trigger emergency response, record
(sensor ˆsensor-id @ [t1 t2 t3 t4] <target-id> @

ˆdirection <way> ˆreading <hitemp>)
(limit ˆlimit-type hi-danger

ˆtarget >= [t1 t2 t3 t4]
ˆlimit-value {<hi-danger-limit> <= <hitemp>})

-->
(make alarm-record ˆalarm-type hi-temperature

ˆalarmed-sensor <target-id>
ˆlimit <hi-danger-limit> ˆreading <hitemp>)

(make alarm-move ˆalarm-type hi-temperature
ˆalarmed-sensor <target-id>)

(bind <newway> (compute (<way> + 180) % 360))
(make action ˆaction-type move ˆaction-target wheels

ˆdirection <newway> ˆspeed fast ˆurgency 10)
)
(p retract-overtemp 1 ; retract emergency status

(alarm-move ˆalarm-type hi-temperature
ˆalarmed-sensor @ [t1 t2 t3 t4] <target-id> @)

(limit ˆlimit-type hi-danger
ˆtarget >= [t1 t2 t3 t4]
ˆlimit-value <hi-danger-limit>)

-(sensor ˆsensor-id <target-id>
ˆreading >= <hi-danger-limit>)

-->
... end of emergency actions - not shown ...

)
(p start-moving 100 ; drive output

(action ˆaction-type move ˆaction-target wheels
ˆdirection <where> ˆspeed <velocity> ˆurgency <urgency>)

-->
(call wheel_driver <where> <velocity> <urgency>)

)

Listing 3 - Automatic partition productions

macro, the selected macro expansion replaces the macro tag wherever the latter

- 55 -

-- --

(p react-to-overtemp 10 ; base production with macro
(sensor ˆsensor-id @ [t1 t2 t3 t4] <target-id> @

ˆdirection <way> ˆreading <hitemp>)
(limit ˆlimit-type hi-danger

ˆtarget >= [t1 t2 t3 t4]
ˆlimit-value {<hi-danger-limit> <= <hitemp>})

-->
(make alarm-record ˆalarm-type hi-temperature

ˆalarmed-sensor <target-id>
ˆlimit <hi-danger-limit> ˆreading <hitemp>)

(make alarm-move ˆalarm-type hi-temperature
ˆalarmed-sensor <target-id>)

(bind <newway> (compute (<way> + 180) % 360))
(make action ˆaction-type move ˆaction-target wheels

ˆdirection <newway> ˆspeed fast ˆurgency 10)
)

(p react-to-overtemp-t1 10 ; an expansion of react-to-overtemp
(sensor ˆsensor-id t1 ; t1 substitution

ˆdirection <way> ˆreading <hitemp>)
(limit ˆlimit-type hi-danger

ˆtarget >= [t1 t2 t3 t4]
ˆlimit-value {<hi-danger-limit> <= <hitemp>})

-->
(make alarm-record ˆalarm-type hi-temperature

ˆalarmed-sensor t1 ; t1 substitution
ˆlimit <hi-danger-limit> ˆreading <hitemp>)

(make alarm-move ˆalarm-type hi-temperature
ˆalarmed-sensor t1 ; t1 substitution

(bind <newway> (compute (<way> + 180) % 360))
(make action ˆaction-type move ˆaction-target wheels

ˆdirection <newway> ˆspeed fast ˆurgency 10)
)

Listing 4 - Macro expansion of react-to-overtemp

appears in the production. For instance, in production react-to-overtemp-t1,

- 56 -

-- --

constant t1 replaces all occurrences of <target-id>. A macro tag may appear any

place within a production that a constant may appear; there are places that

constants may appear but variables may not (e.g., symbols within automatic

production set fields as discussed in the previous section). React-to-overtemp-t1

matches readings from sensor t1, binding the direction to variable <way> and the

reading to <hitemp>. The limit test checks for type hi-danger this time; the ˆtarget

test is a normal superset comparison as in attend-to-hitemp from Listing 2; the set

[t1 t2 t3 t4] is a constant. When the t1 sensor reading exceeds the threshold,

react-to-overtemp-t1 fires. The right hand side makes an alarm-record for

production report-alarm in the controlled partition, makes an alarm-move to inhibit

move-to-inspect-target and any other lower priority move command, computes the

direction opposite to the heat source, and issues a move action to initiate effector

action.

Retract-overtemp triggers when a temperature emergency condition terminates.

The alarm-move test detects the emergency, and the remaining tests determine that

the high temperature problem no longer exists. The right hand side actions of the

production are not important to this discussion.

Start-moving is the third automatic production. It takes an action element and

initiates motion by calling a C language device driver wheel_driver. Whereas

input interrupt handlers normally communicate to PRIOPS by modifying sensor

working memory elements, PRIOPS productions trigger output drivers by calling

- 57 -

-- --

them directly. The wheel driver initiates the action, but only if the command

<urgency> exceeds the <urgency> of the most recent action command to the

wheels that is still in effect. Assume that if no wheel_driver call occurs within 30

seconds, the driver times out and decelerates the wheels. Assume further that

temperature readings arrive many times a second, so the wheel time-out is strictly

a default behavior.

In order to fully appreciate the interaction of these productions with each other

and with the controlled productions, examine the matching network of Figure 6.

Only the t1 expansions appear in the figure; alternative paths for the t2, t3, and t4

expanded productions parallel the t1 paths. Note that each node is tagged with the

priority of the production that generated it. In cases where several condition

elements contribute to a single node, the node takes on the priority of the highest

priority contributing production. For example, the ˆsensor-id t1 constant test node

in Figure 6 is part of the matching for the first condition element of react-to-

overtemp-t1 (priority 10), and for the third condition element of retract-overtemp-t1

(priority 1), so the shared node receives a priority of 10.

PRIOPS uses priorities to defer portions of Rete matching. PRIOPS maintains

a priority queue of matching tasks. When a working memory change occurs, the

matching action is queued in the appropriate queue; there is one queue for each

automatic or controlled priority level. Controlled matching proceeds only when no

automatic matching or actions are occurring, and controlled matching does not use

- 58 -

-- --

priority information until conflict resolution, so ignore the controlled partition for

now.

Automatic matching uses priority information at each step; matching tasks are

queued on a per node basis. For example, assume that react-to-overtemp-t1’s right

hand side has just made an alarm-move element and an action element. Figure 6

shows that the alarm-move matching commences with priority 1; it will remain in

its queue while the priority 100 action matching proceeds. After the matching at a

single node succeeds, match tasks for all successor nodes enter appropriate queues.

Successor priorities will always be less than or equal to the current priority,

because shared condition element prefixes take on the priority of the greatest

contributing production; when the paths diverge, some priorities may diminish

because the greatest contributing production priority is less. An example occurs at

the sensor register node; the right successor, contributed by react-to-overtemp-t1,

has priority 10; the left successor, contributed by retract-overtemp-t1, has priority

1.

Unlike OPS5, matching is not intermixed with the right hand side actions of

PRIOPS productions. OPS5 performs matching immediately for each right hand

side change to working memory [15, p. 230]. In PRIOPS, right hand side

assertions to and retractions from working memory immediately trigger matching

only when the condition elements (Rete nodes) for the changing memory elements

are of greater priority than the production making the changes. Lower priority

- 60 -

-- --

assertions and retractions defer while the right hand side continues. Incoming

interrupt driven memory changes will interrupt both controlled activity and lower

priority automatic activity. There is minor synchronization overhead associated

with handling critical section problems; I will not discuss these details here.

Besides the use of priority matching queues, the second major distinction in

automatic partition Rete is the appearance of the register nodes of Figure 6 in

place of the memory nodes of Figure 5. Unlike the unbounded controlled matching

memory nodes, each register can hold only one token. Assertion of any new token

at an automatic node causes automatic retraction of all old information along

descendent paths. New information always replaces old.

The restriction of unit register node size is the most significant characteristic of

the automatic partition. The rationale is that the majority of automatic tokens

represent sensory data or direct derivatives of sensory data. Lack of persistent

memory results in contents for these one-place registers that reflect the current

state of the environment. This restriction on size accords well with observations on

human automatic processing. With history removed from the sense-decoding,

reactive partition, join times are a function of join tests. In a seminal paper on

production systems, Newell questions the very name short-term memory, since this

temporary activity is so very limited in capacity [68]. Working memory in early

production systems was intended to hold transient data during matching, not long-

term control and application domain knowledge. While modern production

- 61 -

-- --

systems have often strayed far from this original, restricted notion of a limited

short-term memory, the concept is fundamental within the automatic partition of

PRIOPS. Because automatic register nodes are of such limited capacity, it is

necessary for the compiler to generate distinct register nodes for each sensor to

hold sensor-based data. Thus while memory nodes diminish in size within the

automatic partition, mutually exclusive test paths proliferate. Since these paths are

mutually exclusive, execution time reactivity is enhanced. Sensor-based token

propagation corresponds to OPS5 modify operations, since old information is

deleted and new is added. PRIOPS matching optimizes token propagation in the

automatic partition by replacing the combined retract old and assert new steps

needed in controlled matching with modify token propagation. The modify retracts

the previous token and asserts the new. When the new token passes node tests, the

modify propagates forward; when the new token fails, a retraction of the old token

propagates instead.

Another consequence of unit register size is that only one instantiation of a

given automatic production can be ready at a point in time; in OPS5 and in the

PRIOPS controlled partition, a single production’s condition elements may be

satisfied by different combinations of memory elements, so one production may be

instantiated several different ways at one time.* Since the compiler knows the

- 62 -

-- --

number of automatic productions and automatic matching nodes, it also knows the

upper limit on the size of the automatic conflict set and automatic priority queues

respectively. All automatic activity is of O(1) complexity.

Because of the one-to-one correspondence between distinct sensors and paths

through automatic Rete, PRIOPS supplies the macro capability to make the

generation of these matching paths less painful. Thus while react-to-overtemp is

written as one production, macro expansion allows it to generate diverging

matching paths for each sensor whose state must be stored. Sharing a single

register among multiple sensors would cause the most recent sensor reading to

overwrite readings for other sensors. Note that the executable join test code for

macro generated matching is shared. The nodes are distinct, but parallel expanded

join nodes point to identical executable test code.

Automatic partition conflict resolution considers priority first, age of

contributing memory elements second, and specificity last. When instantiation

priorities are equal, conflict resolution considers age in an attempt to fire sensor-

triggered rules before reaction time constraints are exceeded. Unlike OPS5’s

_ ______________

* Controlled Rete therefore supports a form of universal instantiation, providing
production firings and variable bindings for all working memory element
combinations consistent with a production’s condition element tests. Automatic
Rete, in contrast, provides a form of existential instantiation, giving only one
firing and set of variable bindings for a production’s condition element tests,
based on working memory element recency.

- 63 -

-- --

recency criterion, older information receives preference since it may soon become

outdated for reactive use. Conflict resolution for production instantiations at the

current priority occurs after the current priority matching queue is emptied, without

considering lower priority pending computations. When no automatic productions

are instantiated, matching of controlled productions ensues.

Returning to Figure 6, assume that some unrelated controlled matching is

taking place when a dangerously high temperature reading comes from sensor t1.

Temperature limits were asserted at initialization time. The sensor identification

succeeds and the sensor reading is saved in its register. The priority 1 sensor join

matching waits while the priority 10 limit join testing proceeds. The test passes

and a priority 10 production - react-to-overtemp-t1 - enters the automatic conflict

set. No other priority 10 or greater activity is queued, so the production fires,

making three working memory elements. The action, at priority 100, is the most

salient, so its matching proceeds; note that the priority 1 sensor reading remains

queued. Priority 100 matching causes the most urgent action - the wheel movement

initiation - to proceed without regard to lower priority pending activity. The path

from the t1 sensor test through the start-moving firing is acyclic, and the matching

time is constant bounded.

Some of the queued activity may become outdated before it ever has an

opportunity to execute. The queued priority 1 sensor task may remain queued

while another t1 sensor reading occurs. Because of this possibility, only one

- 64 -

-- --

matching task can be queued at an automatic node input at one time. A newer task

always replaces an older, queued task, because at that point the older information

has become outdated. Outdated tasks within the controlled partition propagate

fully because an unlimited number of tasks can be queued at a single node; any

retractions will cancel outdated assertions before controlled conflict resolution takes

place.

The theory of human automatic processing provides a model for the type of

activity that can be automated: repetitive, predictable, usually appropriate reactions.

PRIOPS provides a collection of mechanisms for supporting such activities in an

embedded software system in constant bounded time. Implementing practical

control applications using this architecture is primarily a software engineering

problem.

- 65 -

-- --

5. THE MAZE DEMONSTRATION PROGRAM

This chapter illustrates a demonstration program compiled and executed using

the current PRIOPS implementation. In the spirit of Pavlov, we shall observe the

behavior of a PRIOPS program in a simulated maze. Figure 7 shows an example

maze as displayed on a PC monitor. Walls are shaded and tunnels are unshaded;

the EXIT appears near the upper right corner. Within the maze are two mobile

entities: the PRIOPS PROGRAM and the HUMAN (letters P and H in Figure 7

denote the respective starting positions of these two entities). The PROGRAM a

priori wants to locate and reach the EXIT. The HUMAN, under keyboard control,

is dangerous to the PROGRAM. It will destroy the PROGRAM upon contact. So

the PROGRAM instinctively avoids the HUMAN.

Though a toy problem, the maze is rich enough to demonstrate several key

ideas of PRIOPS

• Sensor monitoring, here responding to obstacles in the maze.

• Controlled behaviors, notably searching for the EXIT.

• Automatic behaviors, such as fleeing from the HUMAN.

• Explicit garbage collection, at the automatic-controlled interface.

• Learning, here of a successful path to the EXIT.

• Improved behavior, once learning becomes automatic.

The maze, the keyboard-to-maze interface, and the simulated sensors are

- 66 -

-- --

implemented in C. The PROGRAM itself is a set of PRIOPS productions. The

PROGRAM receives sensory input upon beginning execution, upon movement of

the PROGRAM, and upon movement of the HUMAN when this movement reaches

the PROGRAM’s sensors. This input comes from maze C functions. A sensors

record reports the identity and distance of the nearest obstacle to the left, right, up

and down. Potential obstacles include a WALL, the HUMAN opponent, and the

sought-after EXIT.

5.1 An Overview of Maze Processing

Figure 8 shows data flow for the PROGRAM during maze traversal. All

automatic operations trigger on immediate sensory information. These productions

act during an emergency to move the PROGRAM within constant-bound time,

preempting lower-priority tasks. Automatic maze productions come in three

varieties:

1) EXIT detectors. Excited when a sensor detects the EXIT, they preempt

all other productions and lunge out of the maze.

2) HUMAN detectors. Triggered when a sensor detects the HUMAN, they

flee. The PROGRAM prefers to escape at right-angles to the HUMAN when

possible.

3) Learned productions that direct the PROGRAM down the path of escape.

- 68 -

-- --

Controlled productions maintain memory of visited maze locations. Controlled

maze productions come in five flavors:

1) Initialization: setting up the maze and PROGRAM for execution.

2) Heuristic search: selecting the next move in search of the EXIT.

3) Record-keeping: accumulating declarative knowledge about the maze in

working memory.

4) Garbage collection. Garbage can include outdated and redundant

information in controlled partition buffers.

5) Learning.

The overall flow of the maze program as seen in Figure 8 typifies the flow and

interaction of automatic and controlled processing in PRIOPS. During the search

phase of the problem, controlled productions guide the search and collect

declarative information. Initial hand-coded automatic productions deal with time-

critical situations by changing the immediate relationship of the embedded system

to other entities in the environment. Garbage collection at the controlled-automatic

interface performs resource reclamation without slowing automatic reactions.

Learning takes the results of controlled search and builds them into reactive

automatic productions. The following subsections will examine productions from

each part of Figure 8, from sensory readings and memory, to search behaviors in

the controlled partition, to instinctual behaviors in the automatic partition, to

garbage collection at the controlled-automatic interface, to learning in the

- 69 -

-- --

controlled partition, and finally to resulting learned behaviors in the automatic

partition. The final subsection discusses execution results for the maze of Figure 7.

5.2 Sensa, Memory, and Search in the Controlled Partition

In Listing 5 are three declarations for working memory element classes. The

current sensors element registers objects in the maze (WALL, HUMAN or EXIT)

and their location relative to the PROGRAM. Each visited element records how

often the PROGRAM has visited its location. Maze search rules and learning rules

examine visited memory. Finally, inspect elements direct the immediate search

from the PROGRAM’s current location.

(structure sensors ; 4 pseudo-sensors of program
symbol left-sense ; object-to-left: WALL or HUMAN or EXIT
int left-distance
symbol right-sense int right-distance
symbol up-sense int up-distance
symbol down-sense int down-distance
int x int y ; current PROGRAM x,y location

)
(structure visited ; remembered history of a location

int x int y ; location
int visits ; number of visits to here

)
(structure inspect ; possible single move destination

int x int y ; location of proposed move
symbol direction ; direction from current sensor

)

Listing 5 - Declarations for PROGRAM sensors and a maze location

- 71 -

-- --

Listing 6 shows two controlled productions that help determine the

PROGRAM’s next move. They use both immediate sensory information (giving

the current location of the PROGRAM) and accumulated memories. They trigger

additional productions (not shown), implementing a heuristic strategy. First the

PROGRAM rules out such undesirable moves as bumping into WALLS, heading

down known dead-ends, or reversing its walk. Then it prefers less visited locations

and more distant walls. Finally it makes an arbitrary pick from remaining possible

moves. Priority values in the controlled range order these heuristics sequentially.

The PROGRAM uses this heuristic strategy rather than simple depth-first

search, because the HUMAN may drive it into known dead-ends or down novel

paths. The PROGRAM does not expend time recording intermediate state

information - its path - while fleeing from the HUMAN. A strict depth-first,

backtracking approach would need the intermediate state information. In this

situation the heuristic search is more robust than depth-first search, allowing the

PROGRAM to recover its search processing context from the immediate

environment and memory, and resume exploration at the end of a HUMAN

avoidance session.

Production newly-arrived initializes a visited record. Its left-hand-side

determines that there is no visited for the current location of the sensors, so its

right-hand-side action creates a visited record with a visits count of zero.

- 72 -

-- --

(p newly-arrived -60
(sensors ˆx <myx> ˆy <myy>)
- (visited ˆx <myx> ˆy <myy>)
->
(make visited ˆx <myx> ˆy <myy> ˆvisits 0)

)

(p look-out -60
(sensors ˆx <myx> ˆy <myy>)
{(visited ˆx <myx> ˆy <myy> ˆvisits <seen>) <books>}
- (inspect)
->
(make sequence ˆcurrent eliminate-impossible) ; 1st step of search
(bind <newseen> (compute <seen> + 1))
(modify <books> ˆvisits <newseen>) ; update memory of loc. myx,myy
(bind <left> (compute <myx> - 1))
(bind <right> (compute <myx> + 1))
(bind <up> (compute <myy> - 1))
(bind <down> (compute <myy> + 1))
(make inspect ˆx <left> ˆy <myy> ˆdirection left) ; init. the search
(make inspect ˆx <myx> ˆy <up> ˆdirection up)
(make inspect ˆx <right> ˆy <myy> ˆdirection right)
(make inspect ˆx <myx> ˆy <down> ˆdirection down)

)

Listing 6 - Controlled productions for a new maze location

Production look-out triggers when a new sensors element is made at some

visited location. When the matcher finds a visited element for the current sensors

location, and finds that there are no inspect records (the third condition element is

negated), the matcher adds an executable instance of this production to the conflict

set. (Existing inspect records would be left over from search preceding the most

recent move; look-out must not trigger until garbage collection productions remove

- 73 -

-- --

these inspect directives, hence the negated condition element.) The right-hand-side

of look-out first makes a sequence element (declaration not shown) to serialize the

upcoming search. The next two actions compute and store an incremented visits

count. The bind operations compute locations for the four adjoining spaces, and the

make operations assert inspect elements. These elements direct upcoming search

productions to inspect the adjoining spaces. The sequence element advances from

value eliminate-impossible of Listing 6 through values eliminate-deadends,

eliminate-loops, eliminate-visited, eliminate-old, prefer-long, and ready-move, firing

productions that eliminate inspect proposals as it goes. Sequencing productions

modify the sequence element as it completes its work at each stage. When only

equally preferable inspect directives remain, an arbitrary one triggers controlled

movement. After movement, controlled garbage collection productions remove the

outdated sequence and remaining inspect records. The cycle beginning at newly-

arrived and look-out of Listing 6 then runs again.

The tests of newly-arrived and look-out contain only inter-condition element

(join and not) tests. In look-out, no intra-condition constraints appear for sensors,

visited, or inspect elements. The result is that Rete matching will perform the join

tests, comparing the ˆx and ˆy locations fields, for each possible sensors-visited

pair. In this program there is normally only one sensors element, but as a sensors

element is made or updated, the join tests of look-out (and all controlled

productions that join sensors and visited elements) are applied between the sensors

- 74 -

-- --

element and all visited elements in working memory. After some maze exploration

there will be many visited elements subject to these tests. As we have seen, the

absence of any compile-time limit to the number of memory elements tested by a

join through the abutment of two condition elements, is the fundamental source of

time indeterminacy in Rete matching [34].

5.3 Reactive Movement in the Automatic Partition

Listing 7 shows three automatic productions from the maze program. The first,

panic-left-up, detects a human to the left. It also determines there is an avenue up

from its current location that is further from a wall than the competing down

avenue. Once fired, panic-left-up, removes the sensors element so that no other

production can react to it. It then makes a move element for upward movement,

which in turn triggers the second production shown, automove.

With only one condition element, panic-left-up matching consumes no join

time. All tests are intra-element tests. Note that the tests of this production are

extremely specialized. Most automatic productions have specialized intra-element

tests because these tests must safeguard desired matches from being overwritten.

Remember that a new match eliminates any previous match to a condition element.

By the time matching gets to inter-element join tests, the contributing memory

elements are unique. The intra-element tests select each condition element’s unique

memory element for join matching.

- 75 -

-- --

(p panic-left-up 125 ; prefer right angle turns from human
{(sensors ˆleft-sense human

ˆup-distance {<escape> > 1} ˆdown-distance <= <escape>)
<sense>}

->
(remove <sense>)
(make move ˆdirection up ˆurgency 125)

)

(p automove 127
{(move ˆurgency > 0 ˆdirection {<way> <> nil}) <moving>}
{(lastmove) <former>}
->
(modify <moving> ˆdirection nil ˆurgency 0)
(modify <former> ˆdirection <way>)
; each "call move" generates a new "sensors" element
(call move <way>)

)

(p panic-left-right 124
{(sensors ˆleft-sense human ˆright-distance > 1) <sense>}
->
(remove <sense>)
(make move ˆdirection right ˆurgency 125)

)

Listing 7 - Three automatic productions for emergency reactions

Recall that leading intra-element test sequences common to more than one

condition element execute only once for a single working memory element. Only

when intra-condition element test sequences diverge are distinct match tests

compiled. The result is that automatic intra-condition element tests are compiled

into a decision tree, with a single place register at each leaf storing a reference to

- 76 -

-- --

the matching working memory element. For instance, panic-left-up and the third

production of Listing 7, panic-left-right, share the initial test sensors ˆleft-sense

human. When the HUMAN appears to the PROGRAM’s left sensors, this test

executes only once, with the two productions’ testing diverging after that point.

Both productions may trigger, but when the first to execute removes the sensors

element, the alternative production will no longer trigger.

Production automove joins two working memory elements. There are no inter-

condition element restrictions, so the most recent move request with an urgency >

0 combines with the most recent lastmove record to trigger the automatic move.

Automove nullifies the move element, updates lastmove, and calls the C language

move driver. A controlled production with this left-hand-side could match multiple

move request / lastmove record joins. Since automove is an automatic production,

it can only match the most recent elements satisfying its tests. It responds to the

immediate sensory and control information in constant time.

5.4 Garbage Collection at the Controlled-Automatic Interface

Controlled productions that search and learn can generate redundant and

outdated working memory elements that constitute garbage. Also, automatic

productions can generate sensory and movement messages that are buffered in the

controlled partition. Outdated messages in these buffers constitute garbage as well.

The classical approach to garbage collection in LISP systems is to bring the system

- 77 -

-- --

to a halt when storage capacity is exhausted, and recover all reclaimable memory

during this halt interval [28]. Clearly such an approach is not suited to a reactive,

time-constrained system. Incremental garbage collectors (sometimes called real-

time collectors) avoid halting for storage reclamation by distributing reclamation

activities in small, constant-time bound pieces across all calls for storage allocation

[28,60,94]. The problem with such systems is that they exact a small penalty from

all processes, both those with and those without O(1) execution requirements, for

storage reclamation activities.

PRIOPS performs garbage collection by using mechanisms built into controlled

matching and by using explicit controlled reclamation productions at the

controlled-automatic interface - priority 0 productions. The PRIOPS reclamation

strategy avoids penalizing automatic processing. Collection waits while a burst of

automatic activity completes, and it begins to work upon resumption of controlled

activity. In this section I examine an explicit garbage collection production. In the

next chapter I resume this discussion by examining garbage collection in internal

PRIOPS mechanisms.

The maze demonstration program contains several explicit garbage collection

productions. Explicit garbage collection productions recover buffered memory

elements that, through testing of contents and time stamps, are found to be

redundant or outdated. Listing 8 shows an explicit garbage collection production.

Collect-old-move recovers an older move element after a newer one is posted.

- 78 -

-- --

Remember that an automatic production such as automove from Listing 7 will

trigger only on the most recently matched move element, so this garbage collection

is necessary only for the controlled partition. Standard OPS5 and controlled

PRIOPS conflict resolution strategy results in an execution for collect-old-move

that binds the most recent move element to the first condition element, and the

older move element to the <older> second condition element, which collect-old-

move removes from working memory. This collection occurs after all automatic

use of working memory elements, including the most recent move, is done.

(p collect-old-move 0 ; 2 moves shown, 1 outdated
(move ˆdirection <way>)
{(move ˆdirection <> <way>) <older>}
->
(remove <older>)

)

Listing 8 - A priority 0, controlled garbage collection production

5.5 Learning and Learned Productions

Learning rules build automatic productions for escape in subsequent traversals

of the current maze. Learning rules execute only upon PROGRAM exit from the

maze. They examine visited records in working memory and write production

definitions to a file for later compilation. Their priority allows garbage collection

productions to work before commencing learning.

- 79 -

-- --

The maze program learns an escape route by using a primitive form of

production chunking. Chunking uses knowledge acquired during a problem solving

episode to build specialized productions that embody that knowledge, thereby

avoiding comparable searches in the future. In the SOAR production system,

chunking is an inherent component of the architecture [52]. SOAR uses both

domain knowledge and generic weak search methods to search problem spaces, and

automatically builds chunk productions that avoid repeated searches [49,53]. The

PRIOPS maze program uses maze-specific productions to build its chunks.

Learned productions trigger on the present location of the PROGRAM. Only

when the HUMAN blocks the escape route will these productions fail to trigger in

a learned maze. At other times they preempt all other matching and actions in the

production system. These productions are of course not present for a novel maze.

Listing 9 shows learning production learn-pass-up, followed by the learned

escape production auto-24-1-up.

Maze learning proceeds after a successful escape by performing a depth-first

search from the EXIT along paths traversed by the PROGRAM. A learn memory

element directs the search similarly to the inspect elements for initial maze

exploration from Listing 6. The left-hand-side of learn-pass-up joins a learn and

visited record to build a link from the visited element’s location to a location

already examined in the learning search. For this production, the original escape

route included an up move from the visited location to an adjoining location. Join

- 80 -

-- --

(p learn-pass-up -2 ; translate declarative memory into auto production
{(learn ˆstatus learning ˆdirection up

ˆfromx <endx> ˆfromy <endy>) <passed>}
{(visited ˆvisits < 10000 ˆx <endx> ˆy <endy>) <memory>}
; spot was visited
->
; first write the learned production
(write learnfile "(p auto-" <endx> "-" <endy> "-up 127")
(write learnfile " {(sensors ˆup-sense <> human ˆx "

<endx> " ˆy " <endy> ") <sensing>}")
(write learnfile " {(lastmove) <oldmove>}")
(write learnfile " ->")
(write learnfile " (remove <sensing>)")
(write learnfile " (modify <oldmove> ˆdirection up)")
(write learnfile " (call move up))")
; learned production written, now make this the new dest.
(remove <memory>) ; not needed any longer
(modify <passed> ˆstatus done)
(bind <up> (compute <endy> - 1))
(bind <down> (compute <endy> + 1))
(bind <left> (compute <endx> - 1))
(bind <right> (compute <endx> + 1))
(make learn ˆstatus learning ˆfromx <endx> ˆfromy <up>

ˆdirection down)
(make learn ˆstatus learning ˆfromx <endx> ˆfromy <down>

ˆdirection up)
(make learn ˆstatus learning ˆfromx <left> ˆfromy <endy>

ˆdirection right)
(make learn ˆstatus learning ˆfromx <right> ˆfromy <endy>

ˆdirection left)
)

(p auto-24-1-up 127
{(sensors ˆup-sense <> human ˆx 24 ˆy 1) <sensing>}
{(lastmove) <oldmove>}
->
(remove <sensing>)
(modify <oldmove> ˆdirection up)
(call move up)

)

Listing 9 - Maze escape learning and a learned escape automatic production

- 81 -

-- --

tests match the ˆx and ˆy fields of the joined memory elements. The ˆvisits < 10000

test prunes locations that are part of dead-end paths. Dead-end detection code

marks visited records with a ˆvisits value of 10000 during the original maze search.

The write actions on the right-hand-side of learn-pass-up generate production

text such as that of auto-24-1-up in Listing 9. Learn-pass-up builds the location

into this learned automatic production, making it extremely specific. At priority

127, its matching preempts all other matching and, when matching succeeds, any

other queued processing remains queued while the right-hand-side of auto-24-1-up

executes. When auto-24-1-up moves the PROGRAM to an adjacent location that

triggers another priority 127 learned production, all lower priority processing

continues to wait. Auto-24-1-up shares its initial ˆup-sense test with all other

auto-X-Y-up learned productions. In addition, this production shares the ˆup-sense

<> human ˆx 24 test sequence with all other auto-24-Y-up productions. Recent

work on chunking in SOAR has concentrated on trading generality for matching

speed by generating efficient unique-attribute chunks instead of generalized multi-

attribute chunks that create large join cross-products [93]. PRIOPS automatic

productions take this approach to an extreme, trading generality for both speed and

speed predictability by compiling O(1) unique-event chunks. The next section

demonstrates performance gains achieved by learning automatic reactions.

- 82 -

-- --

5.6 Maze Statistics

I ran the PRIOPS maze program on an AT&T PC-6300, which contains an 8

MHz. 8086 processor and an 8087 math coprocessor. PRIOPS was compiled using

Microsoft® C 5.1 with the "/Oti /Gs /AL /FPi" compile switches for optimization,

memory management, and floating-point library selection; the maze application

itself uses no floating point processing. Both controlled and automatic execution

use the PRIOPS intermediate run-time code, so execution time increases caused by

op code interpretation penalizes both partitions. The PRIOPS compiler comprises

about 12,000 lines of C code.

An additional 800 lines of C code support the maze environment, and the

maze’s PROGRAM itself is coded in 940 lines of PRIOPS productions. Referring

to Figure 8, there are 2 initialization, 9 garbage collection, 2 declarative memory

maintenance, 31 controlled maze search, 1 controlled move, and 14 learning

productions. There are 24 HUMAN avoidance, 5 EXIT approach, and 1 automatic

move productions. Learning acquires 116 automatic productions of the type in

Listing 9 for the maze of Figure 7.

With no interference from the HUMAN, the PROGRAM takes 909 seconds and

566 moves (1.6 seconds/move) to discover a 104 step path to the EXIT for the

maze of Figure 7. Post-exit learning uses an additional 172 seconds.

Learning automatic behavior improves performance dramatically. Automatic

- 83 -

-- --

escape productions reach the EXIT in 34 seconds and 104 moves (.33

seconds/move). Then the PROGRAM sits at the EXIT for 21 seconds running

matching for deferred production tests. Listings 6 and 8 help illustrate the source

of this delay. Note that the two controlled productions of Listing 6 (and many

other controlled productions as well) trigger on sensors elements. Now examine

auto-24-1-up in Listing 9; it, too, matches sensors elements. During learned-

production escape from the maze, priority 127 matching of productions such as

auto-24-1-up defers any controlled matching required for sensors elements. Only

when the PROGRAM reaches the EXIT, and no automatic productions are firing

preemptively, can deferred controlled matching execute. This deferred matching

for productions such as newly-arrived causes the 21 second delay. Optimal coding

of controlled productions would eliminate this delay, but the point here is to

illustrate the effect of priority-based matching deferral in PRIOPS.

If we change the priority of learned productions like auto-24-1-up to 0, thereby

placing them into the controlled partition, the escape statistics change. Now learned

escape, acting in the controlled partition, takes 64 seconds and 104 moves (.62

seconds per move), and 2 seconds for termination. There is no deferred matching,

since all controlled matching completes before controlled partition conflict

resolution. It is also noteworthy that the total time for automatic escape is 11

seconds less than the total time for controlled escape. How does automatic

matching achieve this speedup? By combining assertions and retractions of

- 84 -

-- --

working memory elements where possible. The most recent token arriving at an

automatic Rete node input supplants earlier tokens, eliminating their match time.

With the storage capacity of an automatic register limited to one, automatic

matching need only consider the most recent working memory change that arrives

at or beyond the first register node in an automatic path. When several memory

change tokens await processing at a single automatic node input, all but the last are

discarded. Note the <oldmove> operations of auto-24-1-up in Listing 9. A modify

operation in standard Rete works by emitting two messages: a delete for the old

working memory element (the former last move in this production), and an add for

the modified copy of the deleted element (the current last move). Standard Rete

propagates both messages down matching paths as far as successful tests allow.

When auto-24-1-up is priority 0, both modify-generated messages traverse full

priority 0 Rete paths. When auto-24-1-up is priority 127, the replacing add

message supplants the delete message at the first register node. With no pre-join

tests for lastmove, that register is the first Rete node target in the automatic

network. No matching or propagation occurs for the delete message.

This elimination of modify oldmove’s delete propagation through automatic

partition matching reduces learned escape processing from 66 seconds to 55

seconds, a reduction of 16.6%. The automatic partition insistence on bounded

resources forces it to reuse memory, thus avoiding some search as well as garbage

collection. Controlled matching cannot use this enhancement, since multiple

- 85 -

-- --

memory elements may match a single condition element at a given time. Therefore

the PRIOPS automatic partition provides not only O(1) matching with preemptive

priorities, but also provides opportunities for additional speed enhancements

beyond the capabilities of standard Rete.

Forgy gives the best-case effect of working memory size on number of memory

change tokens as O(1), and the worst-case effect as O(WC) (where W is the

number of elements in working memory and C is the number of condition

elements in a production). Best-case effect of working memory size on time for

one firing is O(1), and worst-case effect is O(W2C-1) [25,27]. With maximum C

known for a non-learning production system at compilation time, worst case effects

of working memory size on the number of memory change tokens and firing time

is polynomial. For automatic Rete, PRIOPS reduces the worst-case compile-time

complexities to the best-case, O(1). While there are many problems that automatic

matching cannot address, it does not waste computational time on anticipated

reactions. We can expect that the more readily automatic processing meets a

problem’s demands, the more drastic performance improvements will be.

- 86 -

-- --

6. PRIOPS INTERNALS

Previous chapters used examples to illustrate PRIOPS’ application of various

Rete node types. This chapter gives an overview of PRIOPS implementation

internals. Focus is on mechanisms important to run-time support of PRIOPS

programs, starting with key data structures. Non-programmers may wish to limit

their reading of this chapter to this introduction. Skipping subsequent sections will

result in loss of implementation detail.

Section 6.1 discusses working memory. Working memory is the short-term

store of production systems. This section examines composition of individual

working memory elements, and aggregation of elements into working memory.

Restrictions on working memory operations in automatic productions assist in

guaranteeing constant-time-bound execution.

The following sections concern themselves with (long-term) production

memory. The most expensive (and therefore from an implementor’s perspective,

important) production-oriented activity is matching working memory changes to

left-hand-side tests in the Rete network. Because PRIOPS is based on an

underlying uniprocessor machine, concurrent execution of pending Rete activities is

not possible. While a single working memory change may require testing at

several Rete nodes, only one node can test at any time. Other test activities must

wait, so Section 6.2 discusses priority queues where deferred Rete activities wait.

- 87 -

-- --

Section 6.3 treats conflict set priority queues, where production instantiations wait

for execution or retraction. In the automatic partition, both sets of queues support

O(1) insertions and deletions.

The next sections illustrate internal actions and external interactions of the

now-familiar PRIOPS Rete node types. Pseudo-code outlines the behavior of each

Rete node type. Forgy provides a similar discussion for the LISP-based Rete node

types of OPS2 [25, p. 81-87]. OPS2 nodes correspond to PRIOPS controlled nodes,

while the automatic nodes of this chapter are unique to PRIOPS. For this reason I

begin with controlled Rete. Controlled Rete has all of the power of standard OPS

Rete, while supporting additional operations such as lexicographical symbol

comparisons. Automatic Rete must support O(1) reactivity down to the bottommost

level of code. It is not enough to design an elegant, apparently O(1) algorithm, if

its implementation inadvertently uses some non-O(1) routine. For this reason I

supply detailed pseudo-code descriptions of node behaviors. The individual

sections and node types are:

• 6.4 The Rete Network - this section discusses interconnection of node
types into a net, and the accompanying interactions.

• 6.5 The Pre-join Test Node - this node type tests conditions within a
single working memory element.

• 6.6 Controlled Memory Node Types - these node types store variable
numbers of working memory combinations that satisfy sequences of
condition elements.

- 88 -

-- --

• 6.7 The Controlled Join Node - this node type tests conditions across
multiple working memory elements and builds memory element
combinations.

• 6.8 The Controlled Not Node - this node type also tests conditions across
multiple working memory elements, but it inhibits processing of working
memory combinations that satisfy its tests.

• 6.9 The Controlled Instance Node - this node type manages insertion (and
deletion) of production instantiations into (from) the conflict set.

• 6.10 Automatic Register Node Types - unit-size counterparts to controlled
memory nodes.

• 6.11 The Automatic Join Node - the O(1) counterpart to the controlled
join node. It is O(1) because it tests a single combination of working
memory elements for a single working memory change.

• 6.12 The Automatic Not Node - the O(1) counterpart to the controlled not
node.

• 6.13 The Automatic Instance Node - the O(1) counterpart to the controlled
instance node. It allows only one instantiation of its production.

Section 6.14 resumes discussion of garbage collection of working memory

elements begun in the maze chapter. Here the focus is on time-constrained

recovery of structures internal to PRIOPS. Once again, the thrust is deferral of

garbage collection during automatic processing, with resumption of this activity

upon return to controlled processing. Section 6.15 discusses two inference drivers,

the controlled inference driver and the automatic inference driver. These

procedures initiate and manage activity in the Rete network and conflict set. Like

automatic Rete nodes, the automatic inference driver must exhibit O(1) behavior.

Both drivers must deal with the potential for critical section problems that comes

- 89 -

-- --

with interrupt handling and interleaved process execution. The chapter ends with

Section 6.16, which discusses the PRIOPS compiler and generated code. Appendix

A documents the syntax and semantics of the implementation of PRIOPS written

as part of this research. Appendix B gives an overview of source code organization

for this implementation.

6.1 Working Memory

The structure declarations of previous chapters provide much information about

working memory element formats. A PRIOPS working memory element occupies a

contiguous area of memory, similar to a C struct or a Pascal record. PRIOPS

accesses int fields as 4-byte C long integers, float fields as 4-byte C single

precision floats, and symbol fields as 4-byte C pointers to structures that describe

corresponding symbols. Symbol construction stores each distinct symbol uniquely

as in LISP [4], so symbol pointer comparisons for equality and inequality consume

constant time. While PRIOPS supports symbolic computing from the programmer’s

point of view, compilation transforms symbol manipulation down to non-symbolic

computation wherever possible, especially for automatic processing.

Strong typing of working memory element fields avoids run-time testing of

field type tags. While run-time type tag testing would be an O(1) activity, it would

still consume time. Run-time testing would allow type mismatches to go

undetected during compilation. A future version of PRIOPS might allow untyped

- 90 -

-- --

fields (with all of the accompanying penalties) for controlled productions. It is

doubtful that automatic productions, which are by nature special-purpose, will

require this flexibility.

Chapter 4 also mentioned mapping user-defined symbol sets into constant-

space-bound bit maps at compile time. The size of bit maps, implemented as arrays

of C unsigned short integers, depends on the number of symbols in the PRIOPS

set declaration. Using bit maps, machine operations accomplish intersection

(bitwise AND of the operands), union (bitwise inclusive-OR of the operands), set

difference (bitwise AND of the left operand with the one’s complement of the right

operand), and membership test (bitwise AND with a bit mask and test for non-

zero) in constant time. Examination of OPS5 and other LISP-based programs led

me to discover that much symbol usage can be mapped into set based operations.

An individual bit map stores information more compactly than a list of equivalent

symbol pointers. Operations over a dense bit set (i.e., one that contains most

members of the underlying universe) are faster than operations that iterate over a

list of symbols. For sparse sets and sets intended to hold only one symbol at a

time, symbol arrays and individual symbol fields are available.

Each working memory element contains a) fields specified by the programmer

in a structure declaration, b) a time stamp, and c) links to the rest of working

memory. The time stamp (a long integer) is the basis for the recency comparisons

of PRIOPS’ conflict resolution. Each PRIOPS make operation increments the

- 91 -

-- --

global time stamp counter and assigns this value to the new working memory

element it makes.

Working memory is a doubly-linked list, chained together by the two links in

each working memory element. Even though this is a simple sequential list,

remember that Rete matching does not search working memory. Instead, each

working memory change traverses the Rete net. Assertions (at the head of the list)

and retractions (from any location in the doubly-linked list) take constant-bound

time to adjust a maximum of four pointers (two for retractions). The only time

PRIOPS traverses working memory as a sequential list is during user debugging

queries, queries that do not occur at production run-time.

Initialization of a new working memory element sets all numeric fields to zero,

all set fields to empty, and all symbol fields to the unique nil value. Because this

element initialization consumes time, the controlled inference driver maintains a

ready list of initialized elements potentially needed during bursts of automatic

activity. I discuss ready list maintenance later in this chapter.

Restrictions on tests and operations allowed in automatic productions keep

these productions constant-time-bound. Constant-time machine instructions support

numeric type conversion and arithmetic operations. Automatic productions may

therefore freely intermix integers and floats, applying all relational and arithmetic

operations to them. All set operations work in constant time, and may therefore

appear in automatic productions. Set operations include both those already

- 92 -

-- --

discussed, and tests including equality, inequality, superset (>=), proper superset

(>), subset (<=), and proper subset (<).

Tests for symbol equality and inequality rely on the fact that PRIOPS stores

each distinct symbol only once. These tests use constant-time machine pointer

comparisons, and can appear in any production. Working memory field operations

that depend on symbol string length may not appear in automatic productions.

Most such operations are O(n) on the length of symbol strings, and include

lexicographical order tests, coercion of symbol values to values of other types,

coercion of values of other types to symbol values, and string concatenation.

Restricting maximum symbol string size would make these operations O(1) in a

sense - the compiler would always assume a maximum string length - but such

restriction would provide only weak, worst case limits. PRIOPS allows the

programmer to write these operations in the controlled partition, staging

information for the automatic partition. The automatic partition may use symbols,

it simply may not acquire them.

Built-in right hand side text file input-output is restricted to controlled

productions, both because of arbitrary text length, and because the operating

system that provides file I/O for current PRIOPS (Microsoft® MSDOS 3.1) is not a

time-constrained system. Time-constrained application specific I/O is much of the

purpose of the automatic partition. O(1) custom C input drivers supply data to the

automatic partition using PRIOPS make, remove and modify procedure calls.

- 93 -

-- --

Automatic productions supply data to O(1) custom C output drivers using the call

operation from production right hand sides. C drivers have access to the same

memory element and field operations that automatic productions have. In most

cases these drivers will be short routines, with automatic production sequences

performing the bulk of time constrained work.

The symbol table entry for each structure declaration maintains additional

information needed at run-time. This information includes offsets of symbol fields

(for initialization to the nil value); ready list and garbage list information (the latter

is for removed elements whose remove matching is not yet complete); priority of

elements of the structured type (inherited from the highest priority production

matching the structured type); and a pointer to the Rete node where matching for

this structured type commences.

6.2 Matching Priority Queues

PRIOPS’ uniprocessor implementation requires storing the state of deferred

processes in a data structure until these processes execute. Even multiprocessor

Rete systems, which support more processes than hardware processors, must record

deferred process states [31]. When a working memory change propagates down

Rete paths, it usually arrives at several Rete nodes, often in parallel. PRIOPS keeps

waiting match processing in a series of matching queues. Queues allow O(1)

insertion and deletion of entries. First-in, first-out (FIFO) queuing discipline

- 94 -

-- --

ensures that more recent working memory changes arrive at Rete nodes later than

earlier changes. Order of arrival is important in the automatic partition, since the

most recently arriving memory change token at or beyond the first register node in

a path, replaces any earlier arrivals. FIFO queuing ensures that the most recent

arrival represents the most recent memory change affecting a Rete node.

PRIOPS maintains separate sets of queues for automatic and controlled

matching. Each set is an array of queues, with one queue per priority value.

Supported priorities are 1 to 127 for automatic productions, and -128 to 0 for

controlled productions.* The automatic inference engine uses the former, and the

controlled inference engine uses the latter. Each queue is a first-in, first-out

singly-linked list. Partitioning queued matching activity by priority allows fast

access to the highest priority pending process; the priority of this activity resides in

a global variable, which when used as an index, provides rapid O(1) access to the

correct queue. When the highest priority queue becomes empty, it may be

necessary to iterate over lower priority queues in search of deferred, lower-priority

activity. With the number of queues constant bounded at compile time, this

iteration is O(1).

_ ______________

* Implementation considerations determined the range of priority values: a
priority fits compactly into an eight-bit byte.

- 95 -

-- --

Each queue entry constitutes a message to a Rete node. A working memory

change enqueues a message for the Rete node at the start of test paths for the

memory element’s structure type. Each Rete node likewise enqueues messages for

descendant nodes. Each message represents deferred processing of the working

memory change for a single Rete node. Deferred processing becomes active when

a message arrives at its Rete node. A message contains three pieces of

information:

• A pointer to the target (destination) Rete node.

• A pointer to the working memory token.

• The action (add or delete) to perform on the token at the target.

The target is the Rete node that tests or stores the working memory change.

The node may be controlled or automatic. The priority of the target Rete node

determines the priority queue when a enqueuing a new message. The structured

type of a changed memory element determines its initial target Rete node.

The token represents the working memory change to be tested. The token

pointer is a direct pointer to a changing working memory element for pre-join Rete

nodes. Each pre-join node tests a field within a single memory element against

constants or against other fields in the same element. When its test succeeds, a

pre-join node passes the token to descendant pre-join and memory nodes. Starting

with an initial join, tests examine joined combinations of memory elements. A

single post-join token represents a combination of working memory elements that

- 96 -

-- --

satisfies the most recent join’s tests and all preceding tests. From the first join

onward a token pointer points to an array of (joined) pointers to contributing

working memory elements. The controlled memory or automatic register node

following a join or not node stores these arrays of direct pointers. A join of two

pre-join tokens, for example, will create an array of two pointers to contributing

memory elements; the memory (or register) node descendant from the join node

stores this array. The memory elements of this token array satisfy all of the pre-

join tests of their respective condition elements; in addition, they satisfy the inter-

condition element tests of the two condition elements. The token pointer for the

message out of this join node (to descendant Rete nodes) after join completion is a

pointer to the array of pointers to memory elements.

Each Rete node reacts to adds and deletes of tokens. An add results from a

working memory element make, a delete from a remove. The right hand side

modify operation sends both delete (for the original) and add (for the modified

copy) messages. All PRIOPS add messages require execution of pre-join and join

tests to determine successfully matched tokens. Post-join deletes can examine

memory (or register) nodes for departing tokens, avoiding redundant execution of

matching tests.

Both join and not nodes are two-input nodes - they join the messages of

predecessor memory and register nodes. A message to a two-input node must tell

it the incoming direction of the message. Consequently two-input nodes require

- 97 -

-- --

four action types: add and delete (from the left input), and radd and rdelete (from

the right input). The memory node sending a message to a join node sets the action

type when it enqueues the message.

6.3 Conflict Set Priority Queues

A satisfied production’s execution consists of its right-hand-side actions. OPS5

has a serial model of production execution. Although productions can share

matching tests, and several production instantiations* can enter or leave the conflict

set during a single inference cycle, conflict resolution selects only one instantiation

for execution in a single inference cycle. PRIOPS goes further, allowing matching

and execution of a higher-priority automatic instantiation to interrupt lower priority

execution. Nonetheless, some production instantiations must wait in the conflict set

while others run. Only one instantiation at a given priority executes at a time, and

only one controlled instantiation executes at a time. PRIOPS uses queues to hold

conflict set instantiations.

Like matching queues, the automatic and controlled conflict sets are arrays of

queues. Again there is one linked queue per priority. Access to the highest-priority

conflict set is through fast indexing of a global variable. Each queue entry

_ ______________

* An instantiation is a production plus a combination of working memory
elements that satisfy the production’s condition elements.

- 98 -

-- --

represents an instantiation that is ready for execution. A single queue entry

contains the following information:

• Linkage to information for the satisfied production.

• A pointer to the working memory token that satisfies the production.

• Sorted time stamps for the token.

Production linkage provides access to several important pieces of information.

Foremost is a pointer to right hand side code for execution when the production

runs. This executable code receives two arguments, a pointer to the instantiation

token, and a pointer to storage for variables bound on the rule’s right hand side.

The production linkage provides access to this second pointer. Whereas variables

bound on a rule’s left hand side represent fields in working memory elements that

exist prior to rule triggering, variables bound on a rule’s right hand side require

temporary storage during rule execution. Only one instantiation of a given rule can

execute at a given time.* Consequently, for RHS variables the compiler allocates

static storage, which each execution of a rule reuses.

Additional pointers link an instantiation to its contributing instance Rete node.

This node manages changes to the set of instantiations for a given production

_ ______________

* Automatic preemption can allow one rule’s execution to interrupt another rule’s
execution, resulting in interleaved right hand side processing. However, the
interrupting rule will always be of higher priority, and therefore a different rule.

- 99 -

-- --

caused by working memory changes. We will examine this node type in the

section on Rete nodes.

The sorted time stamps are simply copies of time stamps in the working

memory elements that compose the token. Time stamps are sorted according to the

current conflict resolution strategy for fast token-to-token comparisons. Each

conflict set priority level maintains its instantiations in sorted order. As stated in

previous chapters, automatic conflict resolution uses memory element age to

resolve conflict among instantiations at a single priority, so time stamps are sorted

with the oldest first. Controlled lex (lexical) strategy (as in OPS5) uses recency of

memory elements, while the mea (means-ends analysis) strategy gives special

weight to the recency of a memory element matching a first condition element.

Controlled time stamps are sorted according to strategy.

6.4 The Rete Network

The introduction to this chapter enumerates and summarizes the Rete node

types. While each node type exhibits distinctive behavior, all types perform several

common activities. Fields supporting generic node processing are:

• The priority of the node.

• The node type tag.

• Location and size information for executable test code.

- 100 -

-- --

• Information about contributing productions.

• Linkage to sibling and descendant nodes.

Figure 6 of Chapter 4 showed priority values attached to Rete nodes. The type

tag is an enumerated value that shows a node’s type (e.g., pre-join test node or

automatic not node). The type tag serves as an index into a table of node handler

procedures, defined in this chapter. When the inference engine sends a dequeued

message to a Rete node, it calls the node’s handler by way of the type tag.

Executable test code applies only to test nodes: pre-join, join, and not nodes.

This code performs tests compiled from source condition elements. It returns a

success or failure flag that determines the fate of token propagation to node

descendents.

Information about productions whose left hand sides contribute to a node, is

presently useful for debugging. Currently PRIOPS does not support the excise

command for dynamically eliminating productions; production information at a

Rete node will allow a future implementation of excise to identify and recover

storage for Rete nodes associated only with departing excised productions. OPS5

does not recover Rete nodes for excised productions. Instead, it continues to

perform all matching operations for all excised productions before noting that they

should not fire [15, p. 242-243].

Inter-node linkage allows organization of Rete nodes into a network. All nodes

contain sibling and descendent links. Suppose we compile the two productions of

- 101 -

-- --

(p high 127
(type1 ˆa 1 ˆb 2 ˆc <C>)
(type2 ˆx 3 ˆy 4 ˆz <C>)
->
RIGHT HAND SIDE

)

(p low 1
(type2 ˆx 3 ˆy 9 ˆz <Z>)
(type2 ˆx 3 ˆy 4 ˆq > <Z>)
->
RIGHT HAND SIDE

)

Listing 10 - Two productions with shared tests

Listing 10. We wind up with a Rete net that looks like Figure 9. The leftmost

pre-join chain performs constant tests for condition element one of production

high. The type2 tests diverge to perform constant tests for the two second

condition elements (ˆy 4) and the first condition element of low (ˆy 9). Priority

numbers decorate the nodes of Figure 9.

Figure 10 shows the network of Figure 9, redrawn to show actual

implementation links. Each Rete node has a minimum of two linkage pointers - a

descendant pointer and a sibling pointer. When alternative paths descend from a

node such as the first type2 node of Figure 9, the descendent link points to the

descendent node with the highest priority. Matching finds other direct descendents

by traversing the sibling chain, which is sorted by priority in descending order.

- 102 -

-- --

Figure 10 shows the (priority 1) ˆy 9 test for type2 as the right sibling of the

higher priority (127) ˆy 4 test. After performing the ˆy 4 test, matching will

enqueue the lower priority message and continue to dequeue priority 127 messages

and send these messages to their targets, until priority 127 matching completes. If

any priority 127 production is then instantiated, the priority 1 messages will remain

in their queues during conflict resolution and execution.

Each two-input node has two parents, one supplying messages to its left input

and one supplying messages to its right input. The join nodes of Figure 9 are

examples. Consequently, register nodes (and memory nodes in the controlled

partition) may have two descendants, requiring left and right descendant pointers.

The two-input nodes themselves contain left and right sibling pointers to connect

to other descendants of the respective left and right parent registers (memories).

The center register of Figure 9 has two descendents. Figure 10 shows the resulting

right descendent / right sibling chain. Again the sibling chain is sorted by priority

to enable deferral of lower priority matching. Two-input nodes also have left and

right parent pointers (not shown), because upon receiving a message from one

input, join tests must consult the opposing register (memory).

In addition to core fields just discussed, each Rete node type supports fields

specific to its functionality. The following sections examine the assortment of

node types. A small section of pseudo-code that outlines the behavior of a node

type’s handler accompanies each description.

- 105 -

-- --

6.5 The Pre-join Test Node

6.5.1 Basic Pre-join Behavior

The pre-join node type contains no extra fields. It links to executable code that

tests a single field of a single memory element token against constants and other

fields within the memory element. Pre-join is the only type of node that controlled

and automatic partitions may share. Because the compiler will not allow non-O(1)

tests for automatic productions, all pre-join tests in the automatic partition run in

constant-bound time. Here is the pre-join handler:

1. Pass the memory element reference to the compiled code.
The latter returns success or failure.

2. If tests succeed

Enqueue the current token and action for transmission
to the descendant node.

3. Enqueue the current token and action for transmission
to the sibling.

The enqueuing procedure identifies the correct queues for descendants and

siblings, based on their priorities. All Rete nodes enqueue messages for their

siblings regardless of test results, because siblings represent alternative test paths.

The pre-join node does not distinguish between add and delete actions.

Matching occurs for both cases. A pre-join node retains no local memory of added

tokens that it has previously passed to descendents, so it must use matching to

- 106 -

-- --

determine whether to propagate a delete message. Returning to Figure 9, the first

type2 node will pass added tokens satisfying ˆx 3. The node could retain local

memory of the added tokens it has propagated. Delete matching would then require

a search of this local memory. The node would send delete messages to

descendents only for tokens in its local memory. However, pre-join tests are

simple. In many cases they operate more quickly than a scan of local memory.

While not necessarily improving performance, local memory would consume

storage. Finally, join matching time dominates the performance of Rete. Therefore,

pre-join nodes perform their simple matching tests for both add and delete actions,

retransmitting successful matches to descendants.

6.5.2 Pre-join Message Queuing

Message queue entries for automatic pre-join nodes show an important

difference from other automatic node types. Because of the possibility of multiple

instantiations for a single controlled production, there may be multiple messages in

queue for a single controlled Rete node at one time. Conversely, any new memory

element that completely matches the pre-join tests of an automatic condition

element supersedes all previous matches for that condition element. The maximum

number of queued messages for automatic nodes including and following the initial

register node in a chain is therefore one per node input. A new automatic message

always replaces any older queued message for these automatic node inputs.

- 107 -

-- --

At first glance it might appear that by not allowing controlled and automatic

productions to share individual pre-join nodes - that is, by compiling completely

distinct controlled and automatic Rete nets - the maximum number of messages in

queue for an automatic pre-join node might reduce to one. This reduction is not

possible. To see why, consult Listing 10 and Figure 9 again. Suppose the following

three make actions occur:

(make type2 ˆx 3 ˆy 4 ˆz -1) ← call this element 1

(make type2 ˆx 3 ˆy 9 ˆz 5) ← element 2

(make type2 ˆx 3 ˆy 4 ˆz 11) ← element 3

All three messages enter the priority 127 queue with an identical target: the

first type2 pre-join node. It is not possible to reduce these three to one at the first

pre-join node, because element 2 will propagate to the rightmost register, while

elements 1 and 3 will propagate to the center register, with element 3 replacing 1.

Elements 1 and 3 satisfy all of the pre-join tests for the condition elements

associated with the center register node.

We see that automatic pre-join nodes do allow queuing delays. In this context

I repeat a statement from subsection 3.1.3 on automatic priorities: Worst case

response time for a process of a given priority is the sum of the inherent process

time plus the times for all other processes of equal or greater priority plus context

- 108 -

-- --

switching time, over some encompassing time period in which all of these

processes may run. The latter clause concerns us here. Suppose a reactive

processing chain can respond to a triggering environmental event in 5 milliseconds.

If the event in question actually occurs once per millisecond, then the constant-

time-bound reactive processing is simply not fast enough for the environmental

problem. PRIOPS can guarantee the processing time for automatic reactions, as

long as the arrival rate for events does not saturate that processing time. Stated

simply, automatic matching can guarantee response times only if the system

designer can guarantee maximum event arrival rates. This condition is true for any

system that takes non-zero time to respond to an event. Given that the system

requires finite time, one can always propose arrival intervals shorter than that time.

For critical pre-join paths, the PRIOPS programmer should use distinct

structure types for controlled and automatic condition elements. Distinct types will

keep memory changes intended purely for controlled processing from forming

queues at automatic pre-join nodes. Some redundant node generation will occur

because controlled nodes may repeat the tests of automatic nodes, but controlled

information will not impede automatic data flow.

While we have not yet examined other automatic node types in detail, it is

worthwhile to continue tracing the three make operations through the network of

Figure 10. The make operations might occur outside of any rule - either from an

initialization file or from user keyboard input when PRIOPS is not in production

- 109 -

-- --

run mode. These make operations might also occur in the right hand side of an

executing production whose priority is greater than or equal to the priority of the

Rete node targets of the make operations (priority 127 in this example). In such

cases all three makes enter the priority 127 queue with add messages for the first

type2 node. Because they were made together without interruptions, they arrive

together at the head of the queue without intervening messages.

Now consult Figure 10. The first type2 node processes the messages in turn,

finds that they satisfy its test, and enqueues them for its priority 127 descendant.

Again the messages reach the head of the queue together. Element 1 satisfies the ˆ

y 4 test, so the second pre-join node enqueues an add message for its descendent

register node, then enqueues an add message for its sibling (priority 1) pre-join

node. Element 2 does not satisfy the second node’s test, so this element enters only

the priority 1 queue with the sibling as a target. Finally, element 3 satisfies the

second pre-join node test, and the act of enqueuing element 3 for the register node

overwrites the element 1 message with the element 3 message. Having satisfied all

pre-join tests for a condition element, element 3 cancels matching for other

elements satisfying that automatic condition element.

In the absence of type1 memory elements, priority 1 matching will eventually

advance memory element 2 to the rightmost register node. Elements 1 and 3 fail to

traverse this path. The join test fails (ˆq, with a default value of 0, is not greater

than ˆz’s value of 11), so propagation ends at the first-level register nodes.

- 110 -

-- --

Now suppose that the three make operations occur in the right hand side of a

production whose priority is lower than that of the first target Rete node for the

makes - lower than 127 in this example. The right hand side make actions might

enqueue all three makes together, as in the case we just examined. Alternatively,

finding the make matching to be higher priority than that of the current production,

the first make might suspend the making right hand side and proceed with priority

127 matching for element 1. Possible design alternatives are:

Make execution of a rule’s right hand side atomic. Working memory
operations merely enter their queues until the rule finishes.

Suspend the current right hand side execution when the change has a
target node of greater priority than the currently executing
production. Perform right hand side working memory changes in
the order specified by the programmer.

Suspend the current right hand side execution when the change has a
target node of greater priority than the currently executing
production. Allow the compiler to rearrange run-time order of right
hand side working memory changes so that the highest priority
change occurs first.

Atomicity of right hand side operations argues for the first alternative,

responsiveness to priorities argues for the others. In chosing the second alternative

for PRIOPS, I have opted for responsiveness to priorities and flexibility for the

PRIOPS programmer. PRIOPS performs right hand side working memory changes

in the order specified by the programmer. This choice is in keeping with the OPS5

tradition of performing condition element tests in programmer-specified order,

rather than rearranging them in attempts at optimization.* Making all right hand

- 111 -

-- --

side executions atomic would disable the programmer from intentionally ordering

memory change actions for sequencing effects. Automatically reordering memory

change actions would likewise take sequence control away from the programmer.

The programmer is free to achieve the effects of the other design alternatives

through appropriate programming. Right hand side suspension occurs only when

the memory change invokes higher priority automatic matching. Other memory

changes wait in appropriate matching queues.

Recall from the chapter on human controlled-automatic processing, that a key

function of strategic controlled productions is rapid enabling and disabling of sets

of related automatic productions. The PRIOPS programmer achieves atomicity of

right hand side actions by disabling higher-priority automatic productions while

sending non-enabling memory change messages to them. When all non-enabling

memory change actions are done, the running production makes the enabling

working memory element, and higher priority matching commences.**

With this programming flexibility comes responsibility. Let us return to Figure

10 and examine the effects of our three make examples when they occur in an

_ ______________

* OPS5 also performs right hand side actions in programmer-specified order,
which is immaterial since OPS5 does not provide preemption or priority-based
match scheduling.

** For example, if automatic production react contains condition element (enable
ˆproduction react), the lower priority right hand side does not (make enable
ˆproduction react) until it has made other messages for react.

- 112 -

-- --

executing right hand side with a priority of 0. The make of memory element 1

triggers matching immediately, suspending the lower-priority production. Element

1 propagates by itself to the center register node. With no higher priority rules

instantiated, the interrupted production resumes execution, makes element 2, and

again waits for matching. Element 2 propagates to the right register node in

Figure 10. This time the join test succeeds (ˆq, with a default value of 0, is greater

than ˆz’s value of -1), so production low (at priority 1) enters the automatic conflict

set. Being automatic and more salient than the suspended production, low executes.

Eventually the (priority 0) suspended production will resume - all executing

productions complete unless an interrupting production halts inference - and the

make of memory element 3 will supplant the token from element 1, emptying

register nodes from the failed join onwards. But by this time, the make of element

1 has had an effect - the execution of rule low. Obviously, judicious use of

enabling and disabling working memory changes is necessary when the effects of

lower priority actions on higher priority matching must be serialized.

The discussion of pre-join matching has required detailed examination of the

actions of PRIOPS priority matching queues. Priority-based match scheduling is

unique to PRIOPS. Standard OPS5 Rete matching makes no use of queues. Given

that all standard Rete matching completes before conflict resolution, inter-node

communication occurs through simple procedure calls. A satisfied pre-join node,

for example, will directly call its descendants with the message. Likewise, message

- 113 -

-- --

passing to siblings is through direct procedure calls. PRIOPS requires priority

queues both because of its ability to defer portions of matching, and because more

recent matches to pre-join chains of automatic condition elements displace earlier

matches. The first-in first-out queuing discipline helps support this latter

mechanism.

Multi-processor Rete implementations do require queues of matching processes

[31], but these implementations are intended to mirror the functionality of standard

Rete at higher speeds. They do not use production priority as a key for scheduling

and deferring matching. Priority-based matching and restricted automatic memory

are the distinguishing features of PRIOPS Rete, and we are seeing that these

features have important effects.

6.6 Controlled Memory Node Types

6.6.1 Alpha and Beta Memory

I have used the term memory node for the controlled partition’s unbounded

storage mechanism, and register node for the automatic partition’s single-place

storage mechanism. In fact, each partition uses two types of storage nodes. This

discussion focuses on the simplified Rete net of Figure 11. On the left side is the

standard organization of pre-join tests and join/not nodes. Earlier illustrations show

that any chain of pre-join test nodes terminates in a memory node (register for

automatic productions), and a memory node follows each join or not node. The

- 114 -

-- --

left side of Figure 11 emphasizes the fact that the a production’s initial join

(brought about by the abutment of its first two condition elements) is the

descendant of two pre-join test chains, while subsequent joins (due to subsequent

condition elements) always have post-join left parent memories, and pre-join right

parent memories. Standard Rete supports two memory types as a result. Alpha

memory nodes terminate pre-join chains. Alpha memory has two distinguishing

characteristics: a) each token it stores is always a direct pointer to a working

memory element, and b) it may serve as a left input to some joins nodes (in cases

where it represents the first condition element in production(s)), and may serve as

the right input to others. In addition to core Rete node fields, an alpha node has

token storage fields. It also has a right descendent pointer for child joins where

the alpha memory contributes the join’s right input. Figure 11’s left side shows

that all pre-join chains except those chains representing first condition elements,

will advance their messages to right descendants (i.e., right join inputs). Only the

first pre-join chain’s alpha memory in the figure sends messages to a join’s left

input.

The descendants of join and not nodes are called beta memory in Rete

literature. Beta memory always stores joined tokens, that is, arrays of pointers to

working memory elements. A beta memory always supplies its tokens to join and

not left inputs, so it needs no right child pointer. Storage fields for joined tokens

(pointer arrays) and the absence of right descendants differentiate beta from alpha

- 115 -

-- --

memory. The beta memory has an integer field that records the number of

working memory element pointers in the joined tokens it stores. Both controlled

memory types can store dynamically varying numbers of tokens.

6.6.2 Standard versus Balanced Rete Networks

The right side of Figure 11 gives a viable alternative compilation of condition

element tests into a balanced or binary Rete network. Part of the purpose for a

balanced net is avoidance of the long-chain effect of standard Rete. Assume that

the pre-join tests labelled B, C, and D in Figure 11 have been satisfied. None of

the joins of standard Rete (AB, ABC, and ABCD in the figure) have been tested,

because the join tests require A. In contrast, the CD join of the balanced network

has completed, reducing (in this example by 1) the number of joins that must

execute when A finally arrives. The problem becomes more severe with longer

chains.

Unfortunately, balanced Rete is not always a good solution to the long-chain

problem. In fact, OPS5 encourages programmers to make use of the effect. OPS5’s

mea strategy uses a production’s first condition element to select instantiations

related to the current goal for execution. The first condition element enables

productions related to the goal expressed in its tests, and mea conflict resolution

selects the instantiation with the most recent memory element matching the first

condition element for execution (additional conflict resolution criteria break ties for

- 117 -

-- --

first element recency). Consequently, OPS5 programmers use the first condition

element to disable join matching not related to an active goal. Memory changes

may remove right input messages from disabled join nodes, so many join tests may

be avoided. This is a simple, standard OPS5 mechanism for deferring and possibly

avoiding join test processing for joins unrelated to active goals. The tradeoff is

between longer time to enable large sets of goal-related productions (making

element A in Figure 11’s left side), and more time spent processing joins unrelated

to the current goal (joining CD in Figure 11’s right side, possibly to have C or D

retracted before A ever appears). Gupta has measured assorted applications of

OPS5 and SOAR [31, Sections 5.2.6 and 8.6], and found that neither approach of

Figure 11 is a clear-cut winner. Hand coded OPS5 programs fared better with

standard Rete, because join chains were short and programmers took advantage of

the join enabling/disabling strategy. SOAR programs that learned productions

performed better with balanced Rete, because learned productions contained many

condition elements (long join chains) and SOAR programs did not take as much

advantage of deferring joins.

PRIOPS uses the standard structure on the left side of Figure 11. Long-chain

time is not a severe problem for automatic Rete because the work of automatic

joins is greatly simplified from controlled joins, to the point of O(1) complexity.

Automatic conflict resolution does not give special purpose to the first condition

element, allowing automatic productions to have their enabling/disabling condition

- 118 -

-- --

elements appear anywhere in their left hand sides (i.e., supply any join node in

Figure 11’s left side). The programmer can opt for long-chain enable time by

placing the enabling condition element early in the production left hand side.

Conversely, the programmer can opt for reduced enable time at the cost of

unnecessary joins, by placing the enabling condition element late in the production

left hand side. Given these advantages of the standard network structure, and the

fact that the standard structure is often better for hand-coded programs, PRIOPS

sticks with the standard structure.

6.6.3 Alpha Memory Handling

Next comes the pseudo-code for the (two-output) alpha memory handler:

1. If action is add token

Store the token in local memory.

Set the "right action" to "radd."

Else (delete)

Find & remove the token from local memory.

Set the "right action" to "rdelete."

2. Send the current token with the incoming action to the left child.

3. Send the current token with the "right action" to the right child
(thereby informing the join node of the message input direction).

4. Send the current token with the incoming action to the sibling.

- 119 -

-- --

PRIOPS does not enqueue controlled messages once they reach controlled

memory, because all right siblings and all descendants of controlled alpha memory

nodes are controlled nodes. All controlled matching completes before controlled

conflict resolution proceeds; controlled matching need not consider individual node

priorities. As a result, controlled nodes pass messages by direct procedure call to

siblings and children. Controlled matching uses the procedure call approach of

standard Rete to avoid unnecessary queue overhead. Controlled matching operates

only when there is no automatic matching to perform. If an incoming interrupt

triggers automatic matching during procedure-call based controlled matching, the

latter waits. Automatic matching resulting from a working memory change in a

running controlled production will not occur until after controlled matching and

conflict resolution has selected the production to run.

6.6.4 Beta Memory Handling and Token Hashing

Controlled beta node handling is simpler than alpha node handling. A beta

memory node in standard Rete has one child - a join, not, or instance node (the

latter follows the last join/not at the point of entrance into the conflict set). There

is no "right action." A beta memory node has no siblings. The beta node stores

the output of the parent join or not. While that parent node may have siblings (e.g.,

the left automatic join node of Figure 10), the beta memory, as a logical extension

to the parent node, is without siblings. Its handler is very simple:

- 120 -

-- --

1. If action is add token

Store the joined token in local memory.

Else (delete)

Remove the joined token from local memory.

2. Send the current token with the incoming action to the child.

Some implementations of Rete place the left and right (input) memories for a

join or not node into the node. Join/not nodes in these implementations do not

share memory nodes. In Figure 10, the left join node would contain two register

nodes. The right join node, which in the figure shares its right (input) memory with

the other join node, would contain distinct internal right and left memories. The

reason for this change is that standard Rete memory nodes store their tokens in

linear lists, so search time for join and not matches is O(n) on the number of

tokens in the memory opposite the incoming message.* With memory nodes

internalized, join (and not) nodes store tokens in a global hash table [31, p. 62-66].

A token’s hash key is derived from the unique I.D. of the join node and, more

importantly, the value of fields in the token that are tested for equality in the join

(not) tests. It is because the hash key is unique to a join node’s use of the token,

_ ______________

* For each distinct token-pair to be join tested, test time is usually O(1), since
field tests are identical to pre-join tests, the difference being that fields of
interest span multiple (but constant) memory elements. A few controlled field
tests, such as lexicographical comparison, are not O(1).

- 121 -

-- --

that the join (not) nodes keep private memories. The effect is that, for a join that

performs equality tests, search for tokens likely to satisfy the tests is fast. Speedup

depends on the quality of hashing and the hashing overhead. The join node must

still perform all of its tests, but it inspects only likely candidates. Hashing offers

no improvement for joins that perform no equality tests, because non-equality tests

are satisfied by more than one value (and therefore tokens in more than one hash

bucket). Join/not hashing uses a global hash table, because many local join

memories may contain few elements.

PRIOPS controlled memories presently use the traditional linear lists. This

implementation is due to constraints on program development time - controlled

PRIOPS memory could undoubtedly benefit from hash-based retrieval. Note that

automatic registers would not benefit from hashing, because automatic registers

store at most one token. No search for candidate tokens takes place.

6.6.5 Critical Sections for Memory Access

Due to the pseudo-concurrency caused by allowing interruption and resumption

of matching, conflict resolution, and right hand side execution, there is potential for

critical section problems with memory nodes. In his multi-processor Rete

architecture, Gupta locks memory nodes during access so that concurrent node

activations cannot interfere with each other while reading and modifying memory

[31, p. 69].

- 122 -

-- --

Concurrent access of memory nodes turns out to be less of a problem with

PRIOPS. The reason is that each node (including memory and registers) has a

priority, that only processes with the same priority will access a node, and only

automatic processes with higher priorities will interrupt a process accessing a node.

These interrupting processes will not access the target node of the interrupted

process.* There is potential for critical section problems elsewhere in PRIOPS. All

processes that work with global ready lists, garbage lists, working memory linkage,

the scheduling queue and the conflict resolution queue - essentially all global run-

time data - must be careful to avoid the problem. Most involved data structures

are stacks and queues, so the solution in the current uniprocessor PRIOPS is to

briefly disable interrupts inside the functions that add elements to and remove

elements from these stacks and queues. The intervals during which interrupts are

disabled are, of course, constant-time-bound. Operations at the ends of affected

queues and stacks are O(1). Empirical research has shown that simple locks are

preferable to more complex synchronization schemes for multi-processor Rete

systems [32]. The majority of multi-processing contentions occur during very

brief, occasional intervals, over task queues and multiple access to join/not node

memories. PRIOPS simple access-based interrupt disabling scheme is likewise

_ ______________

* The interrupting processes may examine the node’s priority field to enqueue
messages to it, but the node’s priority does not change during execution.

- 123 -

-- --

sufficient for uniprocessor PRIOPS.

6.7 The Controlled Join Node

6.7.1 Join Node Handling

In discussing Figure 10 we have seen that a join node contains a right sibling

link field. It also contains backward pointers, allowing it to examine input memory

opposite an incoming token. Join tests, like pre-join tests, are in the form of

compiled code. The handler for the controlled join type follows:

1. If action is radd token (add from right input)

1.1 Determine memory type of left input (alpha or beta).

1.2 For each token in left input memory

1.2.1 If the right input token (memory element) is
NOT part of the left token (deja vu test)

Pass both tokens to the compiled join test code.

If tests succeed

Construct a composite token.

Send the composite token with an
add action to the child beta memory.

Else if action is add token (add from left input)

For each token in right input memory

Pass both tokens to the compiled join test code.

- 124 -

-- --

If tests succeed

Construct a composite token.

Send the composite token with an
add action to the child beta memory.

Else (delete or rdelete)

For each joined token in the child memory node of this join

If the incoming token is a component of the joined token

Send the composite token with a delete action
to the child beta memory.

2. Send the incoming token and action to the sibling node.

Again controlled child and sibling messages propagate using procedure calls.

Procedure calls assure that descendant nodes receiving a controlled delete action

will finish using the propagated join token before the join’s child beta memory

node recovers storage for the joined token.

The delete actions do not perform pattern matching. Instead they compare an

incoming left token against leading components of previously joined tokens, and an

incoming right token against trailing components of previously joined tokens.

Original OPS5 Rete performed redundant pattern matching for delete actions, while

PRIOPS and several other Rete variants [10,80] employ faster delete tests using

token pointer comparisons.

- 125 -

-- --

6.7.2 Working Memory Self-join Testing

Use of priorities to schedule join node activations forces PRIOPS to handle

join testing somewhat differently from standard Rete. The join node needs to test

for cases where a single working memory change contributes messages to both its

left and right inputs. Line 1.2.1 of the above pseudo-code has a special test I call

deja vu (after the fact that the token arriving at the right input "has been here

before" in the left input). Line 1.2.1 restricts a right-input token - which is always

a reference to a single working memory element - from joining any left token that

contains a reference to the right token’s working memory element. Figure 12 will

help explain the problem. The left side of Figure 12 shows the Rete net for

production thing2. The production simply tests for the presence of a thing

structure, without regards to values for the thing’s fields. Thing2 contains two

condition elements that perform this test.

Below the production text in Figure 12 is the net, consisting of an alpha (two-

output) memory, a join for the two condition elements, and a beta memory to

receive the output of the join. This beta memory leads to the conflict set. Suppose

the action (make thing) occurs during program execution. Assume that this is the

only element in working memory. The alpha memory first stores the token, then

advances it to join A (the left child). Join A joins the left token to all right tokens

(there are no join test restrictions), advancing thing-thing to the beta memory, and

instantiating thing2. Control returns back to the alpha memory, which then

- 126 -

-- --

advances the thing token to its right child, in this case join A. This new invocation

of join A joins the right token to all left tokens, advancing another thing-thing

token to beta memory, and another thing2 instantiation proceeds to the conflict set.

This situation is an error. Rete should not create two instantiations with identical

working memory elements bound to the same condition elements for a single

production.*

Forgy’s solution in the initial Rete document [25, p. 83] is for the alpha

memory node to send the token to its left child before storing the token. When

procedure call machinery returns control to the alpha node, the node then stores the

token, and finally sends the token to its right descendents. As a result, join A in

Figure 12 will form thing-thing only when it receives the right message. The left

incoming message will not find thing in the right memory.

Even in standard uniprocessor Rete, Forgy’s solution is not complete as stated.

Examine the right side of Figure 12. Rule thing3 joins thing three times. When

(make thing) advances the token to alpha memory, alpha memory sends the add

message to its left child without first storing the token. Join B fails (thing is not

yet in its right memory), and control returns to alpha memory. Alpha memory

_ ______________

* Here identical means with identical time stamps. Two working memory
elements may have identical field values and still be distinguishable by virtue of
their recency. Each distinct memory element has a distinct time stamp.

- 127 -

-- --

stores the token and send messages to its right descendents. Suppose the message

goes first to join B. Join B creates thing-thing, the first beta memory saves thing-

thing, join C joins thing-thing to thing in its right memory (thing is now stored

there), the bottom beta memory stores thing-thing-thing, and thing3 enters the

conflict set. Control now sends the thing token into the right input of join C. Join

C constructs another thing-thing-thing when triggered by this right input, and a

redundant instantiation enters the conflict set. Forgy’s solution for standard Rete

apparently assumes that right output messages from an alpha memory node go first

to join nodes joining the largest number of tokens, and work backward to join

nodes joining the smallest number of tokens. The absence of this requirement

constitutes a bug in standard Rete documentation.

Even this solution does not work for PRIOPS. Presently PRIOPS controlled

nodes ignore priorities at matching time in their use of procedure calls. But

suppose the networks of Figure 12 are in the automatic partition. Because queue-

based control never returns to the activation of the alpha memory node, it cannot

store the token after calling join B through its left input. Suppose thing2 and

thing3 are both compiled, thing2 with a priority of 2, thing3 with a priority of 1.

Compilation yields a Rete net identical to the right side of Figure 12, with nodes

from the alpha memory through the first beta memory having priority 2, and with

thing2’s instantiation emanating from this beta memory. In such a case join B

would run before join C, again resulting in redundant instantiation of thing3.

- 129 -

-- --

Line 1.2.1 (the deja vu test) of the join handler pseudo-code gives the solution

for both controlled and automatic join nodes. Self-join occurs only for incoming

left tokens. Right messages can avoid self-joins, since by the time a joined token

containing the right token reference arrives at the join’s left input, the token

reference will already have been stored in the join’s right-input memory. This

ordering of arrival would not be so deterministic in a balanced Rete network,

giving another reason to avoid it in PRIOPS. I assume that multi-processor Rete

implementations use a comparable solution. Order of message arrival in these

systems is nondeterministic - variations in inter-processor communication speeds

may even cause delete actions to precede their counterpart add actions [31, section

5.2.3]. Nonetheless, I have not seen the problem discussed.

6.8 The Controlled Not Node

Not nodes share many properties with join nodes. They are two-input nodes

with child beta memories. A not field records each node’s token size. Unlike the

join, the not does not create new tokens. Instead it passes incoming left tokens

when they are not inhibited by matching right tokens. To accomplish this task, the

join node keeps an internal left memory. Each entry in a not left memory contains

two fields: a link back to a corresponding token in the left-input memory, and an

inhibition count for that token. Not’s handler code shows that it adds left tokens to

its descendents whenever the inhibition count reaches zero, and deletes tokens from

- 130 -

-- --

its descendents whenever the inhibition count goes from zero to non-zero:

1. If action is radd token (add from right input)

For each token in left token memory

If the right input token (memory element) is
NOT part of the left token (deja vu test)

Pass both tokens to the compiled not test code.

If tests succeed

Increment the left token’s inhibitor count.

If the left token’s inhibitor count equals 1

Send the child memory a delete message
for the left token.

Else if action is add token (add from left input)

Add the token to the local left memory with an inhibitor
count of zero.

For each token in right input memory

Pass both tokens to the compiled not test code.

If tests succeed

Increment the new left token’s inhibitor count.

If the left token’s inhibitor count equals 0

Send the child memory an add message for the left token.

Else if action is rdelete (delete an inhibitor from the right)

For each token in left token memory

- 131 -

-- --

Pass both tokens to the compiled not test code.

If tests succeed

Decrement the left token’s inhibitor count.

If the left token’s inhibitor count equals 0

Send the child memory an add message for the left token.

Else (a delete of a left input token)

Find the left token in the local left memory.

If the left token’s inhibitor count equals 0

Send the child memory a delete message for the left token.

Recover storage from the local left memory.

Send the current token and action to the sibling (in all cases).

The deja vu test appears again for the avoidance of redundant self-matches.

Not’s rdelete action is the only non-pre-join delete action to require matching. This

is because the not node does not build joined tokens that include a reference to

matching right tokens - not does not join tokens, but uses right tokens to inhibit

left token propagation. Not does not keep individual pairings of left tokens and

inhibitors, but rather keeps an inhibitor count (the number of inhibiting right

tokens) for each left token. Memory could be traded for eliminated rdelete

matching by storing a list of inhibitors with each inhibition count, but sequential

search of this inhibitor list could itself become expensive.

- 132 -

-- --

6.9 The Controlled Instance Node

The controlled instance node is the final controlled node type. This node

manages additions and deletions of production instantiations to and from the

conflict set. An instance node is always the child of a memory node that stores the

tokens representing complete matches to the condition elements of this node’s

production. The compiler, after generating the memory node for the final condition

element of a production, generates the production’s instance node.

In addition to core Rete fields, the instance node keeps a link to additional

information about its production (e.g., right hand side executable code and right

hand side variable storage area). The controlled instance node also maintains

instantiations it has added to the conflict set on a private list. It searches this list

and deletes an instantiation in response to a delete action.

If action is add token

Build an instantiation structure, filling it in with
token and production right hand side information.

Add the instantiation to the instance node’s list
of private instantiations.

Using insertion sort, add the instantiation to the
conflict set for the rule’s priority.

Else (delete)

Find the instantiation with the departing token in the
instance node’s private list.

- 133 -

-- --

Remove the instantiation from the conflict set,
recover storage.

Send the current token and action to the sibling.

The present implementation of PRIOPS uses insertion sort to keep the conflict

set in sorted order, avoiding sorting at conflict resolution time. An alternative

would be to perform an O(n log n) sort such as quicksort at conflict resolution

time. I used insertion sort because, in a properly designed production system

program - one that does not generate large conflict sets, which usually result from

unnecessary join successes that are later retracted - the conflict set is typically

small. This is especially true for PRIOPS, since the conflict set is spread across

256 individual conflict set queues. Using quicksort on small conflict sets would not

always be worth the extra overhead of re-sorting the individual-priority conflict set

each time conflict resolution selects that set. Also, each dynamically varying

conflict set is maintained as a doubly linked list to allow varying growth, and for

quick deletion. Insertion sort is more straightforward than quicksort or heapsort for

such a list. Finally, conflict set insertion time is only a small component of the

match time along a successful path through the Rete net to the conflict set. Only

the tokens that have passed all pre-join and join tests, and failed all not tests, make

their way to the conflict set. Test loops performed before reaching a controlled

instance node dominate the time complexity of its complete path.

I will consider automatic conflict set sorting in the section on automatic

- 134 -

-- --

instance nodes.

Data flows from an instance node into the conflict set, so a controlled instance

node has no Rete node descendants. Because an instance node is a child of a

memory node, it can have join and not node siblings. If another production has

condition elements identical to an instance node’s production, then that other

production will contribute a sibling instance node.

6.10 Automatic Register Node Types

The pre-join node type serves both controlled and automatic matching

functions. Each controlled-specific node type has an automatic counterpart. Much

of the preceding discussion explains inter-node relationships for both partitions.

Like controlled memory nodes, the automatic partition uses two storage node

types: a dual-output alpha register type, and a single-output beta register type. The

former terminates automatic pre-join chains, while the latter follows automatic join

and not node types. Both register node types have the capacity to store only one

token. This limited capacity is one of the key features of the automatic partition,

one that determines the form of all automatic pseudo-code that follows.* An

important characteristic of all of the upcoming automatic node handlers is that they

_ ______________

* The other key feature of PRIOPS Rete, deferred matching, affects both
partitions. Only automatic activity defers lower priority (controlled or
automatic) activity.

- 135 -

-- --

do not iterate. Previously examined controlled join and not nodes were seen to

iterate over opposing memories for incoming messages. With the restriction of

unit size registers, automatic handler code does not exhibit this iteration. It is

simple straight-line code. The O(1) requirement for automatic code suggests this

straight-line form, and each section of pseudo-code exhibits it.

6.10.1 The Automatic Alpha Register Node

In addition to core Rete fields, an automatic alpha register node contains space

for storage of the current token. The current token for an alpha node is a pointer to

a single working memory element. This internal storage contrasts with controlled

memory nodes, which must maintain dynamically varying lists of stored tokens.

The compiler statically allocates automatic register nodes with internal token

storage.

Each automatic alpha node contains an occupied field that shows whether the

token field holds a valid pointer. Like the controlled alpha node, the automatic

alpha has right child linkage for join and not nodes requiring its output in their

right inputs. Here is the node handler:

Set temporary boolean "advance" to true.

If action is add token

Store the joined token in the node’s local storage.

Set node’s "occupied" flag to true.

- 136 -

-- --

Set the "right action" to "radd."

Else (delete)

If node is occupied and incoming token to delete
is the same as the token currently in the node

Set the node’s "occupied" flag to false.

Else

Set boolean "advance" to false.

Set the "right action" to "rdelete."

If "advance" is true

Enqueue the incoming token and action for the left child.

Enqueue the incoming token and "right action" for the right child.

All actions are basic O(1) field read and write operations (static token size is

known at compile time), and no iteration exists in the handler, so this handler is

O(1). The handler logic reflects the fact that match message scheduling will abort

outdated messages at the head of an automatic chain when a newer message

arrives. An add message simply reuses the register. The handler stores the token

without consulting the occupied field, overwriting any older token that may inhabit

the node. Delete handling is more complicated because a delete action is valid

only for the corresponding token formerly added to the node. If a subsequent add

message has replaced the delete’s token, then the delete must have no effect. In

setting the temporary "advance" switch to false, the alpha node terminates

- 137 -

-- --

processing of the delete message.

For example, suppose working memory element A has satisfied all pre-join tests

for an automatic condition element. A’s token arrives at empty alpha register node

R. R stores and advances A’s add message. Later a different memory element B

also satisfies the same pre-join test chain as A, so the alpha register node

overwrites A with B and advances the latter token. (B’s advancement will cause

replacement of A in all descendants of the alpha node.) Eventually A’s delete

message arrives at the alpha node. When the handler sees that the token to delete

does not match the token already in a register node, it terminates the outdated

delete message.

6.10.2 Automatic Message Queuing

A final field common to all automatic node types is the lqueue pointer field.

When not null, this pointer links the node to its current entry in the matching

queue. A non-null value signifies that a message for this node is in queue. If a

newer message arrives at the matching queue before this waiting message arrives at

the node, the enqueuing procedure overwrites the older message. (Each two-input

automatic node can have two current messages in queue, one for each input. The

rqueue pointer for an automatic join or not node indicates the node’s right input

queued message.)

Overwriting a message queue entry presents a problem for automatic alpha

- 138 -

-- --

registers. If the newer message replaces an outdated queue message for an

automatic node, then the automatic node will not be able to forward the lost

message to siblings and descendants. This course of action is appropriate for

automatic descendants and siblings, for whom the lost message is also outdated.

But an automatic alpha register node may have pre-join siblings at lower priority,

where the pre-join chain leading to the alpha register is a prefix of the pre-join

chains continuing at these siblings. We have seen that all pre-join nodes must

allow multiple messages to remain queued. An alpha register may also have a

controlled alpha memory sibling, for a case where automatic and controlled

productions share identical pre-join components of condition elements. Messages

that are outdated for an alpha register are not outdated for its pre-join and alpha

memory siblings, so the enqueuing procedure must give the alpha register special

treatment. Here is the code for the enqueuing procedure putpq:

If the target Rete node pointer is null

Return (occurs for messages to empty descendant or sibling chains)

Disable interrupts.

Set "newq" local queue entry pointer to null.

Set local "newpriority" to the priority of the target Rete node.

If the target is automatic and is not a pre-join node

If action is radd or rdelete (message to a right input)

- 139 -

-- --

Set "newq" queue entry pointer to the target’s "rqueue" value.

Else

Set "newq" queue entry pointer to the target’s "lqueue" value.

If "newq" is null (no existing automatic entry)

If we are currently running in the automatic partition
or if the target node is in the automatic partition

Get storage for a queue entry from the queue entry
ready list, if none is available then issue run-time
error & abort inference.

Else (controlled partition)

Get storage for a queue entry from dynamic memory manager
(interrupts are enabled during this non-O(1) activity).

Put this new queue entry at the tail of the priority queue.

Else ("newq" is not null, meaning putpq is overwriting an earlier
automatic message in the queue)

If the target is an alpha register and the message is delete
and the older queued action is add and the current message’s
token is not the same as the older message’s token (i.e.,
a subsequent add has made this delete superfluous, as in the
alpha register code)

Recursively enqueue the sibling of the alpha register.

Enable interrupts & return.

(At this point the queue entry is enqueued, but its fields are empty).

Set the target, action, and token fields to putpq’s input arguments.

If the queue entry’s target is a non-pre-join automatic node

- 140 -

-- --

If action is radd or rdelete (message to a right input)

Set the target’s "rqueue" field to point to its
unique queue entry.

Else

Set the target’s "lqueue" field to point to its
unique queue entry.

If the target’s priority is greater than current priority

Set a flag signaling increase in priority.

If the target is an alpha register

Recursively enqueue the sibling of the alpha register.

Enable interrupts & return.

Putpq is O(1) for calls during automatic processing. During controlled

processing it will call non-O(1) storage allocation procedures. The listing shows

interrupt disabling during a critical section (access of a global message queue), use

of a ready list for obtaining pre-allocated storage during automatic processing, and

use of the automatic node "lqueue" and "rqueue" fields. Explicit handling of

messages to the automatic alpha register appears twice. The previous section

discussed how the register itself deals with receiving an outdated delete A message

after receiving a displacing add B. Putpq must not allow delete A to replace add B

in the register’s unique queue entry, so putpq duplicates the delete test seen in the

alpha register node handler. The alpha register is the only node type that must

consider the possibility of a replacing add preceding a delete of an automatic

- 141 -

-- --

node’s old contents. The automatic register is the ancestor of all other automatic

node types in the Rete network. By filtering outdated delete actions at this node

type, PRIOPS ensures that outdated delete actions cannot reach other node types.

Putpq also shows the recursive call for the alpha register’s first sibling. The

recursive call enables the alpha register’s sibling chain to receive messages

overwritten for the register node. This call occurs at most once for an alpha

register node message (an alpha register is never the sibling of another alpha

register). Because this is a tail recursive call, it is implemented as a simple jump

to the start of putpq with new procedure arguments, avoiding recursive call

overhead.

Getpq, the procedure for dequeuing an entry from the head of a match message

queue, is considerably simpler:

Disable interrupts.

If there is an entry at the head of the queue

Take the front entry out of the queue.

Pass the action, Rete target node, and token pointer to
the calling procedure via reference parameters.

If the target is a non-pre-join automatic node

If action is radd or rdelete (message to a right input)

Set the target’s "rqueue" pointer to null.

Else

- 142 -

-- --

Set the target’s "lqueue" pointer to null.

If we are currently running in the automatic partition
or the queue entry ready list needs more ready structures

Put the newly freed queue structure on the ready list
(the ready list is a LIFO, O(1) singly linked list).

Enable interrupts.

Else

Enable interrupts.

Return the free storage to (non-O(1)) memory management.

Else

Report illegal read of an empty queue and abort.

O(1) concerns extend to the smallest detail of PRIOPS internals. Library

procedures and functions supplied with the PRIOPS implementation compiler (a C

compiler for the present PRIOPS) are not usable for automatic partition activities,

because no assumptions about their time complexity are possible. Most library

operations, such as input-output and memory management, will not be O(1).

6.10.3 The Automatic Beta Register Node

The automatic beta register type is the simplest node type. It need not manage

the varying length storage of the controlled beta memory, since the register can

hold at most one token:

If action is add token

- 143 -

-- --

Store the joined token in local register.

Else (delete)

Remove the joined token from local register.

Enqueue the incoming token and action for the child.

All actions are O(1) (static token size is known at compile time), and no

iteration exists in the handler, so this handler is O(1). This node type contains a

field to record token size (a token is an array of pointers to working memory

elements), storage for a single token, and an occupied flag.

6.11 The Automatic Join Node

Like its controlled partition counterpart, the automatic join node contains a

right sibling link and back pointers to its two parent nodes. It uses executable code

to perform tests.

If action is add (from left input) or radd (from right input)

If action is add

Sibling is left sibling.

Left token is incoming token.

Consult right input register for right token.

Else (radd)

Sibling is right sibling.

- 144 -

-- --

Right token is incoming token.

Consult left input register for left token.

If input registers are occupied and (action is add or
the right token is not in the left token - deja vu test)

Pass both tokens to the compiled join test code.

If tests succeed

Construct the composite token inside the child
beta register node.

Enqueue the add action with the composite token
for the child beta register node.

Else if the child beta register is occupied
(the join has failed, any old join is outdated)

Enqueue a delete action with the old stored token
for the child beta register node.

Else (action is delete (from left) or rdelete (from right)

If action is delete

Sibling is left sibling.

Else

Sibling is right sibling.

If the child beta register is occupied

Enqueue a delete action for the child beta register.

Enqueue incoming action for sibling.

All actions are O(1) (static token size is known at compile time), and no

- 145 -

-- --

iteration exists in the handler, so this handler is O(1). Whether an automatic join

passes or fails, any descendant tokens become outdated, since at least one of the

working memory elements contributing to them has become outdated at its alpha

register. Consequently a failed add propagates a delete.

With the join node storing its joined output directly in its child beta register,

the action of the beta register handler reduces to propagating incoming messages to

its descendants.

6.12 The Automatic Not Node

The automatic not node contains a right sibling link for right input, a right

parent link, storage for a single left token, a record of its token size, and an

inhibited flag for its current left token. Whereas the controlled not node maintains

a list of left tokens and inhibitor counts, the automatic not retains only the most

recent left token. Therefore it avoids the variable length token list and inhibitor

counts.

If action is add (from left input) or radd (from right input)

If action is add

Sibling is left sibling.

Left token is incoming token.

Store reference to token in local left register,
set occupied flag to true.

- 146 -

-- --

Consult right input register for right token.

Else (radd)

Sibling is right sibling.

Right token is incoming token.

Consult left input register for left token.

If input registers are occupied and (action is add or
the right token is not in the left token - deja vu test)

Pass both tokens to the compiled not test code.

If tests succeed

Set local inhibited flag to true.

If child beta register is occupied

Enqueue delete message for child beta register.

Else if the incoming action is add (the new left token
is not inhibited) OR
the old left token is occupied and inhibited

Set local inhibited flag to false.

Copy the left token to the beta register.

Enqueue an add action with the left token
for the child beta register node.

Else if action is delete (left token)

Sibling is left sibling.

Set local occupied & inhibited flags to false.

If child beta register is occupied

- 147 -

-- --

Enqueue delete message for child beta register.

Else (action is rdelete - delete the inhibitor)

Sibling is right sibling.

If not node left token is occupied and inhibited

Copy left token to the beta register.

Enqueue an add action with the left token
for the child beta register node.

Set local inhibited flag to false.

Enqueue incoming action for sibling.

All actions are O(1) (static token size is known at compile time), and no

iteration exists in the handler, so this handler is O(1).

6.13 The Automatic Instance Node

The automatic instance node is the final node type. Because each automatic

production allows at most one instantiation, the one triggered by the most recent

working memory elements, the automatic instance stores all instantiation fields

statically and locally. Like the controlled instance node it has a link to production

right hand side code and variable storage. It also maintains a live flag that signals

whether it presently holds an instantiation.

If the "live" flag is true (there is an outdated instantiation)

Remove the old instantiation from the conflict set

- 148 -

-- --

and set "live" to false.

If action is add

Set "live" flag to true.

Copy token information into the locally stored instantiation
(compiler copies in invariant production information).

Sort token time stamps for conflict resolution,
link instantiation into conflict set.

Else

Clean up outdated instantiation information.

Enqueue incoming action for sibling.

An incoming add replaces any old instantiation, while an incoming delete

removes it. Hence both cases remove any live instantiation. Much of the

information for any single instantiation is known at compile time, so only token

specific information is copied into the instantiation at run-time.

Again insertion sort links the instantiation into the conflict set doubly linked

list. Because the maximum conflict set size for an automatic priority is constrained

by the constant number of automatic productions of that priority, there is a

constant worst-case bound on insertion time. Insertion into the conflict set is

therefore O(1). Deletion from the conflict set requires adjusting two links as for

controlled instantiations, again an O(1) operation. All automatic Rete matching is

O(1), from pre-join testing to automatic instantiation and including queue

operations. Therefore any automatic partition Rete path is O(1). The only way to

- 149 -

-- --

achieve time complexity greater than O(1) is through cyclic composition of

automatic productions. The next chapter will discuss future work on detection of

non-O(1), cyclic composition of automatic productions.

6.14 Ready Lists and Garbage Collection

The maze example showed how a priority 0 production could explicitly reclaim

outdated working memory elements - garbage. This collection does not penalize

automatic processing. It takes place upon resumption of controlled processing,

before lower-priority controlled activities have an opportunity to generate

additional garbage.

Internally PRIOPS uses ready lists to supply initialized working memory

elements to automatic productions, and garbage lists to collect working memory

elements discarded by automatic processing. Ready lists of initialized working

memory elements are available for automatic productions that perform make

operations. There is a distinct ready list for each working memory type made in

the automatic partition. The compiler also determines the number of auxiliary

object structures, such as matching queue structures seen in the putpq and getpq

listings. All ready lists are stacks with O(1) push and pop operations. During

automatic execution productions remove initialized elements from ready lists and

enqueue messages for Rete in O(1) time. When automatic execution completes, the

controlled matcher replenishes ready lists to prepare for the next burst of automatic

- 150 -

-- --

activity.

Right hand side remove operations cannot recover working memory elements

immediately, because the matching for remove operations must wait in queues. At

remove initiation time, a reference to a removed element enters a garbage list for

the element type. After all matching is complete, the controlled matcher can

recover garbage storage. Garbage lists are stacks with O(1) push and pop

operations. Garbage collection and ready list maintenance work in concert to reuse

structures with minimum overhead. For example, rather than return garbage

working memory elements to global memory management, only to have ready list

maintenance request new element storage from memory management, garbage

collection reclaims removed working memory structures, reinitializes them and

places them on ready lists without calling global memory management. Getpq’s

listing showed an example of this, recovering queue entry structures into a ready

list.

Replenishing ready lists places an average real-time requirement on controlled

storage management; each ready list must contain sufficient elements to satisfy the

most demanding burst of automatic activity. The compiler can determine the

correct size of some ready lists, those constrained by the number of automatic

nodes. The PRIOPS programmer must presently estimate the number of initialized

working memory elements to keep on element type ready lists. Dynamic

adjustment of ready list sizes is an area for future work.

- 151 -

-- --

The controlled and automatic inference drivers in the next two sections show

the location of ready list maintenance and garbage collection calls.

6.15 Inferences Drivers

A Rete-based inference driver is a routine that oversees the match-fire-execute

inference cycle. Matching occurs in the Rete network. The inference driver selects

a production instantiation to execute from the conflict set, and starts execution by

calling the production’s RHS executable code. RHS working memory changes

trigger new matching, and hence new inference.

PRIOPS has two inference drivers because of differences between controlled

and automatic inference. Controlled inference completes all matching before

conflict resolution, never interrupts other processing, and performs storage

reclamation. Automatic inference performs highest-priority conflict resolution and

RHS execution immediately after highest-priority matching. It interrupts lower

priority activities, and does not collect garbage. The next two subsections examine

these distinctive inference drivers.

6.15.1 The Controlled Inference Driver

The three major components of the controlled partition inference engine are the

controlled Rete network, right hand side executable code for controlled rules, and

the controlled inference driver. Conflict resolution work appears in both the

- 152 -

-- --

controlled instance node handler and in the inference driver.

The controlled inference driver scans controlled matching queues, dispatching

messages to Rete nodes. When all controlled matching completes, the driver selects

an instantiation for execution.

While in PRIOPS "run" mode

If deferred exception handling for interrupt handler is posted

Report exception by type and abort inference.

If ready list "pump" flag is set (set by automatic inference
driver that was entered from an interrupt handler)

Pump up ready lists.

While automatic activity is pending (only satisfied when
user’s initiation of PRIOPS triggers automatic activity)

Call the automatic inference driver.

For the topmost to the bottommost controlled priority

Current global priority is controlled priority.

While controlled priority queue has pending matching

Dequeue match message, send it to target node.

Note that matching occurred in this "for" loop.

If matching occurred in above "for" loop

Restart controlled inference driver.

Garbage collect all removed working memory elements
whose delete matching in both partitions is now complete.

- 153 -

-- --

For the topmost to the bottommost controlled priority

If controlled priority conflict set has instantiation

Current global priority is instantiation’s priority.

Disable interrupts.

Remove instantiation from conflict set.

Enable interrupts.

Pass instantiation token and right hand side variable
space pointer to right hand side executable code.

Free dynamic storage of controlled instantiation.

If right hand side requests "exit" or user specific
"run count" is exhausted

Report end of run and return to user.

Restart controlled inference driver.

Return to user when there is no pending activity.

The basic structure of controlled inference consists of one loop to find and

execute matches, and a second loop to execute a right hand side. The match loop

repeats until it runs a full cycle with no matches. Descending once from top to

bottom is not enough, because interrupt-triggered automatic activity may enqueue

controlled matching after the above matching loop has passed the appropriate

controlled priority. In fact, it is always possible for an automatic interrupt handler

to enqueue controlled activity after completion of the controlled matching loop.

Such controlled activity defers until the next pass through the controlled inference

- 154 -

-- --

driver.

Removed working memory elements are marked as safe only after all of their

matching is finished, which is to say after controlled matching completes.*

Procedures to pump up the ready lists do so only in the controlled partition, and

recover garbage lists (rather than calling global memory management’s malloc)

where possible.** The pump code runs upon PRIOPS "run" invocation, upon

deferred request from the automatic partition (seen above), and upon return from

the automatic to controlled partition (next section).

One reason for completing all controlled matching before controlled conflict

resolution is garbage collection. Indefinite postponement of low priority controlled

matching could cause indefinite delay in collection of removed memory elements,

possibly resulting in dynamic storage exhaustion.

6.15.2 The Automatic Inference Driver

The automatic inference driver can be entered in four ways. The user can

_ ______________

* Actually a location on each LIFO garbage list is marked as safe. Working
memory elements beyond this location are available for reclamation.

** The word pump comes from the analogy of a ready list as a cistern with high
and low water marks. Pumping fills the cistern. The pump does not put water
into the cistern until the water level reaches the low mark; it then pumps to the
high mark. Making the two marks identical would cause unnecessary overhead -
each small request for water (a ready item) from the cistern (ready list) would
incur pumping overhead. Separate water marks introduce hysteresis into the
pumping process, incurring pumping overhead only at occasional intervals.

- 155 -

-- --

make working memory changes that enqueue automatic activity before running

PRIOPS. The right hand side of a controlled production can make an automatic

element change, resulting in an immediate call to this driver. The right hand side

of an automatic production can make a higher priority automatic element change,

resulting in a recursive call to this driver. Finally, an interrupt handler can make a

higher priority automatic element change, calling this handler asynchronously from

either partition.

Each invocation of the automatic driver iterates over automatic matching queue

and conflict set priorities ranging from the increased priority that triggered the

driver call, to the priority of the calling activity. This driver never acts below

priority 1, the lowest automatic priority.

If deferred exception handling for interrupt handler is posted

If currently in an interrupt handler

Return.

Else

Report exception by type and abort inference.

For the triggering automatic priority down to the caller’s priority
(adjust global priority, but never down to a controlled priority)

While automatic priority queue has pending matching

Current global priority is matching priority.

Dequeue match message, send it to target node.

- 156 -

-- --

If automatic priority conflict set has instantiation

Current global priority is instantiation’s priority.

Disable interrupts.

Remove instantiation from conflict set.

Enable interrupts.

Pass instantiation token and right hand side variable
space pointer to right hand side executable code.

If right hand side requests "exit" or user specific
"run count" is exhausted

Restore global priority to caller’s priority.

If currently in an interrupt handler

Post deferred halt and return.

Else

Report end of run and return to user.

Restart automatic inference driver.

Restore global priority to caller’s priority (may be controlled).

If caller was controlled partition activity

If currently in an interrupt handler

Post a ready list "pump" request flag.

Else

Pump up ready lists.

Return to caller.

- 157 -

-- --

The automatic driver inspects the conflict set for a priority immediately after

draining that priority’s matching queue. If the conflict set yields an instantiation,

lower priority matching waits. After execution, matching restarts at the execution

priority, because the executed right hand side (as well as interrupt handlers) may

have generated working memory changes at the execution priority. Right hand side

changes and interrupting changes cause recursive driver calls only when they

contribute changes higher in priority than the current global level. Each call to the

automatic driver restores the global priority to the caller’s level before returning.

The result is that each driver invocation iterates over a unique range of automatic

priorities, avoiding critical section problems.

Upon returning to the controlled partition, a non-interrupting automatic driver

calls procedures to pump the ready lists as a controlled activity. This code belongs

here rather than in the controlled driver, because the controlled driver never knows

when a controlled right hand side will cause a call to automatic inference. The

automatic driver, on the other hand, can easily detect an immanent return to the

controlled partition. An interrupting driver cannot pump the ready lists, because it

may have interrupted ready list pump operations. Ready list pump operations are

not reentrant; they are not O(1), and so cannot hide behind disabled interrupts.

Instead an interrupting automatic driver returning to the controlled partition sets a

pump request flag.

- 158 -

-- --

The two drivers interact to react to heightened priority activity, recover storage,

and recover from exceptions at the earliest possible opportunities, without causing

non-O(1) automatic processing or critical section problems. From a software

engineering viewpoint, this experimental architecture promises to scale nicely to a

supportable production system design tool.

6.16 The Compiler and Generated Code

I will not treat auxiliary code modules such as unique symbol maintenance or

the C language interface, other than to say that non-O(1) activities are restricted to

the controlled partition. The production compiler itself warrants a few words. It

uses a simple recursive descent, hand-coded parser. Appendix A gives the lexical

rules and LL(1) grammar for PRIOPS. The compiler’s symbol table code share’s

the run-time code’s use of unique symbol-attribute structures and operations.

Instead of generating native machine code, the compiler produces an

intermediate code for run-time interpretation. This code consists of enumerated op

codes. The run-time interpreter is a simple switch statement on the value of the

current op code. The interpreter acts by fetching the next op code, advancing the

op code pointer, using the op code as an index into a jump table, and jumping to

the op code handler. Op code indexed jumping appears as a C switch construct.

Each op code handler retrieves in-line arguments by way of the op code pointer.

PRIOPS also maintains a value stack at run-time, for use in argument and return

- 159 -

-- --

value passing.

I used this virtual run-time machine model in order to simplify compilation.

The initial PRIOPS architecture is experimental, and I did not wish to spend a lot

of time focusing on machine-specific code. Operations in automatic Rete nodes and

right hand sides are O(1), but they are not as fast as they would be if compiled to

native machine code. Before using PRIOPS for a time-constrained industrial

application, the compiler should generate native machine code. One option is to

generate equivalent C code and pass the latter through an optimizing C compiler.

The present PRIOPS compiler generates O(1) code for automatic activities, but

it does not calculate actual execution times. Once again, I did not wish to spend

many months hand tracing the output of the C compiler and hand summing

operation times for a specific processor, nor did I wish to attempt to write a

processor-specific machine code analyzer. A full PRIOPS compiler should report

machine times. For research purposes I am satisfied generating useful O(1) code,

code whose time complexity is constant-bound at compile time. The present

compiler comprises about 12,000 lines of C code.

- 160 -

-- --

7. RELATED WORK AND FUTURE DIRECTIONS

PRIOPS is unique in applying constant-time-constrained, priority-scheduled

processing to a production system architecture. The first section of this chapter

examines several non-O(1) applications of production systems to embedded

systems. Subsequent sections discuss possible enhancements to the present

PRIOPS compiler, and open ended research directions. Concluding remarks end

the chapter.

7.1 Related Work

Designers of an expert system that assists computer operators overseeing an

IBM operating system make claims of a continuous real-time expert system [22].

While making several enhancements to standard Rete for more efficient embedded

operation, the system does not address constant-time-constrained issues.

Modifications include: compilation of rule right hand sides to machine code; a

timed-make for creating working memory elements at specified times or after

specified intervals; a remote-make command for introducing communications from

other processors into Rete; and the addition of a communication phase to the

standard recognize, conflict resolution and act inference cycle. The communication

phase operates to handle remote-makes just before conflict resolution. A final

modification to standard OPS5 is the use of explicit production priorities, but only

- 161 -

-- --

at conflict resolution time. Priority use is similar to PRIOPS controlled partition

priorities, augmenting standard conflict resolution strategies. This expert system is

an example of a successful embedded production system.

PAMELA is another Rete-based production system for embedded applications

[10]. Like PRIOPS, PAMELA avoids redundant matching during delete processing

by making pointer comparisons between stored tokens and delete messages.

PAMELA makes several modifications designed to reduce the number of Rete

nodes for a program. One alteration is automatic reordering of condition element

tests, by field, to allow increased node sharing among condition elements. Another

change places some non-shared pre-join nodes after some of the two-input test

nodes, allowing increased sharing of the latter. Reducing the number of test nodes

does not guarantee faster execution. In some OPS5 programs intentional test

ordering may help impose limiting constraints early in a matching chain, reducing

potential join times. For such programs the PAMELA approach may actually

increase execution time, by disabling programmer-supplied test ordering and

bringing joins closer to the start of test chains. In fact, unique-attribute tests

intended to avoid unnecessary joins in PRIOPS and recent SOAR work [93], often

contribute non-shared pre-join test nodes. By moving these unshared nodes to after

join nodes to increase join node sharing, PAMELA would nullify the intended

purpose of such tests. In preserving programmer-specified ordering of tests and

right hand side actions, the traditional OPS5 approach assumes that the

- 162 -

-- --

programmer makes intelligent use of knowledge of the internals of Rete

processing. PRIOPS continues this tradition, making knowledge of its enhanced

Rete essential to the PRIOPS programmer.

A more important PAMELA contribution from the PRIOPS point of view is the

introduction of interrupt-based modifications to working memory. Procedural

interrupt handlers may search and modify working memory. Rete matching for

interrupt-initiated memory changes does not commence until the current rule right

hand side (and matches associated with its memory changes) completes. A rule

may explicitly allow interrupt-based memory change matching to commence after

the completion of any of its right hand side actions. Such memory changes

contribute to a distinct demon conflict set. A demon is a rule triggered by interrupt

handling that is capable of interrupting execution of another rule. Demon conflict

resolution and firing occurs after any changes to the demon conflict set, but only

after completion of the current right hand side action, which may include time

consuming matching. Each working memory change in PAMELA produces

temporally atomic Rete matching activity; a demon can interrupt a RHS, but not

individual RHS memory change matching. There is no notion equivalent to

PRIOPS’ deferral of low-priority match messages, nor its O(1) automatic matching.

The right hand side action gives the level of granularity for interruption in demon

matching. Complex Rete matching for the interrupted RHS action can cause demon

matching to wait for long periods while less important matching finishes. In

- 163 -

-- --

PRIOPS, the Rete node gives the level of granularity for scheduling, and higher-

priority matching preempts lower-priority activities immediately. PRIOPS never

makes higher-priority activities wait for lower-priority ones, and it defers lower-

priority components of matching for a single working memory change.

PAMELA makes synchronization difficult: An interruptible (by demons) rule

that refers to memory elements bound in its LHS must test for deletion of these

elements (by interrupting demons). PAMELA requires the programmer to place

explicit tests for this situation in interruptible right hand sides. Such tests are prone

to timing dependent errors. PRIOPS defers the actual recovery of removed working

memory elements using garbage lists, so avoiding premature loss of needed

memory elements. When an interrupting automatic production removes a memory

element being used by an interrupted rule, deferred removal allows the interrupted

rule to continue using the element upon resumption. PRIOPS requires no special

code for the right hand side of interrupted rules.

Despite some deficiencies, PAMELA is the first production system to

successfully apply a primitive two-tiered architecture to an embedded application.

However, in not restricting joins or other matching activities to O(1) complexity,

PAMELA violates a constraint fundamental to PRIOPS’ automatic partition.

Temporal atomicity of matching for each working memory change also reduces

responsiveness.

- 164 -

-- --

There has been some use of the SOAR production system in embedded system

experiments [54,69]. Reports are partial and inconclusive. Emphasis is on learning

from both experience and instruction. SOAR passes sensory input through

encoding productions, and motor output through decoding productions, that are

loosely analogous to the record and predictive processing of Section 3.1.4 of this

thesis. SOAR imposes no constant-time constraints on these or any other processes,

and there is no equivalent to automatic processing and reactive data flow. All

processing interacts with SOAR’s goal-oriented, memory-based central cognitive

component. Despite claims of responsiveness, SOAR allows interrupt-based

redirection of processing only during the cognitive decision phase of its inference

cycle, typically requiring reaction to interruption to wait across multiple memory

change matches and production firings [69, p. 119].* This waiting results in even

more delay than PAMELA’s deferral of demon production matching until

completion of an interrupted RHS action. A further claim that "(approximately)

constant-time access to the whole of memory is responsive to the real-time

requirement," [69, p. 114] is misleading. Using an unconstrained variant of

_ ______________

* SOAR’s inference cycle consists of two phases: an elaboration phase, during
which inference assembles information, and a decision phase, during which
inference directs problem solving processing. SOAR performs no conflict
resolution, allowing all instantiations to run to completion, possibly triggering
other instantiations during a single phase. Each phase can thus include matching
and execution for multiple instantiations, resulting in unresponsive real-time
behavior for interrupt-based processing redirection.

- 165 -

-- --

standard Rete, best-case time to match a working memory change is constant-

bound, but worst-case time varies polynomially with the size of working memory,

and exponentially with the number of condition elements in a production [25,27].

Based on questions I posed to John Laird at the Applications of Artificial

Intelligence VII conference, it appears that SOAR’s insistence on hierarchical,

goal-directed processing may impede its ability to respond to events unrelated to

its current stack-based goal activations. I suspect that SOAR’s monolithic goal-

oriented organization, with its lack of support for autonomous reactive processing,

will require extension along lines suggested by PRIOPS research before it can

successfully function in a demanding embedded application. I await further reports

on SOAR’s embedded applications.

The above systems are OPS-based production systems that augment Rete

matching to improve embedded performance. There are other current projects that

do not involve OPS or Rete, but nonetheless use some form of reactive processing

to respond to environmental conditions. They are systems that may be amenable to

implementation using PRIOPS. To some degree they have begun to reconstruct the

controlled versus automatic processing distinction.

The first is Phoenix, a software system for planning and directing reactions to

forest fires [20]. Current Phoenix reacts to simulated fires in Yellowstone National

Park. The focus of research is the system’s cognitive component, which is

responsible for planning and directing reactions to fires. In addition to this

- 166 -

-- --

component, Phoenix contains a reflexive component that reacts to immediate

environmental difficulties. This component attracts attention to sensed fires, and

avoids dangerous actions such as driving a bulldozer into a nearby blaze. Both

components read sensors and drive effectors. The reflexive component uses a

subset of the capabilities of PRIOPS automatic partition. It has very loose coupling

to the cognitive component, setting simple flags to inform the latter that the

reflexive component has acted. Cohen, et. al. [20] emphasize organization of

planning in the cognitive component.

Brooks’ robot control system uses multiple levels of control to guide a mobile

robot through a cluttered office environment [14]. Bottom levels are reactive, and

could be implemented as automatic productions. They have simple responsibilities

based on the immediate environment, such as avoiding running into obstacles.

Higher levels subsume the responsibilities of lower levels, hence the name

subsumption architecture. If a higher level of control breaks down due to

hardware or software failure, its inhibition of lower, reactive levels likewise fails.

These levels are then free to react to immediate situations, providing graceful

degradation of capabilities when higher levels fail.

Another system that is thoroughly reactive is Pengi [2]. It simulates some

aspects of reactive human processing in an environment by playing the Pengo

video game. All processing is lookup and execution of reactive functions, based

strictly on the environmental situation. The system retains no memory of episodes,

- 167 -

-- --

and does not support variable binding. All reactions are hand coded.

The above three programs use operations equivalent to some subset of PRIOPS

controlled and automatic processing capabilities. None addresses issues of O(1)

implementation or priority-based match deferral. I believe that PRIOPS provides a

solid base for the construction of numerous types of embedded reactive system

architectures such as these.

7.2 Enhancements to Current PRIOPS

7.2.1 Machine Code Generation

An essential improvement to the current compiler for use in a realistic

embedded application is the replacement of interpreted intermediate code

generation with native machine code generation. One possibility geared toward

portability is the generation of C language source as an intermediate language for

compilation. This change would result in measurable speed improvements, but

would not change the fundamental issues of run-time complexity addressed in this

thesis.

7.2.2 Run-time Learning

An enhancement somewhat at odds with the notion of compiled code is support

for run-time incremental learning in PRIOPS. Though present in the PRIOPS

grammar, current PRIOPS does not support run-time equivalents to OPS5’s build

- 168 -

-- --

and excise commands for acquiring and discarding productions. Learning for the

maze program in the last chapter worked by saving learned productions in an

external file, and later recompiling the complete program and the entire Rete

network.

A design difficulty unique to PRIOPS is the problem of modifying the

automatic network on the fly, as the result of run-time learning, while high priority

run-time messages are traveling through the very net to be modified. Network

restructuring due to changes in priorities for existing nodes could easily lead to

synchronization problems with time-constrained matching. Other Rete-based

learning production systems do not have this problem, because all pending

matching completes before any right hand side learning action changes the Rete

network. In addition, while learning for other Rete systems may lead to additional

nodes at the ends of descendant and sibling chains, learning does not modify

existing inter-node relationships. PRIOPS’ priority-based ordering (and learning-

initiated reordering) of sibling Rete nodes is unique.

The most promising prospect is to build distinct, non-shared Rete chains for

learned productions at learning time. While such chains do not reap the time and

space benefits of node sharing, they do provide short term executable code without

learning synchronization overhead. Learning would support unshared, O(1)

automatic chains. Subsequent executions could compile the complete program,

including learned productions, into the shared Rete net (as in the maze example).

- 169 -

-- --

A conflict between compiled machine code and run-time learning arises

because machine code compilation is typically a multi-pass operation involving

object files. For example, having the PRIOPS compiler generate C code for

compilation, provides no mechanism for incremental production compilation at run

time. One alternative is to continue to generate interpreted intermediate code for

learned productions at learning time, with the performance deficits of such code. A

different alternative is the learning-time generation of C code, followed by

immediate compilation (through separate execution of the C compiler) and run-

time loading of the compiled object file. The tradeoff is between compilation speed

(learning speed) and execution speed. Incremental loading of object modules is not

widely supported at present.

7.3 Future Research Directions

PRIOPS in its present form supports a base for embedded production system

programming. PRIOPS programmers may use this base directly. Research

directions for PRIOPS emphasize software capabilities built atop this base.

Designing PRIOPS production systems with such tools would be a combination of

direct production programming and higher level specification.

7.3.1 Rete Data Flow Analysis

The only way to achieve time indeterminacy in the automatic partition is

- 170 -

-- --

through cyclic composition of productions. Cyclic composition occurs when one

production makes working memory elements that enable (or removes memory

elements that disable) a production that, directly or indirectly, so enables the first

production. A production can cyclically enable itself.

A production must be allowed to remove memory elements that trigger it, in

order to remove stimuli that it has successfully handled; maze production panic-

up-left (Listing 7) is an example of an automatic production that removes a

triggering sensors element. An automatic production can also safely assert self-

inhibitors. Both types of actions serve to disable self-triggering.

A rough first approximation of cyclic composition detection would look for

cycles without regard to field tests. Any right hand side make of a memory element

matched by a non-negated condition element, or any remove matched by a negated

condition element, would offer a candidate path for search for a cycle in the Rete /

right hand side network. This simple approximation is too general. For example,

automatic production automove (also Listing 7) eliminates its triggering move

memory element stimulus, not by removing the memory element, but by modifying

one of its fields (in automove by setting direction to nil). Modify is equivalent to

remove, followed by add. Enabling cycle detection must therefore consider

individual field tests.

Current PRIOPS does not provide facilities for traversing the Rete net in search

of cyclic composition. The Rete network does contain most of the declarative

- 171 -

-- --

information needed for such search. PRIOPS presently maintains only executable

code for right hand side operations, but the compiler could retain details of right

hand side memory change actions. Cycle search would require compile-time

propagation of field constraints through the Rete network, eliminating candidate

paths when field constraints are found to be mutually exclusive. Field tests not

related to compile-time constants (i.e., comparisons of fields not tested or set with

compile-time constants) would not contribute to compile-time elimination of

candidate paths. Design of efficient algorithms for searching Rete in this way is an

area for future work.

7.3.2 Planning and Learning

Temporal logic may provide a basis for time-constrained planning [3].

Planning might occur in processes distinct from PRIOPS processes, generating

PRIOPS programs as their output. Alternatively, controlled partition activities

might include generation and refinement of plans during interaction with the

environment. Plan refinement would improve high-level plan statements,

conceivably in a planning language rather than as PRIOPS productions. In both the

batch and interactive scenarios, PRIOPS serves as a target language for the

planner.

Given the emphasis of human automatic processing research on practice, it is

natural to explore mechanisms for learning PRIOPS automatic reactions through

- 172 -

-- --

repetition of consistent interactions with stimulating phenomena. The explicit

chunking technique employed in the maze program gives one approach for

converting the results of controlled search into automatic reactions. Whereas the

maze program used explicit learning productions, SOAR’s chunking operates

implicitly within the production system architecture [52,53]. Incorporation of

learning machinery directly into the PRIOPS base is an area for research.

Another important consideration for learning, whether through explicit learning

rules or internal apparatus, is the achievement and maintenance of correct O(1)

stimulus recognition and response generation across production learning

transformations such as designation (novel rule creation), composition, chunking,

specialization and generalization. Transformation rules for generating and

preserving correct O(1) stimulus-response behavior across production restructuring

would be the outcome of such research. Given a learning algorithm restricted to

producing correct O(1) reactions, it would be unnecessary to search for problems

such as cyclic composition that may occur in hand-written code.

Explanation-based learning (EBL) is an approach for transforming a general

theory of a domain into an operational description of some part of that domain

[44]. The transformation uses one or several instances of domain situations as

triggers for the operationalization of domain knowledge. Operationality is defined

in terms of usability and utility. Usable means that a description is in a form

accessible by the performance system, and utile means that a description is worth

- 173 -

-- --

using as judged by some performance criteria (e.g., time and space complexity).

EBL constitutes a search from non-operational to at least sufficiently operational

descriptions for a given concept, the end result being a description in a usable

format.

Some learning of reactive automatic PRIOPS productions is transformation of

information that is already known, but is not in a form capable of being utilized

within necessary time bounds. Operationality for real-time code is correct

processing within the necessary constant time constraints. Explicit programming,

planning, and practice yield transformation of non-operational information

contained within the system and processing environment into information that is

both usable and utile at performance time. The literature for explanation based

learning may provide insights readily adaptable to PRIOPS learning.

7.4 Conclusions

PRIOPS as defined in this thesis provides a solid base for designing time-

constrained, embedded knowledge-based systems. The success of OPS5 and the

Rete algorithm in producing useful knowledge-based systems encouraged

incremental enhancement of their capabilities, while keeping the fundamental

model of production system programming. Augmentations to OPS5/Rete for O(1)

matching and priority-based scheduling build nicely on previous work, and fit

readily into the programming notation.

- 174 -

-- --

So far three published papers have come out of this research. I delivered the

first at the Applications of Artificial Intelligence VII conference in Orlando, Florida

on March 30, 1989. It appeared in the conference proceedings [72]. That paper

generated an invitation to submit a paper to the International Journal of Expert

Systems: Research and Applications. In November, 1989 the journal accepted an

expanded version of the conference paper [73]. The paper has not yet been

published (March, 1990). Finally, the conference paper was one of sixteen selected

from the proceedings by the 1989 Program Committee for contribution to a special

issue of the International Journal of Pattern Recognition and Artificial Intelligence

entitled "New Developments in Expert System Issues." I submitted a paper on the

maze search and learning problem [74] that has just been accepted (March, 1990)

for publication this upcoming summer.

Research directions indicate controlled activities - data flow analysis, planning,

and learning - as areas for future work. The automatic partition provides a

substrate upon which to build. Its structure, and the contributing theory of human

automatic processing, suggest approaches to these controlled activities. I feel that

this initial PRIOPS research has opened up several interesting avenues for

exploration. I look forward to productive exploring.

- 175 -

-- --

ANNOTATED BIBLIOGRAPHY

1. Agha, Gul, Actors - A Model of Concurrent Computation in Distributed
Systems. Cambridge, MA: MIT Press, 1986.

Actors a is fine grain concurrent computational model out of the Message

Passing Semantics Group at MIT. Actors are computational agents located at mail

addresses who process information via their asynchronous communications. Arrival

of messages is guaranteed, but not preservation of order of messages, a fact which

presents difficulties for real-time processing. A single global time cannot be

defined over a system of interacting actors, since each refers to a local clock. This

contrasts with the dissertation research into embedded systems, where part of the

definition of an embedded system is that a consistent system clock can be

maintained within a margin of error acceptable by the application. Actor messages

are identified by a tag, a target mail address, and a communication. Being driven

by incoming communications, Actors are data-driven. Actors are of interest to this

research because their internal behavior is non-iterative. Each Actor acts by

processing its incoming communications, which involves sending messages to

Actors and Actor communities which implement more primitive processing; the

exception is primitive or "rock-bottom Actors," who process communications

directly. An Actor can specify a "proxy" Actor to handle messages which the

former cannot, providing inheritance and default message handling. Finally the

- 176 -

-- --

processing of any single communication handled by an Actor at a mailbox includes

the specification of a replacement behavior for that mailbox. Thus the non-iterative

nature of Actors is extreme: communications are targeted to mailboxes, but

successive replacement behaviors for a mailbox may be distinct behaviors. Unlike

dataflow machines, Actor systems thus implement history sensitivity. Unlike

production systems which rely on a global working memory, the internals of an

Actor are private, with communications occurring via distinct mailboxes. See

references by Hewitt and Lieberman.

2. Agre, Philip E. and David Chapman, "Pengi: An Implementation of a Theory
of Activity." AAAI-87, Sixth National Conference on Artificial Intelligence,
Volume 1. Los Altos, CA: Morgan Kaufmann Publishers, Inc., 1987, p. 268-272.

Pengi is a program that plays the video game "Pengo." It is a reactive

architecture that performs simple indexed reaction function lookup and execution,

based on immediate environmental conditions. Pengi does not perform explicit,

top-down planning, and does not record a history of its states. There is no

equivalent of the controlled partition, so there is no learning, and none of the

issues of the controlled-automatic interface arise. The authors do not discuss

internal design of the program. See [19].

3. Allen, James F., "Maintaining Knowledge about Temporal Intervals."
Communications of the ACM, Vol. 26, No. 11 (November, 1983), p. 832-843.

Time is defined in terms of intervals rather than points on a line. The thirteen

mutually exclusive interval relationships are:

- 177 -

-- --

center; c c c c l c c l. Relation Symbol Inverse Pictorial Example

X before Y < > XXX YYY

X after Y > < YYY XXX

X equal Y XXX YYY

X meets Y m mi XXXYYY

X met-by Y mi m YYYXXX

X overlaps Y o oi XXX YYY

X overlapped-by oi o XXX YYY

X during Y d di XXX YYYYYY

X contains Y di d XXXXXX YYY

X starts Y s si XXX YYYYYY

X started-by Y si s XXXXXX YYY

X finishes Y f fi XXX YYYYYY

- 178 -

-- --

X finished-by Y fi f XXXXXX YYY

A constraint net is maintained; its arcs are labelled with possible relationships

of the intervals represented by the nodes connected to the arcs. The net possesses

less representational power than some temporal logics; a gain in computational

efficiency is the result. Superordinate reference intervals can be established to

impose hierarchy and time-related inheritance on the net. The correct use of

reference intervals can increase efficiency. One potential weakness is that event

sequences are assumed to be linear rather than cyclic - Tuesday cannot occur both

before and after Wednesday. In the present research, temporal planning and

temporal truth maintenance could have bearing on the controlled partition of

processing, rather than the reactive, automatic partition. Planning would allow for

the construction of preliminary automatic reaction sequences based on expected

time relationships of events. Temporal truth maintenance of some sort is necessary

for environmentally context-dependent controlled events: when a controlled

processing sequence is initiated by an automatic event (which was triggered by an

environmental event), and the automatic event is later abandoned (due to

subsequent environmental changes), outdated controlled processing should be

abandoned in a timely way because the context triggering its execution is no longer

in force.

4. Allen, John, Anatomy of LISP. New York: McGraw-Hill, 1978.

- 179 -

-- --

Background reading on the internal structure of LISP.

5. Allworth, S. T., Introduction to Real-time Software Design. New York:
Springer-Verlag, 1981.

A text on real-time operating system issues.

6. Anderson, John R., "Practice, Working Memory, and the ACT* Theory of Skill
Acquisition: A Comment on Carlson, Sullivan, and Schneider (1989)." Journal of
Experimental Psychology, Learning, Memory, and Cognition, Vol. 15, No. 3 (May,
1989), p. 527-530.

Anderson replies that the data from [16] does not contradict ACT*’s learning

mechanisms (ACT* is a production system cognitive model that learns primarily

from production composition). He gives some examples for ACT* productions for

their data. See [16,17].

7. Anzai, Yuichiro, "Doing, Understanding, and Learning in Problem Solving."
Production System Models of Learning and Development, ed. David Klahr, Pat
Langley and Robert Neches. Cambridge, MA: MIT Press, 1987, p. 55-97.

Deals with acquiring rules for proceeding through a search space more

efficiently by: a) constructing initial problem space, b) collecting bad instances

while performing a weak search, c) acquiring productions for avoiding bad

instances, d) collecting good instances and building subgoal generation procedures,

and e) discovering patterns in subgoal structures (in this sequence). Anzai briefly

mentions the need for more work to relate the problem-solving and learning

processes to the perceptual/ motor control issues of real-time tasks (p. 92-93).

8. Archer, Jr., Rowland Frank, "Representation and Analysis of Real-Time
Control Structures." MIT Laboratory for Computer Science, September, 1978.

- 180 -

-- --

This is mostly the development of a notation and corresponding semantics for

sequencing, iteration, and preemption in real-time code. One interesting idea is that

of codestripping, where preemptive scheduling is replaced by voluntary surrender

of the processor via system calls which are inserted into the generated code by the

compiler. Such call based context switching should normally involve less overhead

and is more predictable than preemption. On the down side, the ability of the

compiler to insert context switches into generated code at the correct places may

be error prone unless the code is otherwise restricted. If general iteration is

allowed, switches must be placed inside of innermost loops, perhaps causing

switching too frequently, or must be placed within such loops and surrounded by

additional tests (such as testing the trip number through the loop) in order to avoid

excessive frequency of context switching. Part of the idea of PRIOPS’ non-iterative

code is to break the code into non-looping pieces which perform logically complete

processing, so that process switching occurs naturally at the end of a non-iterative

chunk. Consequently the nature of the source language directs the compiler in its

calls for context switches.

9. Baker, Jr., Henry G., "Actor Systems for Real-Time Computation." MIT
Laboratory for Computer Science Technical Report 197, March, 1978.

This is an early paper on Actor systems (see [1] for more recent work). It deals

with real-time only incidentally. Much of the latter has to do with incremental

garbage collection.

- 181 -

-- --

10. Barachini, Franz and Norbert Theuretzbacher, "The Challenge of Real-time
Process Control for Production Systems." AAAI-88, Seventh National Conference
on Artificial Intelligence, Volume 2. San Mateo, CA: Morgan Kaufmann
Publishers, Inc., 1988, p. 705-709.

Several improvements to Rete are made; the results are not O(1). Remove

avoids replicating make’s match processing through the storage of join counters

and pointers to tokens contributing to a join. The number of nodes is reduced in

several ways. One-input tests are ordered by class field. Some non-shared one-input

tests (called special one-input nodes) are moved to after two-input nodes in order

to allow generation of fewer two-input nodes. This reduction in number of nodes

does not guarantee faster execution. Interrupt handlers are allowed to perform

searches of and modifications to working memory. Such modifications are queued

until the end of the currently executing rule’s right hand side; they are then

matched. Rule right hand sides may explicitly allow interrupt data matching to

occur between right hand side commands. Such matching contributes to a demon

conflict set for interrupting data. The demon conflict set is distinct from the normal

conflict set, and is used to trigger alarms. Demon conflict resolution and firing is

performed immediately after any additions to the demon conflict set (but only after

completion of the current right hand side action, which may include time

consuming matching). One difficulty is that non-atomic right hand sides that are

preempted by demons, may have data that they are using removed by the demons.

The solution in this system is to require explicit tests by the preempted productions

- 182 -

-- --

to ensure continued existence of necessary data; this method is extremely prone to

timing-dependent problems. No attempt to restrict the size or time of join

matching is done.

11. Blank, Glenn David, "A Finite and Real-Time Processor for Natural
Language." Communications of the ACM, Vol. 32, No. 10 (October, 1989), p.
1174-1189.

Register vector grammar uses constrained embedding and boundary

backtracking to parse natural language sentences in O(n) time. The restrictions on

expressiveness, such as limits to embedding depth, correspond to human language

processing limitations.

12. Brinch Hansen, Per, The Architecture of Concurrent Programs. Englewood
Cliffs, NJ: Prentice-Hall, 1977.

The major item of interest here is the concept of restricting the constructs of a

programming language (in this case Concurrent Pascal) in order to constrain run-

time characteristics of the generated processes and in order to enhance

opportunities for compiler-based error detection. See [13].

13. Brinch Hansen, Per, "Distributed Processes: A Concurrent Programming
Concept." Communications of the ACM, Vol. 21, No. 11 (November, 1978), p.
934-941.

This article suggests extensions to Concurrent Pascal (see [12]) for real-time

multiprocessing. The language is to be augmented with remote procedure calls and

guarded regions providing synchronous communications. An assumption of one

processor per process is made, with the number of processes being known at

- 183 -

-- --

compile time. This assumption is unrealistic, since software modifications which

change the number of processes would automatically require hardware

reconfiguration.

14. Brooks, Rodney A., "A Robust-Layered Control System for a Mobile Robot."
IEEE Journal of Robotics and Automation, Vol. RA-2, No. 1 (1986), p. 14-23.

Brooks describes a subsumption architecture for controlling a mobile,

exploratory robot. The design centers around supporting multiple levels of

competence for the robot. Each level can accomplish a complete collection of

tasks, including complete sensor-to-effector data flow. Lower levels perform

simple interactions, such as avoidance of collisions with environmental objects. For

each level there is a corresponding layer of control. Higher, more complex layers

include the activities of lower layers (hence subsumption), and can inhibit lower

level reactions. The result is a robust architecture that degrades gracefully. If a

higher layer fails, its inhibition of lower layers stops, so these lower layers can still

provide reasonable, simpler reactions. The robot does not fail catastrophically with

failure of higher levels.

15. Brownston, Lee, Robert Farrell, Elaine Kant and Nancy Martin,
Programming Expert Systems in OPS5: An Introduction to Rule Based
Programming, Reading, MA: Addison-Wesley, 1985.

While geared toward OPS5, there is much of interest to any production system

programmer or designer.

16. Carlson, Richard A., Marc A. Sullivan and Walter Schneider, " Practice
and Working Memory Effects in Building Procedural Skill." Journal of

- 184 -

-- --

Experimental Psychology, Learning, Memory, and Cognition, Vol. 15, No. 3 (May,
1989), p. 517-526.

This paper questions the notions of Anderson’s ACT* system and the SOAR

system, that ALL learning (chunking for SOAR, primarily composition for ACT*)

result from restructuring of production memory. Carlson, et. al. vote for a

distributed short-term memory (rather than a central, production system one), and

for speeding up component tasks in their experiment (as opposed to restructuring

of component tasks as expected by the 2 production system models of learning), to

account for their results.

17. Carlson, Richard A. and Walter Schneider, "Practice Effects and
Composition: A Reply to Anderson." Journal of Experimental Psychology,
Learning, Memory, and Cognition, Vol. 15, No. 3 (May, 1989), p. 531-533.

Carlson and Schneider reply that ACT*’s coverage of their data is ambiguous,

with increased time for matching increasingly complex composed production

conditions offsetting composition improvements (Anderson’s defense) in execution

speed. They conclude that "Accepting boundary conditions on composition seems

to preserve the strengths of ACT* and to be preferable to the difficulties resulting

from explaining the negation effect on the basis of pattern matching time."

18. Chandrasekharan, M., B. Dasarathy and Z. Kishimoto, "Requirements-
Based Testing of Real-Time Systems: Modeling for Testability." IEEE Computer,
Vol. 18, No. 4 (April, 1985), p. 71-80.

This paper proposes using a finite state machine model (FSM) augmented with

decision procedures and signal handling and timing capabilities as the basis for a

- 185 -

-- --

real-time system specification. Some weaknesses of FSM in comparison to other

models (such as Petri nets) include inability to perform certain computations (such

as stack-based calculations), verbosity of finite machine specifications, and the

sequential mind set of FSM. Parts of the first two problems can be corrected with

decision procedure extensions which are distinct from the FSM (and thus more

powerful); non-FSM mechanisms are thus restricted in scope. The third limitation

of strictly sequential processing meets the authors’ application. They propose their

augmented FSM for systems in which sequential computations dominate.

Expressive power is sacrificed for reliability, since testing requirements for a FSM

can be more readily analyzed than for a more powerful mechanism. Methods for

automatic test generation and execution are discussed.

19. Chapman, David and Philip E. Agre, "Abstract Reasoning as Emergent from
Concrete Activity." Reasoning about Actions and Plans, Proceedings of the 1986
Workshop, ed. Michael P. Georgeff and Amy L. Lansky. Los Altos, Ca: Morgan
Kaufmann, 1987, p. 411-424.

This paper posits that abstract reasoning is not primitive, but derived

phenomenologically, developmentally, and implementationally from concrete

activity. Crucial to the process of integration of concrete events is internalization:

getting control over interactions with the environment by bringing them inside

yourself. The paper emphasizes routine activity in situated environments; concrete

activity is very close to the notion of automatic human processing. Both the

emphasis on processor-environmental interaction and the de-emphasis on the

- 186 -

-- --

importance of detailed planning are important to PRIOPS research.

20. Cohen, Paul R., Michael L. Greenberg, David M. Hart and Adele R.
Howe, "Trial by Fire: Understanding the Design Requirements for Agents in
Complex Environments." AI Magazine, Vol. 10, No. 3 (Fall, 1989), p. 32-48.

The paper presents an architecture, set in the context of simulated fire-fighting

in Yellowstone Park, for interactive plan-based action, replanning, and reflexive

reaction among coordinated, autonomous agents. Emphasis is incremental

refinement and instantiation of an agent’s plan sequence(s), including temporal

instantiation, scheduling, and error recovery. Each agent has a two-part

architecture: a reflexive component (RC) and a cognitive component (CC). The

former recognizes basic emergency conditions as reported by sensors, and

generates immediate effector responses. Like PRIOPS automatic partition, it retains

no memory. The CC is responsible for maintenance, selection, and instantiation of

plans, event memory, and communications with other agents. The RC is much

more loosely coupled to the CC than the automatic partition is to the controlled

partition in PRIOPS. The RC can set simple flags to inform the CC of its actions,

but it cannot interrupt the CC. There is no equivalent to record and predict

automatic-controlled buffering in PRIOPS, nor is there resource recovery at an

automatic-controlled boundary. Learning of RC actions is absent from the current

model. Focus is on dynamic planning - a controlled activity from the PRIOPS

viewpoint. "Lazy skeletal refinement responds to a complex dynamic world by

postponing decisions, while grounding potential actions in a framework that

- 187 -

-- --

accounts for data, temporal and resource interactions," (p. 43). Plan instantiation is

more flexible than classic, static planning.

21. Cooper, Thomas A. and Nancy Wogrin, Rule-based Programming with
OPS5, San Mateo, Ca: Morgan Kaufmann, 1988.

This book concentrates on OPS5 for a range of problems, and includes an

excellent chapter on Rete and OPS5 programming for efficiency.

22. Ennis, R. L., J. H. Griesmer, S. J. Hong, M. Karnaugh, J. K. Kastner, D.
A. Klein, K. R. Milliken, M. I. Schor and H. M. Van Woerkom, "A Continuous
Real-Time Expert System for Computer Operations." IBM Journal of Research
and Development, Vol. 30, No. 1 (January, 1986), p. 14-28.

The expert system discussed assists computer operators using the IBM Multiple

Virtual Storage/System Product - Job Entry Subsystem 3 (MVS/SP-JES3). It is

written using a modified version of OPS5 whose modifications include: a)

compilation of rule right hand sides; b) the availability of a TIMED-MAKE

command for creating working memory elements at specified times or after

specified intervals; c) the availability of a REMOTE-MAKE command for

communications d) the addition of a "communication phase" to the standard

recognize, conflict resolution, act cycle to handle the REMOTE-MAKE; messages

are handled just before conflict resolution; and e) the use of explicit rule priorities

in conflict resolution. Priorities are superimposed on the MEA and LEX strategies,

and an example is given of the use of priorities to implement mutual exclusion by

garbage collecting productions. Priorities are considered at conflict resolution rather

than at matching time.

- 188 -

-- --

23. Etherington, David W., Alex Borgida, and Ronald J. Brachman, "Vivid
Knowledge and Tractable Reasoning: Preliminary Report." Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, Vol. 2, August,
1989, p. 1146-1152.

This paper outlines an approach for extracting some information from a

knowledge base, and instantiating cases in a relational database (the vivid

knowledge base or VKB) for fast, lookup-based queries. Vivid query time should

be sublinear in the size of the knowledge base. The authors concentrate on

strategies for converting various knowledge base representation forms, such as

universally quantified sentences and several types of disjunctions, into database

entries. Some transformations gain efficiency at the loss of information.

24. Fisk, Arthur D. and Walter Schneider, "Memory as a Function of Attention,
Level of Processing, and Automatization." Journal of Experimental Psychology:
Learning, Memory, and Cognition, Vol. 10, No. 2 (April, 1984), p. 181-197.

The most important thrust of this article is that automatic processing

mechanisms are built into long-term memory by controlled processing, but that

further storage/learning does not occur during automatic processing. Recollection

and learning require attention, which is not in effect during strict automatic

processing.

25. Forgy, Charles L., On the Efficient Implementation of Production Systems.
Department of Computer Science, Carnegie-Mellon University, January, 1979.

Forgy’s dissertation and explanation of Rete in the context of OPS2. See [27].

26. Forgy, Charles L., OPS5 User’s Manual. Memo CMU-CS-81-135, Carnegie-
Mellon University, July, 1981.

- 189 -

-- --

The definition of Official Production System 5.

27. Forgy, Charles L., "Rete: A Fast Algorithm for the Many Pattern / Many
Object Pattern Match Problem." Artificial Intelligence 19 (1982), p. 17-37.

An efficient match algorithm which allows production condition tests to be

shared among separate conditions whose leading parts are identical; results of

partial matches are stored in the matching network. Rete makes refraction tractable.

Rete is the standard forward-chaining production system match algorithm against

which other match algorithms are compared. Part of the current research is into

real-time matching. This effort consists of an attempt to determine what

modifications and enhancements can be made to Rete so that a subset of the

contributing productions residing in an instantaneous real-time partition of

productions (with remaining productions residing in the average real-time partition)

can be shown to execute in constant bounded time when their triggering conditions

are met. Such time bounding is not guaranteed by standard Rete.

Space and time complexity of standard Rete used in OPS5:

l l l.

Complexity measure Best case Worst case

Effect of working memory size O(1) O(WC) on number of memory change

- 190 -

-- --

tokens

Effect of production memory size O(P) O(P) on number of match processing

nodes

Effect of production memory size O(1) O(P) on number of memory change

tokens

Effect of working memory size O(1) O(W(2C-1)) on time for one firing

Effect of production memory size O(log
2
P) O(P) on time for one firing.

Where C is the number of patterns in a production, P is the number of

productions in production memory, and W is the number of elements in working

memory.

28. Gabriel, Richard P. "Memory Management in LISP." AI Expert, Vol. 2, No.
2 (February, 1987), p. 32-38.

This article outlines both the standard, interruption collection techniques as well

as incremental and non-garbage-generation techniques. Interruption techniques

include: mark and sweep; stop and copy (which has better locality of reference

than mark and sweep); and reference counting. Incremental techniques include:

incremental stop and copy (portions of stop and copy are interleaved with normal

execution; hardware dereferencing of multiply indirect pointers is often used;

paging overhead can be high due to poor locality of reference); incremental

- 191 -

-- --

reference counting (moving objects onto the zero reference queue can be

interleaved with execution); generation scavenging (objects are promoted to higher

generations based on age, and by implication stability, with younger generations

being collected more frequently); and ephemeral collection (a two generation

version of generation scavenging / stop and copy hybrid). Garbage collection can

be avoided in cases where stack allocation and explicit heap management can be

used (e.g., as in Pascal). Garbage collection is important to real-time processing

because interruption collection destroys system performance when executing, and

incremental collection spreads slowdown more evenly across program execution.

29. Glass, Arnold Lewis and Keith James Holyoak, Cognition, Second Edition.
New York: Random House, 1986.

Background reading in cognitive psychology.

30. Gupta, Anoop and Charles L. Forgy, "Measurements on Production
Systems." Carnegie Mellon Memo CMU-CS-83-167, December, 1983.

Some initial measurements which are expanded in Gupta’s dissertation [31].

31. Gupta, Anoop, Parallelism in Production Systems. Los Altos, Ca: Morgan
Kaufmann, 1987.

Gupta examines issues in parallel hardware implementation of Rete, basing his

analysis on six existing production systems written in OPS5 and SOAR. He comes

to the conclusion that the possible speed improvement is limited to roughly a

factor of 10 rather than the 100-fold to 1000-fold improvement expected. Reasons

cited include the facts that only a small number of productions are affected per

- 192 -

-- --

working memory change, there is a large variation in the processing requirements

of these productions, and the number of changes made to working memory per

recognize-act cycle is very small. Gupta designs a 32 to 64 processor, shared

memory MIMD machine with a dedicated hardware scheduler attached to the bus;

typical speed improvements are less than a factor of 10. Different levels of

granularity of parallelism are explored: "Production parallelism" (the largest

grain), where productions are partitioned across the hardware and production

matches are performed in parallel; this method suffers due to the loss of inter-

production node sharing in Rete; "node parallelism," where activations of different

two-input Rete nodes are executed in parallel; "intra-node parallelism," similar to

node parallelism, where multiple activations of each two-input Rete is allowed; and

"action parallelism," where the effects of multiple modifications to working

memory within one inference cycle are allowed to occur concurrently. The

combination of intra-node and action parallelism proved to be the most effective.

Parallelism in the conflict-resolution and RHS evaluation are briefly mentioned, but

since the latter typically account for about 5% each of system execution time, with

matching consuming the remaining 90%, Gupta concentrates on matching.

Application parallelism, where the nature of the computer application allows

straightforward use of multiple processors, is mentioned but not discussed in detail

because it is application specific. Gupta simulates execution of his machine.

- 193 -

-- --

32. Gupta, Anoop, Charles L. Forgy, Dirk Kalp, Allen Newell and Milind
Tambe, "Parallel OPS5 on the Encore Multimax." Proceedings of the
International Conference on Parallel Processing, Vol. 1 (August, 1988), p. 271-
280.

Application of Gupta’s and related research to a particular multiprocessor.

Mutual exclusion through use of simple locks was found to be more time effective

than complex synchronization schemes. Majority of multiprocessing contentions

occur over task queues and multiple access to two-input node memories.

33. Gupta, Anoop, Charles Forgy and Allen Newell, "High-Speed
Implementations Rule-Based Systems." ACM Transactions on Computer Systems,
Vol. 7, No. 2 (May, 1989), p. 119-146.

This reiterates some of the points made in Gupta’s other papers. The emphasis

is on the architecture required for a hardware production system machine. Rete on

this architecture is compared to Rete on the DADO and NON-VON machines, with

the production machine simulation (there is no machine yet) proving superior. All

of the forms of production system parallelism in Gupta’s dissertation are repeated

here.

34. Haley, Paul V., "Real-Time for Rete." Proceedings of ROBEXS ’87: The
Third Annual Workshop on Robotics and Expert Systems, Research Triangle Park,
NC: Instrument Society of America, 1987.

This paper tackles problems concerning proving guaranteed response times

when using Rete based pattern matching. The author shows that joins across

working memory elements dominate the matching time complexity, and that join

times cannot be predicted without restricting the general Rete join. Proposed

- 194 -

-- --

limitations are: 1) Join matching limitations: Establish some finite limit on the

number of matches for a join (to use Forgy’s terminology, a limit to the number of

tokens input/stored by a two-input Rete node); 2) Pattern instantiation restrictions:

Establish a limit on the number of instances of a pattern (the number of working

memory elements matched to a condition element); 3) Relation instance

restrictions: Establish some finite limit on the number of instances of a relation

(where a relation is a working memory element with its contents, but not its

recency tag considered); 4) Cardinality restrictions: Establish some finite limit on

the number of instances of a relation given a set of values for some subset of its

arguments (i.e., using the latter as "keys"). My extends this by embedding

priority-based, preemptive processing in the Rete net, and by restricting the number

of sensor-signal based relation instances to one per sensor.

35. Hayes-Roth, Barbara, "The Blackboard Architecture: A General Framework
for Problem Solving?" Heuristic Programming Project Report No. HPP-83-30,
Stanford University, May, 1983.

The blackboard architecture is composed of entries, knowledge sources, the

blackboard, and the control mechanism. Entries are objects of user-determined

complexity; associated attribute-value pairs describe an element’s semantic content,

its relationship to other entries, its history of generation and modification, and any

other useful information. Knowledge sources are the cognitive processes that

produce entries. Knowledge sources are composed of a condition portion which

must be satisfied, followed by an action portion which builds and modifies entries.

- 195 -

-- --

Knowledge sources do not communicate directly, but only through the blackboard.

The blackboard is a global data base containing all entries generated by all

knowledge sources during problem solving; it serves two functions. First, it

mediates all knowledge source interactions. Second, it organizes all partial and

complete solutions generated for the problem under attack. The blackboard may

have user-determined internal structure. Typically knowledge is represented at

various levels of abstraction. Finally, a central control mechanism is responsible

for maintaining an agenda of satisfied knowledge sources and scheduling these for

action. This scheduler is knowledge based and can employ various inference

mechanisms and search strategies in solving the problem. Blackboard systems

exhibit opportunistic behavior, triggering knowledge sources as they recognize

pertinent information. Control may be combinations of top-down, bottom-up, and

island expansion and convergence. Multiple sources of knowledge at differing

levels are handled well.

Entries, knowledge sources, and the blackboard correspond roughly to working

memory elements, productions, and the working memory matching network in

OPS-like production systems. The control scheduler has no direct counterpart;

control in production systems is distributed throughout the productions. A

blackboard system attempts to separate control and domain information to a greater

degree than a production system. Only the basic mechanisms of conflict resolution

normally exist in a production system; conflict resolution typically has rather

- 196 -

-- --

limited flexibility. It is possible, however, to design a more central scheduler into a

production system. With the scheduler built using the production system

architecture, it would undoubtedly be slower than a scheduler built into the

architecture.

36. Hildreth, Ellen C. and John M. Hollerbach, "The Computational Approach
to Vision and Motor Control." MIT AI Lab Memo 846, Center for Biological
Information Processing Memo 014, August, 1985.

Interesting points about motor control include the following: 1) Because

feedback loops within the nervous system operate too slowly, moderately fast to

fast arm movements must be controlled in an open-loop manner (p. 48-49). Neural

feedback speed is insufficient to support a classic servo-mechanism, but it can

support more global or long-term adaptation; the alternative appears to be

predictive control. 2) Movement planning involves a hierarchy of trajectory

planning, inverse kinematics, inverse dynamics, and torque production. 3) Practice:

"One way of compensating for an inability to model the actuation and transmission

elements is to tune the output for specific movements through repetition. This

approach is very reminiscent of the motor tape idea, in which the output is known

only for one particular trajectory. According to this approach, general movements

would be made coarsely or suboptimally with an imprecise system model and

control, but for frequent movements the control system would modify its output for

a new repetition based on errors from the previous repetition," (p. 58). Specialized

mechanical feedback systems are discussed. 4) Specially tuned, inflexible

- 197 -

-- --

elemental movements are discussed in a tone comparable to automaticity (p. 67).

37. Hoare, C.A.R., "Monitors: An Operating System Structuring Concept."
Communications of the ACM, Vol. 17, No. 10 (October, 1974), p. 549-557.

An seminal paper on a construct which aids in avoiding the critical section

problem between concurrent processes which share resources. Critical sections

definitely figure into interrupt handling, and thus into time-dependent processing.

38. Holland, John H., Keith J. Holyoak, Richard E. Nisbett and Paul R.
Thagard, Induction: Processes of Inference, Learning, and Discovery. Cambridge,
MA: MIT Press, 1987.

The authors present a framework for inductive learning and performance

directed tuning based on a system of mental models which are homomorphic to the

phenomena which they model. Mappings from initial and goal states in the

modelled phenomena to initial and goal states in the model are such that

transformation operators which transform the modelled initial states through

intermediate states to modelled goal states have a direct mapping correspondence

to operators which transform the model initial states through corresponding

intermediate states to model goal states.

Models are built of frame-like clusters of message passing production rules; the

rules are the small-grain substrate of the architecture. Rules are selected for firing

based on strength, support, and specificity. Each rule accumulates a fluid strength,

based on the degree to which it has been successfully applied in the past. Portions

of strengths are back propagated from rules which consume messages (i.e.,

- 198 -

-- --

triggered rules) to the rules which sent the messages (i.e., triggering rules). The

rules which terminate these inference chains are rewarded with strength increments

for success and decrements for failure. This back propagation of strengths (termed

the ’bucket brigade’) is one of the learning mechanisms in the model. Strengths

probabilistically contribute to conflict resolution; a strong rule has a high likelihood

of firing when its antecedent conditions are met by an incoming message, but low-

strength rules also occasionally fire, allowing them opportunities to prove their

abilities and increase their strengths through reward. The degree of support which a

triggered rule receives (i.e., the number of rules sending enabling messages to it

during the current cycle) also contributes to conflict resolution. Specificity based

conflict resolution allows construction of a default hierarchy of rule clusters; more

specific rules represent exceptions and special cases, which take precedence over

more general, default rules. Finally, a limited degree of parallel rule firing is

allowed by conflict resolution. The overall effect is one of spreading activation

among related rule clusters within a goal context.

Rules are of two types: 1) Synchronic rules supply definitions, local and

hierarchically inherited properties, and general associations of clusters. 2)

Diachronic rules define changes and actions, especially temporal transformations.

The processing architecture is partitioned across three major levels: 1) Empirical

rules deal with empirical phenomena in the environment. 2) Inferential rules

comprise the architecture’s meta-rules; they deal with acquisition and modification

- 199 -

-- --

of rules, and can themselves be acquired and manipulated. 3) Operating principles

are built-in and support the rest of the architecture; these include support for the

message passing based activation of rules and the bidding system whereby rule

satisfaction, strength, support and specificity yield rule bids whose magnitude

determine the probability of rule firing.

Learning mechanisms discussed include generalization, specialization,

formation of frame-like rule clusters, strength propagation, rule composition and

alteration through genetic operations, and analogy. Statistical heuristics such as the

’law of large numbers’ are emphasized; central tendencies and variability in

attribute values contribute to the definition of these attribute values in rule

antecedents. Thus both rule creation and rule firing have stochastic components.

The authors apply the framework to a wide range of processing conditions

including animal conditioning, human category hierarchy studies, intuitive physics,

social psychology, and scientific discovery. They end by discussing further work

necessary for the growth of the framework into an actual theory.

39. Hsu, Ching-Chi and Feng-Hsu Wang, "The Search Ahead Conflict
Resolution for Parallel Firing of Production Systems." Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, Vol. 1, August, 1989, p.
91-96.

The paper discusses static, compile-time analysis of production test matching

and LIFO conflict resolution, such as OPS5’s lex strategy. The result is a conflict

resolution strategy that allows parallel execution of multiple rule instantiations

- 200 -

-- --

while preserving the semantics of an equivalent uniprocessor LIFO strategy. The

paper does not deal with parallel match processing.

40. Hunt, Earl and Marcy Lansman, "Unified Model of Attention and Problem
Solving." Psychological Review, Vol. 93, No. 4, p. 446-461.

This a controlled-automatic production system simulation that reproduces

results comparable to earlier studies on humans. Unlike PRIOPS, no Rete-based

symbol matching occurs. The system determines productions to fire based on

activation levels that are set, in turn, by simple feature strengths in sensory input

and working memory elements. The automatic processing is really a semantic net

of hand-coded interconnections. Production notation is used to allow RHS actions

in addition to semantic net activation propagation.

41. Jacob, Robert J. K. and Judith N. Froscher, "Software Engineering for
Rule-based Systems." Naval Research Laboratory, Washington, D.C.

This paper discusses a design approach based on partitioning a rule base into

groups, where a group is characterized by a large degree of internal coupling via

sharing of working memory references. Inter-group communications occur through

a small set of shared working memory references. Algorithms which can detect and

highlight inherent partitions in existing rule bases are outlined, and such

partitioning is advocated as a design method. While object oriented programming

is not mentioned per se, this modular approach certainly suggests the possibility of

partitioning the knowledge base into individual objects with accompanying

production methods. Communications between objects could be based on loosely

- 201 -

-- --

coupled, explicit message passing.

42. Jacobson, Ivar, "Language Support for Changeable Large Real Time
Systems." OOPSLA ’86 Conference Proceedings, ed. Norman Meyrowitz. New
York, NY: ACM, 1986, p. 377-384.

Object-oriented extensions to an existing embedded system model are proposed.

Methods for performing modifications (enhancements in particular) to a system

without interfering with ongoing operations are discussed. Modifications include

addition of enhancements, modification of object internals, with the object interface

appearing unchanged, and modifications of objects causing changes in the object

interfaces.

43. Jonides, John, Moshe Naveh-Benjamin, and John Palmer, "Assessing
Automaticity." Acta Psychologica 60, 1985, p. 157-171.

The authors propose two guidelines in the experimental study of automaticity:

1) The concept of automaticity is best applied to component processes of complex

behaviors rather than to behaviors as a whole. 2) Criteria chosen for the

identification of automaticity should be motivated by the process in question. They

leave open the question of whether (in view of their second point) "there is really

no unified concept of automaticity that cuts across the particular tasks and

paradigms that appear in the literature? It is too early to tell."

44. Keller, Richard M., "Defining Operationality for Explanation-Based
Learning." AAAI-87, Sixth National Conference on Artificial Intelligence, Volume
2. Los Altos, CA: Morgan Kaufmann Publishers, Inc., 1987, p. 482-487.

First explanation based-learning is contrasted with empirical learning. The

- 202 -

-- --

latter performs simple syntactic analysis of similarities and differences among a

large number of training instances. Explanation-based generalization (EBG)

performs an in depth, knowledge-intensive analysis of a single (and typically

positive) training instance, generating an explanation of why the instance is an

example of the concept to be learned. The explanation is next generalized to fit a

larger class of instances, and a description of the larger class is extracted from the

generalized explanation. This description constitutes a generalization of the original

instance.

Note that in order to fit the instance to the more general target concept, the

learning system must already have some information about the more general, target

concept prior to its exposure to the training instance. In fact the author discusses

EBG from the position that it is a method for refining existent concepts (as

opposed to primarily acquiring new ones) by transforming concept representations

into representations that are more functionally useful, based on the training

instances and on operationality (functional usefulness) criteria. The paper outlines a

three space approach to concepts: the Instance Space contains instances; the

Concept Space contains the abstract, implicit (non-represented) concepts; the

Concept Description Space contains the explicit (represented) concept descriptions,

many of which may map onto a single abstract concept. Concept Description Space

is partitioned into non-operational and operational regions, where operationality is

defined in terms of usability and utility. Usable means that a description is in a

- 203 -

-- --

form accessible by the performance system, and utile means that a description is

worth using as judged by some performance criteria (e.g., time and space

complexity). The paper characterizes EBG as constituting a search from non-

operational to maximally (or at least sufficiently) operational descriptions for a

given concept, the end result being a description in a usable format.

The paper goes on to categorize operationality of several learning systems in

terms of granularity of utility estimates or measurements (binary or continuous), of

certainty of utility estimates, and of variability of operationality criteria (static or

dynamic). Continuous estimation allows tuning of performance (as opposed to

acceptable/unacceptable), and dynamic variability allows performance criteria to be

learned with performance mechanisms (as opposed to having performance criteria

hard-coded into the program). The author’s experimental system MetaLEX

possesses all three desirable qualities (including full certainty), but at large

computational cost. The performance system is exercised at every decision point in

the path from the non-operational to operational description in order to evaluate

potential changes in description, making the learning more like practice than

planning; this practice-based evaluation provides support for the conjunction of full

certainty and continuous granularity in the evaluation of description changes.

The application to my research-in-progress relates to the fact that the generation

of constant-time-bounded matching structures amounts to a transformation of

information which is already known but is not in a form capable of being utilized

- 204 -

-- --

within the time bounds. Operationality for real-time code is thus defined as

processing within the necessary time/space constraints. Explicit programming,

planning, and practice amount to a transformation of non-operational information

contained within the system and processing environment into information which is

both usable and utile at performance time.

45. Kelly, Michael A. and Rudolph E. Seviora, "An Evaluation of DRete on
CUPID for OPS5 Matching." Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, Vol. 1, August, 1989, p. 84-90.

The authors’ DRete generates multiple executions of a join node, one for each

token stored in one of its memories, when a token arrives or departs at the

opposing memory. These executions run in parallel. The speedup is on the order of

Gupta’s (or less), around 8 with 64 processors over the speed of 1 processor (32

processors give almost as much speedup, so improvement has levelled off by 64).

46. Kernighan, Brian W. and Dennis M. Ritchie, The C Programming
Language, Second Edition. Englewood Cliffs, NJ: Prentice Hall, 1988.

PRIOPS is written in a version of C that almost matches the proposed ANSI

standard (Microsoft® C 5.1).

47. Korf, Richard E., "Planning as Search: A Quantitative Approach." Artificial
Intelligence 33 (1987), p. 65-88.

The author applies time and space complexity analysis to planning using

subgoals, macro-operators, and abstraction as knowledge sources. Planning is

discussed in terms of problem solving search.

- 205 -

-- --

48. Laffey, Thomas J., Preston A. Cox, James L. Schmidt, Simon M. Kao and
Jackson Y. Read, "Real-Time Knowledge-Based Systems." AI Magazine, Vol. 9,
No. 1 (Spring, 1988), p. 27-45.

This is a survey of real-time expert system applications, tools, and theoretic

issues. It addresses possible definitions of "real-time" and the increased difficulties

of real-time systems over traditional expert systems. Specific problems in using

OPS5’s Rete Algorithm are mentioned. Application areas discussed include

aerospace, communications, financial, medical, process control, and robotic

applications. A point is made that none of the systems examined adequately

addresses the fundamental problem of guaranteed response times. Proposed

research issues include basic performance, guaranteed response times, production

systems, and real-time derivations of the Rete Algorithm. The article provides an

excellent list of references for applications and tools discussed.

49. Laird, John E. and Allen Newell, "A Universal Weak Method." Memo
CMU-CS-83-141, Carnegie-Mellon University, June, 1983.

The Universal Weak Method is one of the key aspects of the SOAR

architecture. It is essentially the weakest, most knowledge deprived search method

possible - directionless trial-and-error with the ability to perform backtracking upon

failure and avoid repetitious looping through identical states. The authors propose

that incremental additions of domain specific knowledge to the Universal Weak

Methods automatically give rise to the variety of standard weak methods (e.g., hill

climbing or means-ends-analysis).

- 206 -

-- --

50. Laird, John E., "Universal Subgoaling." Memo CMU-CS-84-129, Carnegie-
Mellon University, May, 1984.

Universal Subgoaling is one of the key aspects of the SOAR architecture. It

implements automatic generation of subgoal / nested problem space searches when

the operator selection and application mechanism of SOAR reaches a processing

impasse due to tie, inactivity, preference conflicts or invalidation of a context role

withing the current processing context. Chunking tracks the processing of subgoals

and chunks over them with single recognize/act productions.

51. Laird, John E., Paul S. Rosenbloom and Allen Newell, "Towards Chunking
as a General Learning Mechanism." Part of Memo CMU-CS-85-110, Carnegie-
Mellon University, January, 1985.

A short look at SOAR’s chunking. See [52].

52. Laird, John E., Paul S. Rosenbloom and Allen Newell, "Chunking in SOAR:
The Anatomy of a General Learning Mechanism." Machine Learning 1 (1986), p.
11-46.

Chunking is one of the key aspects of the SOAR architecture. When a subgoal

is initiated, a trace is made of the information the subgoal draws from its

supergoals’ environments during the useful parts of its searching; return results are

also traced, and the processing dependencies of this input to output information

flow is bound as the conditions and actions of a chunk production. Thereafter

whenever the conditions arise which would have given rise to the subgoal search

processing, the chunk production fires, short-circuiting the search. Chunking

comes in two flavors, terminal and general. With terminal chunking only subgoals

- 207 -

-- --

whose solution does not require nested subgoal processing are chunked; with

general chunking all subgoal processing is chunked. Terminal processing builds

hierarchies of chunks in a bottom-up order. Weaknesses of SOAR’s chunking

include severe memory consumption (SOAR assumes unlimited memory),

insensitivity to data which almost triggers subgoal processes and insensitivity to

updates to subgoal problem spaces after chunking is complete.

53. Laird, John E., Allen Newell and Paul S. Rosenbloom, "SOAR: An
Architecture for General Intelligence." Artificial Intelligence Vol. 33, No. 1
(1987), p. 1-64.

SOAR (State Operator And Result) is a processing architecture based on

searching through a set of problem spaces in order to solve goals. Processing

contexts are stacked; each context consists of goal, problem space, state and

operator roles. Augmentations are linked declarative additions to the basic roles;

preferences are votes cast (veto, acceptable, and relative or absolute preferences)

for changes to role contents in a context. The machine cycle consists of 2 parts:

Elaboration, where productions firing in parallel add prospective role objects,

augmentations and preferences to working memory; and Decision, where

preferences are used to order potential actions. Either a change action is accepted,

or a subgoal process is generated when processing reaches an impasse. See other

SOAR papers by these authors. SOAR is implemented as a derivative of OPS5.

54. Laird, John E., "Learning from External Environments using SOAR."
Proceedings of Applications of Artificial Intelligence VII, Volume 1095, Part 1, ed.
Mohan M Trivedi. Bellingham, Washington: Society of Photo-Optical

- 208 -

-- --

Instrumentation Engineers, 1989, p. 575-576.

The paper is an abstract for the talk given at the conference on March 30,

1989. Laird emphasized SOAR as a system which combines the important

characteristics of I) Interactive systems (e.g., control systems); II) Knowledge-

based and general systems (e.g., expert systems and planning systems respectively);

and III) Learning systems (e.g., explanation based learning). Constraints for type I

systems include: 1) real-time operation; 2) accept sensory data upon arrival; 3)

integrate sensory data into world model; 4) permit sequential and parallel motor

commands; 5) accept help from other intelligent agents. Laird emphasized the latter

and the importance of learning both from the environment or examples and from

interaction with other intelligent agents. For type II activities in SOAR, Laird

emphasized Universal Subgoaling as the method for dynamically directing

hierarchical problem solving and planning (the plans being stored as chunks). Laird

listed the activities of a type III (learning) system as: 1) improving

speed/performance; 2) solving new problems; 3) correcting errors; 4) learning

(new) relevant features from the environment; and 5) predicting behavior of the

environment. Both advice and experience should contribute to learning. Learning

should not impair performance, and learning should have immediate benefit.

Problems with deductive learning are that the real world domain theory may be

incomplete, and the system must fix incorrect knowledge. Methods for

accomplishing the latter might include removing errors, modifying them, lowering

- 209 -

-- --

rule strengths, masking them with new knowledge, or adding new knowledge to

correct the effects of errors. SOAR’s chunking does not remove erroneous

knowledge, but builds new chunks which mask the erroneous knowledge (the error

generates an impasse which leads to solution of the error-generated problem and

generation of the masking chunk).

Laird gave examples in terms of controlling a simple robot vehicle which he

was holding. At question and answer time, I posed a question about whether

SOAR could respond to an emergency sensor (e.g., dangerous temperature) if the

sensor was unrelated to the current stack of subgoals. I suspected that it would

always be necessary to keep an artificial goal in memory (e.g., goal: don’t let the

temperature get too high) in order to enable chunks for handling the sensor. He

said that the sensor would be responded to correctly, but that the system would

immediately drop AND FORGET the current goal processing in reacting to the

sensor. He did not elaborate, but this leads me to believe that the artificial goal for

monitoring the temperature sensor is maintained deep in the stack, and when it is

dealt with (and satisfied), all intermediate goals are dropped (as is the case).

55. Langley, Pat, "A General Theory of Discrimination Learning." Production
System Models of Learning and Development, ed. David Klahr, Pat Langley and
Robert Neches. Cambridge, MA: MIT Press, 1987, p. 99-161.

Deals with a model of learning that starts out with missing rules that first

present errors of omission, leading to creation of overly general rules which

present errors of commission, followed by increased discrimination based on

- 210 -

-- --

pairwise comparisons of correctly and incorrectly applied rule instantiations. The

theory covers conjunctive and disjunctive concept learning, search improvements,

learning in noisy environments, and learning information which is subject to

change. Conflict resolution is: a) refraction, b) production strength (important to

PRIOPS), c) recency, and d) random selection. The production strength is increased

as a rule is repeatedly instantiated (which demonstrates its value). Strengthening

helps to weaken noise induced productions and helps to track changing

information; strengthening causes productions to be forwarded into activation in a

beam search like manner - learned productions are never forgotten (breadth first),

but only the currently strong ones are important (beam width). Learning search

heuristics is one topic covered. Criteria of a good scientific theory is also an

interesting aside.

56. Lesser, Victor R., Jasmina Pavlin and Edmund Durfee, "Approximate
Processing in Real-Time Problem Solving." AI Magazine, Vol. 9, No. 1 (Spring,
1988), p. 49-61.

This article outlines an approach to planning where a tradeoff is made between

estimated execution time and quality of the plan. Estimates of execution times are

made, based at least in part on experience. Steps which are in some way redundant

or which in some way do not fully contribute to the final problem solution are

eliminated when such elimination is needed in order to meet timing constraints. An

elimination of such redundant or unnecessary processing is termed a "well-defined

approximation"; well-defined approximations are contrasted with various ill-defined

- 211 -

-- --

approximations. Three types of approximate reasoning discussed are approximate

search strategies, data approximations, and knowledge approximations.

Approximate search strategies include eliminating corroborating (redundant)

support and eliminating competing interpretations (when the eliminated

interpretations are significantly less well supported than their competitors). Data

approximations include incomplete event processing (some non-critical information

in the data is ignored) and cluster processing (clusters of data are processed as a

single unit). Knowledge approximations include approximations that work with

data approximations (geared toward translating constraints on data to constraints on

data clusters) and approximations that summarize several sources of knowledge

into a single, less discriminating knowledge source by eliminating some of the

intermediate processing steps. The paper examines situations within which these

approximations can be applied in a well-defined fashion. An important assumption

about this framework for real-time control is that it is possible to make a

reasonably accurate estimate of the time to carry out the steps of the plan and the

quality of the expected solution.

57. Levesque, Hector J. and Ronald J. Brachman, "A Fundamental Tradeoff in
Knowledge Representation and Reasoning (Revised Version)." Readings in
Knowledge Representation, ed. Ronald J. Brachman and Hector J. Levesque, Los
Alstos, Ca: Morgan Kaufmann, 1985, p. 42-70.

The tradeoff is between expressiveness and tractability, with full first-order

logic being intractable. Two pseudo-solutions, speeding up the computing

- 212 -

-- --

environment and terminating search at a predetermined time and reporting

excessive search time, do not address the fundamental problem of tractability. The

authors suggest a continuum of notations and architectures that trade

expressiveness for tractability. The PRIOPS automatic partition is a powerful

example of trading expressiveness - the automatic partition’s capabilities are

severely constrained to performing habit-like activities - for tractability - in the

PRIOPS case, O(1) complexity.

58. Levinthal, Charles F., Introduction to Physiological Psychology. Englewood
Cliffs, NJ: Prentice-Hall, 1983.

Background reading in physiological psychology.

59. Lewis, Clayton, "Composition of Productions." Production System Models of
Learning and Development, ed. David Klahr, Pat Langley and Robert Neches.
Cambridge, MA: MIT Press, 1987, p. 329-358.

Lewis performs a formal analysis of composition of productions, where

interacting sequences of applicable productions are replaced by a single production

representing their composition. Safe composition is discussed, where a safe

composition preserves the effects of the original productions. Composition does not

rely on trace data but rather on strictly syntactic examination of the productions.

Lewis discusses the need to apply similar formal analysis to other production

system based models of learning such as proceduralization, discrimination, and

generalization.

60. Lieberman, Henry and Carl Hewitt, "A Real-Time Garbage Collector Based
on the Lifetimes of Objects." Communications of the ACM, Vol. 26, No. 6 (June,

- 213 -

-- --

1983), p. 419-429.

The article deals with generation scavenging incremental garbage collection.

Generation scavenging is like stop and copy with multiple regions, ordered by age.

The assumption is that old data is fairly stable; a high degree of all garbage is

generated by recent (temporary) data. Therefore regions are maintained and

garbage collected according to age, with the youngest being collected more

frequently. Garbage collection consists of two parts: condemnation initiates

evacuation of an area; scavenging adjusts pointers from outside the area. An

explicit requirement necessary for efficient scavenging is that pointers are

predominately from newer to older data, i.e., that few circular mutations (e.g.,

NCONC) are used. Pointers from old to new data require additional levels of

indirection. Non-mutative programming of the kind required by this method (a

common style of LISP programming) does incur data copy overhead penalties.

While generation scavenging may be efficient for programs written in the proper

style, it appears to involve a great deal of overhead; the authors give no

measurements or empirical evidence in support of their algorithm.

61. Liebowitz, Burt H. and John H. Carson, Multiple Processor Systems for
Real-time Applications. Englewood Cliffs, NJ: Prentice-Hall, 1985.

This overview text deals with hardware, networking, operating system,

database, reliability, queueing theory, and engineering considerations for time-

constrained distributed processing. Three types of functional allocation of tasks to

- 214 -

-- --

processors is considered: a) dedicated function, in which specific functions are

preassigned to processors (large grain MIMD); b) traffic sharing, in which the

input data stream is divided (either statically or dynamically) across processors at

run-time (more task homogeneous MIMD, possible pipelined and array SIMD);

and c) dynamic allocation of tasks themselves (rather than just input data) at run-

time, the most complex with the most overhead, but conceivably the most effective

in load balancing. Combinations of a and b are most common. The flavor of the

text is system engineering.

"Most real-time systems provide a natural four-way split of functions:

communications processing, applications processing, file handling (database) and

miscellaneous support functions," p. 35.

62. Lindsay, Peter H. and Donald A. Norman, Human Information Processing.
New York: Academic Press, 1977.

Background reading in cognitive psychology.

63. Ma, Richard Perng-Yi, "A Model to Solve Timing-Critical Application
Problems in Distributed Computer Systems." IEEE Computer, Vol. 17, No. 1
(January, 1984), p. 62-68.

This paper discusses a heuristic search-based method for allocating tasks to

processors. Major components of such a distributed system design include the

interconnection network (IN), an application description language (ADL), and

software development (SD) which links the ADL to the IN. Software development

in turn consists of task partition and task allocation (to processors). The heuristic

- 215 -

-- --

search strategy discussed is based on branch-and-bound; it attempts to: 1)

minimize interprocessor communication cost, 2) balance the utilization of

processors, and 3) meet various engineering application requirements. Contributing

factors to ’thread’ port-to-port time include task execution time (i.e., processing

time within the port-to-port thread of execution), queueing delay time (where

processor sharing occurs), and interprocessor communication time. Guidelines for

the heuristic are: 1) to reduce task execution time, large-size tasks (long execution

times) should be allocated to higher rate processors, 2) to reduce queueing time,

large instruction sizes and frequently enabled tasks should be allocated to different

processors, 3) to reduce inter-processor communication costs, tasks with high

coupling factors should be placed on the same processor. The queue length

(number of tasks) of each shared processor is given an upper limit in order to place

a guaranteed limit on queueing delays.

64. Mishkin, Mortimer, Barbara Malamut and Jocelyne Bachevalier,
"Memories and Habits: Two Neural Systems." Neurobiology of Learning and
Memory, ed. Gary Lynch, James L. McGaugh and Norman M. Weinberger. New
York: Guilford Press, 1984, p. 65-77.

Mishkin, et. al. present evidence that the dual controlled-automatic processing

model (see [81,89]) derives from dual underlying neural hardware.

65. Mitchell, Tom M., "Generalization as Search." Artificial Intelligence 18(2)
(March, 1982), p. 203-226.

This is Mitchell’s paper on the version space strategy, which is compared to

depth first and breadth first generalization strategies. The version space strategy is

- 216 -

-- --

like bidirectional breadth-first, where two sets of descriptive generalizations are

learned and refined: Set G holds the most general generalizations capable of

matching the training instances seen so far; set S holds the most specific

generalizations capable of matching the training instances seen so far. Between the

two lies the range of version spaces which can match the training data; as the two

converge, a precise set of matching descriptions for the data is formed.

For each negative training instance i:

Retain in S only generalizations not matching i.

Make generalizations in G that match i more specific,

only to the extent required so that they no longer

match i, and only in such ways that each remains more

general than some generalization in S.

Remove from G any element that is more specific than

some other element in G.

For each positive training instance i:

Retain in G only those generalizations that match i.

Generalize members of S that do not match i, only to

the extant required to allow them to match i, and only

- 217 -

-- --

in such ways that each remains more specific than some

generalization in G.

Remove from S any element that is more general than

some other element in S.

The main effect of a negative instance is that G is made more specific (a

version is overly general when it matches a negative instance). The main effect of

a positive instance is that S is made more general (a version is overly specific

when it does not match a positive instance). The two effects combine to cause the

two spaces to converge. When training instance information is insufficient to allow

disambiguation of all test cases, S and G form a space where test cases which

might represent the target concept can be matched. When training instances are

exhaustive, S and G merge to provide a precise matching description.

66. Mitchell, Tom M., Richard M. Keller and Smadat T. Kedar-Cabelli,
"Explanation-Based Generalization: A Unifying View." Machine Learning 1(1),
1986, p. 47-80.

See [44] for more on EBG. EBG reorganizes information gleaned from a single

training instance in order to generate a concept description which satisfies some

operationality criteria. The algorithm is knowledge intensive in that domain

information and a concept definition must already exist. EBG’s purpose is to map

the training instance onto the concept in the context of the domain information by

explanation, then use the existing concept to make the explanation generally

- 218 -

-- --

applicable; the result is a concept definition which describes a set of instances to

which the training instance belongs. Inputs to EBG are: 1) a goal concept, 2) a

training example, 3) the domain theory, and 4) operationality criterion. The

algorithm generates a generalization of the training example that is a sufficient

concept definition for the goal concept and that satisfies the operationality criterion.

The two-part EBG algorithm is:

Explain:

Construct an explanation in terms of the domain theory

that proves how the training example satisfies the

goal concept definition.

This explanation must be constructed so that each branch

of the explanation structure terminates in an expression

that satisfies the operationality criterion.

Generalize:

Determine a set of sufficient conditions under which the

explanation structure holds, stated in terms that satisfy

the operationality criterion.

This is accomplished by regressing the goal concept through

the explanation structure. The conjunction of the resulting

- 219 -

-- --

regressed expressions constitutes the desired concept

definition.

67. Neches, Robert, "Learning Through Incremental Refinement of Procedures."
Production System Models of Learning and Development, ed. David Klahr, Pat
Langley and Robert Neches. Cambridge, MA: MIT Press, 1987, p. 163-219.

The Heuristic Procedure Modification program (HPM) is built using the PRISM

production system. Traditional models of learning in production systems focus on

chunking, generalization, and discrimination. HPM focuses on the invention of new

actions by examining the procedures executed (productions fired) in its

performance component and adding productions using heuristics dealing with

efficiency and interestingness criteria. HPM’s learning component is therefore

heavily oriented towards meta-knowledge. Productions in that component trigger

on structures reflecting the processing of goals (the "goal trace") and actual

production system cycle execution (the "production trace"); these two traces

overlap, with the former concentrating on high level, goal structured solution of

problems, and the latter concentrating on implementation data and flow of control.

HPM is therefore very dependent on tracing and explicit representation of traced

material; as a model of a cognitive system, HPM relies heavily upon detailed

knowledge of its own learning mechanisms. The traces are saved in the form of

semantic net which is traversed using a context-sensitive spreading activation

scheme to prune the search space. Both detailed episodic information and derived

semantic information are retained; HPM’s execution is very memory intensive.

- 220 -

-- --

Several of the heuristics used in the test application compare traces of distinct

processing on similar or identical data in order to find the more efficient traced

procedures or in order to invent new, equivalent procedures. HPM learns without

feedback, examing its own performance post hoc in order to discover effective

procedures for dealing with input. The learning mechanism is domain independent.

68. Newell, Allen, "Production Systems: Models of Control Structures." Visual
Information Processing, ed. William G. Chase. New York: Academic Press, 1973,
p. 463-526.

This is one of Newell’s earliest papers on production systems, and it sets the

stage for his later work. The paper emphasizes the importance of the specification

of a control structure in the illustrating and modelling of cognitive processes.

Newell feels that a production system of some variety (which will be implemented

as SOAR in later research) could be an appropriate model of such processes. The

production system discussed here was PSG; conflict resolution depends upon

textual order of the productions. Working memory size is presumed to be very

limited (Miller’s proverbial 7 items, + or - 2, page 466). This limit is significant

in relation to extreme memory consumption by later models, and my own

requirements about limits on memories representing sensory buffers. Newell

mentions perceptual buffers such as the visual icon on page 467, but does not

incorporate them (or indeed any sensorimotor processing) into his production

system.

- 221 -

-- --

"Having gone this far, it is tempting to state a hypothesis about the locus of

conscious experience. It is not to be associated with the content of any memory,

not even of STM which defines in an operational sense what the subject is

momentarily aware of, i.e., to what he can respond to in the next tens of

milliseconds. Rather, phenomenal consciousness is to be associated with the act of

matching, and its content is given by the set of STM items extracted by the

matched condition. Thus, it is an ephemeral fleeting thing that never stays quite put

and never seems to have clearly defined edges (the never-step-into-the-same-river-

twice phenomenon). It seems like an interesting hypothesis. That the hypothesis

can be stated in such a precise form is attributable to having a detailed model of

the control structure," (Page 508).

Newell notes that deficiencies of the model presented using PSG include lack

of sensory/perceptual components, lack of motor components, and lack of any

method for learning new productions (LTM). The latter is in his estimation the

most serious, and of course much work has been done since then (and much

remains to be done).

An important advantage of production systems advanced in the paper is that

they represent both the theory and a working simulation of the cognitive process

being modelled; such systems are precise as required by their nature as computer

programs. However a production system is not a neutral language for stating a

theory - the architecture and implementation of the production system language

- 222 -

-- --

contribute to any theory stated using that system.

A final note on an effective limit to STM size and its relation to a theory of

error is interesting (p. 523-524):

"Take STM as having indefinite length but being sufficiently unreliable so that

there is an increasing probability of an element disappearing entirely. Whether this

is decay with time, with activity or what not is secondary. The fate of each

element is somewhat independent so that early ones can disappear before later

ones. This is the primary error source, from which error propagates to all tasks

according to the strategy with which the subject operates. Such a strengthening of

the unreliability assumption will reinforce the encoding hypothesis, so that all tasks

must be dealt with by encoding. The role of STM becomes one of holding a few

items after decoding (dumping into STM) to be picked up quickly by coupled

productions, and of holding a few items strung out prior to encoding into a new

chunk. Thus the short term capacity is not the length (or expected length) of STM,

but is composed from the size of codes and the space for their decoding. For

example, a short term capacity of seven might occur via a chunk of three and four,

with the STM holding four items reliably enough to get them decoded and emitted.

Thus, no memory structure exists in the system that has a capacity of seven. In

particular the STM would appear to be misnamed."

69. Newell, Allen, Paul S. Rosenbloom, and John E. Laird, "Symbolic
Architectures for Cognition." Chapter 3 of Foundations of Cognitive Science, ed.
Michael I. Posner. Cambridge, Ma: MIT Press, 1989, p. 93-131.

- 223 -

-- --

While the purpose of this chapter is introduction to the requirements and

functions of any cognitive architecture, examples for ACT* and SOAR appear. The

latter includes SOAR in embedded applications. In a section called "Interaction

with the External World," the authors list important properties of an embedded

cognitive architecture as: a) interfaces that connect sensory and motor devices to

the symbol system; b) handling of asynchronous external events, including support

for buffering and interruption; c) real-time reactivity; and d) environmentally

time-constrained learning. There is no clean distinction between instantaneous

real-time requirements (my interpretation of property c here) and average real-time

requirements (such as learning in an environment). SOAR examples claim

environmentally responsive mechanisms, but they all involve interaction with the

non-O(1), monolithic central cognitive component. Section 7.1 of this thesis

discusses claims for embedded SOAR at more length.

70. Newman, I. A., P. P. Stallard and M. C. Woodward, "Performance of
Parallel Garbage Collection Algorithms." Computer Studies 166, Department of
Computer Studies, Loughborough University of Technology, Loughborough,
Leicestershire, U.K., September, 1982.

This article reviews the time and space performance characteristics of several

mark and sweep based parallel garbage collection algorithms in the context of

multiple processor marking. Two, three and four color (one and two marking bits)

algorithms from Dijkstra and Lamport (3 color), Minsky-Knuth-Steele-Muller-

Wadler (2 colors plus a stack or, preferably enhanced by replacing the stack with a

- 224 -

-- --

circular FIFO), and the authors Newman and Woodward (4 colors with better

storage requirements than the stack algorithm, but with the inability to deal with

circular structures) are discussed. Both projected costs and the results of actual

tests are shown. The stack-based algorithm has the best overall time complexity,

but with the expense of a potentially enormous stack.

71. Ohlsson, Stellan, "Truth Versus Appropriateness: Relating Declarative to
Procedural Knowledge." Production System Models of Learning and Development,
ed. David Klahr, Pat Langley and Robert Neches. Cambridge, MA: MIT Press,
1987, p. 287-327.

A rational model of learning is explored, where appropriate declarative

knowledge about a domain (represented as implications in logic) is used to

construct and tune procedural constructs (represented as recognize/act productions).

The method relies neither on detailed traces of internal procedural processing

(which is considered to be of questionable psychological validity; contrast with

Neches’ HPM) nor on feedback from the learning environment. Instead declarative

knowledge about the domain is coupled with environmentally activated production

based procedures in order to generate new productions which effect the tuning and

modification of procedures. Only a single, currently activated procedural production

is available for inspection, rather than a complete history offered by procedural

traces in other models (e.g., Neches). This approach, intended to model the

inaccessibility of much human procedural processing to introspection, trades

practice trials for practice time and memory; the latter are required by tracing, but

- 225 -

-- --

lack of tracing necessitates repeated practice in order to reactivate existing

productions for examination. Much of the learning is composite (several declarative

statements and procedural productions may contribute to the formation of a new

production), so repeated practice allows access to all of the requisite existing

productions, and learning is gradual. An execution example demonstrates

evolution of processing from model building (simulation) through manipulation of

strictly symbolic information to perceptual recognition based action triggering.

Each shift is accompanied by increases in processing speed and more shallow

analysis of input data. Processing is shifted from centrally controlled analysis to

peripherally based recognition. The domain specific declarative information used in

the construction of procedures is hand loaded; Ohlsson does not address

mechanisms for the acquisition of this knowledge (which is distinct from the

procedural productions), stating that such acquisition is a distinct problem. Contrast

the latter with SOAR, where declarative and procedural knowledge are represented

more homogeneously, although control in Ohlsson’s system is organized around a

goal-directed state space search in a manner reminiscent of SOAR. Like Neches

and unlike SOAR, learning uses meta-knowledge based productions rather than a

transparent mechanism built into the architecture. Ohlsson’s model intentionally

ignores certain temporal relationships among input in its avoidance of tracing.

72. Parson, Dale E. and Glenn D. Blank, "Constant-time pattern matching for
real-time production systems." Proceedings of Applications of Artificial
Intelligence VII, Vol. 1095, Part 2, ed. Mohan M Trivedi. Bellingham, Washington:

- 226 -

-- --

Society of Photo-Optical Instrumentation Engineers, 1989, p. 971-982.

This is the first PRIOPS paper. It concentrates on enhancements to standard

Rete.

73. Parson, Dale E. and Glenn D. Blank, "Automatic versus controlled
processing: an architecture for real-time production systems." International
Journal of Expert Systems: Research and Applications, Vol. 2, No. 3/4 (1990), p.
393-418.

The paper explains human controlled-automatic processing and its relation to

PRIOPS, discusses the two-tiered approach to embedded processing, and examines

Rete and a detailed PRIOPS approach to a temperature sensor problem. This is an

expanded version of the earlier SPIE paper.

74. Parson, Dale E. and Glenn D. Blank, "PRIOPS: A real-time production
system architecture for programming and learning in embedded systems." Invited
by and submitted to the International Journal of Pattern Recognition and Artificial
Intelligence in February, 1990.

The SPIE paper [72] was one of sixteen selected by the Applications of

Artificial Intelligence VII program committee for contribution to a special issue of

this journal entitled "New Developments in Expert System Issues." The result is

this paper, which illustrates PRIOPS use through the maze demonstration program

in this thesis. The journal accepted the paper in February, 1990 for publication

sometime in the upcoming summer.

75. Quinlan, James, "A Comparative Analysis of Computer Architectures for
Production System Machines." Carnegie Mellon Memo CMU-CS-85-178, May,
1985.

- 227 -

-- --

Quinlan undertakes a comparative study of the execution characteristics of

several existing OPS5 programs on 6 distinct architectures. He comes to the not

surprising conclusion that the microcoded CPU architecture specifically designed

for Rete is the most efficient, followed by a RISC architecture also geared toward

Rete requirements. The paper does discuss Rete as implemented in OPS83,

making it the most up-to-date discussion of Rete.

76. Rosenbloom, Paul S., John E. Laird, John McDermott, Allen Newell and
Edmund Orciuch, "R1-SOAR: An Experiment in Knowledge-Intensive
Programming in a Problem-Solving Architecture." Part of Memo CMU-CS-85-110,
Carnegie-Mellon University, January, 1985.

An application of SOAR’s chunking to R1’s task of configuring VAXTM

computers. See [52].

77. Rosenbloom, Paul S. and Allen Newell, "Learning by Chunking: A
Production System Model of Practice." Production System Models of Learning
and Development, ed. David Klahr, Pat Langley and Robert Neches. Cambridge,
MA: MIT Press, 1987, p. 221-286.

Provides support for the notion of terminal (i.e., bottom-up) chunking as the

mechanism which underlies the ’power law of practice’ (’log-log linear learning

law’). Assumes that the time to process a chunk < time to process its constituents;

chunks are learned at a constant rate on the average; probability of recurrence of an

environmental pattern decreases as the pattern size increases. Constraints required

by the model include: some form of parallel processing; some form of bottleneck

(capacity limitation); constraints on location of the bottleneck; locus of parallelism

cannot be constrained to the sensory and motor portions (i.e., higher cognitive

- 228 -

-- --

functions can also be chunked). Implemented using Xaps2 production system. A

chunk is composed, bottom-up, of 3 component productions: a) a stimulus pattern,

b) a response pattern, and c) a connection between the two. It is possible to

combine chunked stimulus patterns, for instance, in order to create a superordinate

stimulus pattern for a superordinate chunk. The same holds true for response

patterns. See [53].

78. Rosenbloom, Paul S., John E. Laird and Allen Newell, "Knowledge Level
Learning in SOAR." AAAI-87, Sixth National Conference on Artificial Intelligence,
Volume 2. Los Altos, CA: Morgan Kaufmann Publishers, Inc., 1987, p. 499-504.

SOAR’s application to both symbol level learning and knowledge level learning

is explored. Symbol level learning consists primarily of performance improvement

using knowledge already available to the system. Knowledge level learning

consists of integration of new information into a system. Most earlier work with

SOAR demonstrated the former; recognition and recall tasks discussed in this paper

deal with the latter.

79. Rumelhart, David E., James L. McClelland, and the PDP Research Group,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Volume 1: Foundations. Cambridge, Ma: MIT Press, 1986.

Background reading in connectionism.

80. Scales, Daniel J., "Efficient Matching Algorithms for the SOAR/OPS5
Production System." Report No. STAN-CS-86-1124, Stanford University, June,
1986.

Rete Algorithm as applied to SOAR. Some of these enhancements can be

applied to PRIOPS.

- 229 -

-- --

81. Schneider, Walter and Richard M. Shiffrin, "Controlled and Automatic
Human Information Processing: I. Detection, Search, and Attention."
Psychological Review, Vol. 84, No. 1 (January, 1977), p. 1-66.

This paper and the subsequent Part II. [89] are the seminal papers on

automatism. See the latter for more details. Part I. describes the experiments, the

notions of consistent and varied mappings of target and distractor stimuli, and of

automatic and controlled human information processing. Response times indicate

that controlled processing consists of serial, terminating search; automatic detection

times flatten with practice, and do not vary significantly with load.

82. Schneider, Walter and Arthur D. Fisk, "Dual Task Automatic and Controlled
Processing in Visual Search, Can It Be Done Without Cost?", Human Attention
Research Laboratory Report No. 8002, University of Illinois, February, 1980.

Summary: Do not waste valuable controlled processing on already automated

tasks (it slows them down) when the former is needed for new training, especially

new training which may itself be automatizable.

83. Schneider, Walter and Arthur D. Fisk, "Degree of Consistent Training and
the Development of Automatic Processing." Human Attention Research
Laboratory Report No. 8005, University of Illinois, February, 1980.

This article suggests that automatic processing is developed in graded steps

relative to the degree of consistency of stimuli (a potential log function of the

degree of consistency), rather than all or none. Rosenbloom and Newell [77] also

discuss log graded skill acquisition curves.

84. Schneider, Walter and Arthur D. Fisk, "Attention Theory and Mechanisms
for Skilled Performance." Memory and Control of Action, ed. Richard A. Magill.
Amsterdam: North-Holland Publishing Co., 1983, p. 119-143.

- 230 -

-- --

The thrust of this article is that controlled processing can set up enabling

information in short-term store that can switch to different sets of automatic

productions. Thus control strategy can help direct the execution of automatic

mechanisms. "The first function of controlled processing is the maintenance of

strategy information in short-term store to enable sets of automatic productions,"

(p. 135). "A second function of controlled processing in skilled performance is the

maintenance of time varying information in short-term store," (p. 137). "A third

function of controlled processing in skilled behavior is problem solving and

strategy planning," (p. 137).

85. Schneider, Walter, "Short Overview of CAP1 Simulation." personal
communication, July, 1987.

See connectionist papers [86,87].

86. Schneider, Walter and Mark Detweiler, "A Connectionist/Control
Architecture for Working Memory." The Psychology of Learning and Motivation,
Vol. 21, ed. G.H. Bower, New York: Academic Press, 1988, p. 54-119

Combination of neural network model into Schneider’s previous automatism

work. Interesting comments are made about correspondence between fast weight

changes and retroactive interference, slow weight changes and proactive

interference, and phases of skill acquisition.

87. Schneider, Walter and Mark Detweiler, "The Role of Practice in Dual-Task
Performance: Toward Workload Modeling in a Connectionist/Control
Architecture." Human Factors 30(5) (October, 1988), p. 539-566.

Schneider and Detweiler apply their connectionist model (enhanced from [86])

- 231 -

-- --

to dual-task experimental data. The model is a collection of connectionist modules

(visual, auditory, tactile, semantic, spatial, speech, motor, and context are shown,

where context is a form of medium-short-term memory - not as short as simple

vector buffering - that is short-term in terms of having fast-changing connection

weights). Internally the models use priority learning, and inter-module

communication involves the delta learning rule. Inter-module communication

takes place across an inner ring; controlled processing moderates message

transmissions across this inner loop, specifically, when priority from modules is

insufficient to achieve automatic processing. Like PRIOPS, automatic processing is

high priority, with the capability of deferring or bypassing lower-priority

controlled processing. The context module is capable of temporary context saves

of lower-priority processing during high-priority interrupts (p. 547-548).

The paper proposes 5 stages of skill acquisition, with the first three dominated

by controlled processing, the last two by automatic processing: 1) controlled

comparison from buffered memory, 2) context-maintained controlled comparison

(using the context module), 3) goal-state-maintained controlled comparison, 4)

controlled assist of automatic processing, and 5) automatic processing.

"A message that was transmitted prior to a positive event ... would be

associated within the module with a high-priority tag ... Automatic processing

occurs when a message associated with a high-priority event is transmitted in the

absence of attentive input. This takes place when the local circuit of the priority

- 232 -

-- --

tag inhibits the attenuation units transmitting the message ... If the priority tag is

high enough, the vector is transmitted out of the current module to the next

module. This process then cascades through a series of stages," (p. 552).

The paper observes that exhaustive single-task practice for a task (be it

consistent - automatic - or not) does not eliminate additional dual-task problems

when the problem is approached with another task. The dual-task situation

presents resource contention problems, especially timing of use of critical resources

such as the inner communication loop. Seven strategies for overcoming specific

dual-task contention problems are: 1) shedding, delaying, and preloading tasks (i.e.,

scheduling), 2) letting go of unnecessary, high-workload strategies (using sub-

optimal solutions to save time), 3) utilizing noncompetitive resources (e.g., using

spatial visualization for one task where the independent tasks may have both used

semantic), 4) multiplexing transmissions over time (time-sharing), 5) shortening

transmissions (to reduce collisions), 6) converting interference from concurrent

transmissions (i.e., learning to filter expected noise from other, irrelevant messages

on the inner loop, and 7) chunking transmissions (send small chunks that mean a

lot). The emphasis is on avoiding collisions on the inner communications loop.

88. Shastri, Lokendra, "Connectionism and the Computational Effectiveness of
Reasoning." To appear in Theoretical Linguistics, 1990.

The paper accompanied a talk by Shastri at Lehigh, Fall, 1989. Shastri

contrasts reflexive inference for supporting certain cognitive behaviors in real-time,

- 233 -

-- --

with the slower and more deliberate reflective inference. His connectionist

architecture performs both. His definition of real-time for reflexive inference is that

performance can be no worse than sublinear in the size of the knowledge base. His

model shares PRIOPS notion of non-iterative reaction processing: "If we desire

computational effectiveness, our representation should map the domain knowledge

into a graph with the following property: Portions of the graph that are relevant to

the solution of a reflexive inference problem must be trees or DAGs. Notice that

the complete graph need not be a tree or a DAG and only appropriate subgraphs

need be so," (p. 3).

After the talk I discussed the non-iterative nature of time-constrained reaction

processing with Shastri. His model also has a weak correspondence with PRIOPS’

notion of restricted short-term memory in reactive processing, but there is no

correspondence to the idea of deferring processing by priority. The model assumes

unlimited processor nodes, so all activity - high and low priority - can proceed in

parallel. I have found the assumption of unlimited hardware processors, particularly

unlimited potential processors allocated by performance-time learning, to be the

biggest drawback of many connectionist architectures, including this one.

Moreover, this model makes a one-to-one mapping of concepts to hardware

processors, rather than distributing concepts as activation patterns across multiple

processors. Despite the fact that an inference path through a directed acyclic

network of nodes is constant-bound in length, actual O(1) implementation of this

- 234 -

-- --

model on limited-processor hardware would require some form of processor-

sharing. At that point the notion of priority-based scheduling would become

important.

89. Shiffrin, Richard M. and Walter Schneider, "Controlled and Automatic
Human Information Processing: II. Perceptual Learning, Automatic Attending, and
a General Theory." Psychological Review, Vol. 84, No. 2 (March, 1977), p. 127-
190.

This is continued from Part I. [81]. The general theory discusses long-term

store, structural levels of store, automatic processes, thresholds of activation,

controlled processes, short-term store, learning, retrieval, and forgetting. Important

properties of controlled processes include: a) They are limited-capacity processes

requiring attention; b) The limitations of control processes are based on those of

short-term store (such as the limited-comparison rate and the limited amount of

information that can be maintained without loss); c) control processes can be

adopted quickly, without extensive training, and modified fairly easily; d) control

processes can be used to control the flow of information within and between levels,

and between short-term store and long-term store; e) control processes show a

rapid development of asymptotic performance. Common examples of control

processes include maintenance or rote rehearsal, coding rehearsal, serial search,

long-term memory search, and decisions and strategies of all kinds.

Important properties of automatic processes include: a) They are not hindered

by capacity limitations of short-term store and do not require attention; thus

- 235 -

-- --

automatic processes often appear to act in parallel with one another and sometimes

appear to be independent of each other; b) some automatic processes may be

initiated under subject control, but once initiated all automatic processes run to

completion automatically; c) they require considerable training to develop and are

most difficult to modify, once learned; d) their speed and automaticity will usually

keep their constituent elements hidden from conscious perception; e) they do not

directly cause new learning in long-term store (though they can indirectly affect

learning through forced allocation of controlled processing); performance levels

will gradually improve over trials as the automatic sequence is learned. See [90].

90. Shiffrin, Richard M. and Susan T. Dumais, " The Development of
Automatism." Cognitive Skills and Their Acquisition, ed. John R. Anderson.
Hillside, NJ: Lawrence Erlbaum Associates, 1981, p. 111-140.

This is a summary of automatism (see articles by Schneider, et. al). An overall

definition for automatism is given by two rules: Rule 1. Any process that does not

use general, nonspecific processing resources and does not decrease the general,

nonspecific processing capacity available for other processes is automatic. Rule 2:

Any process that always utilizes general resources and decreases general processing

capacity whenever a given set of external initiating stimuli are presented,

regardless of a subject’s attempt to ignore or bypass the distraction, is automatic. A

process that satisfies either Rule 1 or Rule 2 is automatic, but some automatic

processes may not satisfy either rule. A discussion is made of the often intermixed

nature of controlled and automatic processing sequences, making them difficult to

- 236 -

-- --

disentangle at times.

91. Stillings, Neil A., Mark H. Feinstein, Jay L. Garfield, Edwina L. Rissland,
David A. Rosenbaum, Steven E. Weisler and Lynne Baker-Ward, Cognitive
Science, an Introduction. Cambridge, MA: MIT Press, 1987.

Background reading in cognitive science.

92. Tambe, Milind, Dirk Kalp, Anoop Gupta, Charles Forgy, Brian Milnes
and Allen Newell, "SOAR/PSM-E: Investigating Match Parallelism in a Learning
Production System." ACM SIGPLAN Notices 23(9) (September, 1988), p. 146-160.

An extension to Gupta’s research on parallelism above, this paper suggests that

speedups in learning production systems may be greater than the 10 to 20 limit

suggested earlier by Gupta for non-learning systems. Implementation discussions

include examination of the mechanisms for adding productions at run-time, and the

update of learned Rete nodes with the contents of working memory immediately

after learning.

93. Tambe, Milind and Paul Rosenbloom, "Eliminating Expensive Chunks by
Restricting Expressiveness." Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, Vol. 1, August, 1989, p. 731-737.

This paper discusses the problems of large cross-product matching time

resulting from overly general multi-attribute chunks, and explores using more

specific unique-attribute chunks to speed matching at the cost of generality.

PRIOPS automatic productions MUST uniquely match tokens, since automatic Rete

uses unit-size registers to store tokens.

94. Ungar, David and Frank Jackson, "Tenuring Policies for Generation-Based
Storage Reclamation." OOPSLA ’88 Conference Proceedings, ed. Norman
Meyrowitz. New York, NY: ACM, 1988, p. 1-17.

- 237 -

-- --

This article discusses problems with existing generation scavenging systems.

The major problem involves a tradeoff between early tenuring of objects

(promotion to infrequently scavenged generation(s)) in order to reduce scavenging

overhead (particularly copying), and late tenuring in order to reduce tenuring of

garbage (with the resulting space loss). The paper promotes a dynamic, feedback-

based tenuring policy, in contrast to the typical tenuring policy of "tenure any

object passing a threshold age." The two-part dynamic policy is:

1) feedback mediation - after a scavenge, if few objects in the early

generation(s) have survived the scavenge, set tenure age high (or infinite) to avoid

tenuring; if many objects survive, set tenure age low to avoid scavenge copying.

2) demographic information - after a scavenge, if the aggregate surviving data

size exceeds the (copy related) pause time threshold (requiring tenuring age to be

reduced), search back through data sizes by age to determine the appropriate new

tenure age (i.e., only tenure what NEEDS to be tenured to meet scavenge time

constraints).

An additional improvement over standard generation scavenging is storing of

large and long-lived data objects (typically display bit maps and text in the test

applications) outside of the scavenged area; only relatively small headers for these

data are scavenged, reducing overhead.

These modifications show improvement for interactive applications in the

authors’ empirical tests, but the results for non-interactive applications are

- 238 -

-- --

uncertain.

95. White, Stephanie M. and Jonah Z. Lavi, "Embedded Computer System
Requirements Workshop." IEEE Computer, Vol. 18, No. 4 (April, 1985), p. 67-70.

One conclusion of this workshop is that a finite state machine model generates

an excessive number of states, and that structuring / partitioning based on the

system environment is necessary. Contrast with [18]. Strict functional hierarchy

and dataflow models were also labelled as insufficient, since embedded systems are

heavily time- and event-dependent. One machine model selected as appropriate is a

set of cooperating finite state machines whose interaction with the environment is

explicitly modelled. Fault detection and recovery is important. Where exact

performance specifications are lacking, inexact information should be tagged and

evaluated as such (see [56] on approximate processing). The authors recommend

that an embedded computer system abstract model should be developed. The model

should include all properties necessary to describe the embedded computer system,

should be consistent across all system life cycle phases, and should be described in

a language of objects, relationships, and attributes.

96. Winograd, Terry, Language as a Cognitive Process, Volume I: Syntax.
Reading, Ma: Addison Wesley, 1983.

Background reading in computational linguistics.

97. Winston, Patrick Henry, Artificial Intelligence, Second Edition. Reading, Ma:
Addison Wesley, 1984.

Background reading in artificial intelligence.

- 239 -

-- --

98. Wirth, Niklaus, "Toward a Discipline of Real-Time Programming."
Communications of the ACM, Vol. 20, No. 8 (August, 1977), p. 577-583.

Wirth discusses the progression of sequential programs, multiprograms, and "If

we depart from this rule (execution time independence) and let our programs’

validity depend on the execution speed of the utilized processors, we enter the field

commonly called ’real-time’ programming," (p. 577). "The essential point here is

that the set of concepts (for reasoning) and facilities (for description) of real-time

programming should be small extensions of those governing multiprogramming,

which in turn should be small extensions of those used in sequential

programming," (p. 578). Wirth recommends confining time-dependent program

parts to device processes, which is not possible for time-dependent higher level

data transformations. His language of choice is Modula. The article ends by

casting a vague vote for multiprocessing to cure the ills of time constrained

processor sharing.

99. Zisman, Michael D., "Use of Production Systems for Modeling Asynchronous
Concurrent Processes." Pattern-Directed Inference Systems, ed. D. A. Waterman
and Frederick Hayes-Roth, New York, NY: Academic Press, 1978, p. 53-68.

The major difficulty in using traditional production systems to model

asynchronous concurrent processes is that a complex control structure must be

embedded in working memory. This paper investigates the possibility of using a

separate explicit control structure, based on Petri nets. Dynamic creation of

subordinate control nets and associated working memories is proposed as method

- 240 -

-- --

to allow structuring of short term memory.

- 241 -

-- --

Appendix A: PRIOPS Syntax and Semantics

This appendix gives the LL(1) grammar, lexical and semantic notes for the

present implementation of PRIOPS. I assume that the reader has written and

executed at least simple OPS5 programs. Given the OPS5 background of PRIOPS,

I advise any interested reader to study and work with OPS5 [15,21,26] before

beginning programming with PRIOPS. This appendix discusses only changes to

OPS5 not discussed elsewhere in the thesis.

PRIOPS LL(1) Grammar ("/\" signifies empty):

START
1 ::= COMMAND MORE-COMMANDS

MORE-COMMANDS
2.1 ::= COMMAND MORE-COMMANDS
2.2 ::= /\

COMMAND
3 ::= (TOP-LEVEL)

TOP-LEVEL
4.1 ::= strategy CONFLICT
4.2 ::= predicate symbolic-atom BTYPE*
4.3 ::= function BTYPE symbolic-atom BTYPE*
4.4 ::= action symbolic-atom BTYPE*
4.5 ::= set SET-NAME symbolic-atom symbolic-atom*
4.6 ::= structure symbolic-atom FIELD*
4.7 ::= make symbolic-atom INITIAL-FIELD*
4.8 ::= remove TIMETAGS

- 242 -

-- --

4.9 ::= openfile symbolic-atom symbolic-atom
symbolic-atom

4.10 ::= closefile symbolic-atom symbolic-atom*
4.11 ::= edit symbolic-atom
4.12 ::= shell
4.13 ::= load symbolic-atom
4.14 ::= dump symbolic-atom
4.15 ::= call symbolic-atom CONSTANT*
4.16 ::= run CYCLES
4.17 ::= wm integer*
4.18 ::= ppwm PPWMATCH
4.19 ::= cs
4.20 ::= matches symbolic-atom symbolic-atom*

(matches not implemented)
4.21 ::= watch WLEVEL
4.22 ::= trace symbolic-atom*
4.23 ::= pbreak symbolic-atom*
4.24 ::= excise symbolic-atom symbolic-atom*
4.25 ::= reset

(excise and reset not implemented)
4.26 ::= exit
4.27 ::= stderr symbolic-atom
4.28 ::= p symbolic-atom PRIORITY LHS -> RHS

CONFLICT
5.1 ::= mea
5.2 ::= lex
5.3 ::= /\

BTYPE
6.1 ::= ATYPE
6.2 ::= set SET-NAME

ATYPE
7.1 ::= int
7.2 ::= float
7.3 ::= symbol

SET-NAME
8 ::= symbolic-atom

- 243 -

-- --

FIELD
9.1 ::= ATYPE symbolic-atom CONST-SUBSCRIPT
9.2 ::= set SET-NAME symbolic-atom

CONST-SUBSCRIPT
10.1 ::= ˆ integer
10.2 ::= /\

INITIAL-FIELD
11 ::= ˆ CONST-FIELD-REF CONSTANT

CONSTANT
12.1 ::= symbolic-atom
12.2 ::= number
12.3 ::= [symbolic-atom*]

CONST-FIELD-REF
13 ::= symbolic-atom CONST-SUBSCRIPT

TIMETAGS
14.1 ::= integer integer*
14.2 ::= "*"

CYCLES
15.1 ::= integer
15.2 ::= stop
15.3 ::= continue
15.4 ::= /\

PPWMATCH
16.1 ::= symbolic-atom INITIAL-FIELD*
16.2 ::= INITIAL-FIELD*

WLEVEL
17.1 ::= 0
17.2 ::= 1
17.3 ::= 2
17.4 ::= 3
17.5 ::= 4

PRIORITY

- 244 -

-- --

18.1 ::= integer
18.2 ::= /\

LHS
19 ::= POSITIVE-CE CE*

CE
20.1 ::= POSITIVE-CE
20.2 ::= NEGATIVE-CE

POSITIVE-CE
21.1 ::= FORM
21.2 ::= { LABELED-FORM }

LABELED-FORM
22.1 ::= variable FORM
22.2 ::= FORM variable

NEGATIVE-CE
23 ::= - FORM

FORM
24 ::= (symbolic-atom LHS-TERM*)

LHS-TERM
25 ::= ˆ VAR-FIELD-REF LHS-VALUE

VAR-FIELD-REF
26 ::= symbolic-atom VAR-SUBSCRIPT

VAR-SUBSCRIPT
27.1 ::= ˆ VAR-INDEX
27.2 ::= /\

VAR-INDEX
28.1 ::= integer
28.2 ::= variable

LHS-VALUE
29.1 ::= { RESTRICTION RESTRICTION* }
29.2 ::= RESTRICTION

- 245 -

-- --

RESTRICTION
30.1 ::= << CONSTANT CONSTANT* >>
30.2 ::= PREDICATE ATOMIC-VALUE
30.3 ::= ATOMIC-VALUE
30.4 ::= (symbolic-atom ATOMIC-VALUE*)

ATOMIC-VALUE
31.1 ::= VAR-OR-CONSTANT
31.2 ::= [SETVAL*]

VAR-OR-CONSTANT
32.1 ::= symbolic-atom
32.2 ::= number
32.3 ::= variable
32.4 ::= SYMBOL-MACRO (not in initial PRIOPS)

SETVAL
33.1 ::= symbolic-atom
33.2 ::= variable (not in initial PRIOPS)
33.3 ::= SYMBOL-MACRO (not in initial PRIOPS)

SYMBOL-MACRO (not in initial PRIOPS)
34 ::= @ SYMBOLS MACRO-TAG @

SYMBOLS
35.1 ::= [symbolic-atom symbolic-atom*]
35.2 ::= set SET-NAME

MACRO-TAG (not in initial PRIOPS)
36.1 ::= variable
36.2 ::= /\

PREDICATE
37.1 ::= =
37.2 ::= <>
37.3 ::= <
37.4 ::= <=
37.5 ::= >=
37.6 ::= >

RHS

- 246 -

-- --

38 ::= ACTION ACTION*

ACTION
39 ::= (ACT)

ACT
40.1 ::= make symbolic-atom RHS-FIELD*
40.2 ::= remove ELEMENT-KEY
40.3 ::= modify ELEMENT-KEY RHS-FIELD*
40.4 ::= halt
40.5 ::= bind variable RHS-TERM
40.6 ::= build RHS-TERM
40.7 ::= excise RHS-TERM RHS-TERM*

(build and excise not implemented)
40.8 ::= call symbolic-atom RHS-TERM*
40.9 ::= write RHS-TERM RHS-TERM*
40.10 ::= writeh RHS-TERM RHS-TERM*
40.11 ::= writeq RHS-TERM RHS-TERM*
40.12 ::= openfile RHS-TERM RHS-TERM RHS-TERM
40.13 ::= closefile RHS-TERM RHS-TERM*

RHS-FIELD
41 ::= ˆ VAR-FIELD-REF RHS-TERM

ELEMENT-KEY
42.1 ::= number
42.2 ::= variable

RHS-TERM
43.1 ::= ATOMIC-VALUE
43.2 ::= (FUNCTION)

FUNCTION
44.1 ::= genatom
44.2 ::= read RHS-TERM
44.3 ::= newline RHS-TERM
44.4 ::= compute EXPRESSION
44.5 ::= BTYPE RHS-TERM
44.6 ::= USER-FUNCTION

USER-FUNCTION

- 247 -

-- --

45 ::= symbolic-atom RHS-TERM*

EXPRESSION
46.1 ::= number EXPR-REST
46.2 ::= variable EXPR-REST
46.3 ::= symbol EXPR-REST
46.4 ::= (EXPRESSION)

EXPR-REST
47.1 ::= OPERATOR EXPRESSION
47.2 ::= /\

OPERATOR
48.1 ::= +
48.2 ::= -
48.3 ::= *
48.4 ::= /
48.5 ::= %
48.6 ::= ⎪
48.7 ::= &
48.8 ::= ˆ
48.9 ::= <<
48.10 ::= >>

PRIOPS Lexical Considerations:

Basic types for PRIOPS include long integers (32 bits signed), single precision

floats (32 bits), and symbols (represented as char *).

An unquoted symbol starts with an alphabetic character and contains

alphanumerics, underlines and dashes. All unquoted symbols are converted to

lower case. For symbols which contain other characters, use the quoted symbol

notation. Quotes (") surround a quoted symbol. It may contain any printing

character, and it looks like a C string constant. The symbol may contain an escape

- 248 -

-- --

sequence of a backslash followed by one of the following characters (as in C): n

(newline), r (carriage return), t (horizontal tab), b (backspace), f (form feed), and "

(escaped "); these are converted into the corresponding control characters from the

source file or on input using "read." Two consecutive backslashes yield a literal

backslash. Upper case letters are not converted to lower case in quoted symbols.

A backslash at the end of a line within a quoted symbol signals continuation of the

string. No control characters except horizontal tab and the bell may appear in a

quoted symbol. Unquoted and quoted symbols are both considered lexically as

symbols. Each unique symbol is stored only once, so that symbol comparisons

involve pointer comparisons.

No control characters except newline, carriage return, horizontal tab and bell

(ASCII 7) may appear in a source file.

<Variables> are encased in "<" and ">". Variable names start with alphabetics

and may contain alphanumerics, underlines and dashes. Upper and lower cases are

distinct and are preserved in variable names.

Integer and real constants must start with a numeric character.

Hexadecimal integer constants start with a "!" (e.g., !A is 10), and may contain

0-9, A-F, a-f. They are internally represented as standard 32 bit integers.

PRIOPS Semantic Considerations:

Numbers at the start of each paragraph refer to the LL(1) grammar above.

- 249 -

-- --

1, 2 and 3: The command loop is interpretive. During interactive command

interpretation both the controlled and automatic partitions are quiescent (no

matching is performed). To get preliminary matches of working memory changes

entered from command mode, perform "(run 0)." This completes all pending

matching and returns to the command loop.

4.1 and 5: Strategy here applies to controlled partition conflict resolution.

Explicit priority is considered first at conflict resolution time, followed by OPS5

mea or lex criteria. The automatic partition uses priorities at match time to defer

portions of matching. Conflict resolution within the automatic partition is priority

first, age of memory elements second (older elements have higher priority), and

specificity last. The default strategy is lex as in OPS5.

4.2: User defined predicates and their parameter types are declared here. The

named C function must expect these argument types and return int. C predicates

return zero for false, non-zero for true, and are called within LHS tests (see 30.4

below). Argument types must match parameter types declared here. An implicit

first argument supplied to the predicate is the field against which the predicate is

applied (field test where the predicate is written in 30.4). A float is passed as a 4-

byte float, an int as a long int, a symbol as a (void *), and a set as a pointer to an

array of unsigned shorts (see 4.5) that represent that set. Arguments are passed on

PRIOPS’ evaluation stack, and are read using macros defined in file "external.h".

Predicates (and user-defined functions and actions as well) must NOT modify their

- 250 -

-- --

arguments.

4.3: User defined functions, used in RHS calculations. Similar to user defined C

predicates, these C functions return one of double, long int, char * (for symbols),

and unsigned short * (for symbol sets, see 4.5). When returns types are symbols or

symbol sets (returned as char * and unsigned short * respectively), the actual

character and unsigned short arrays to which these pointers point, should be static

or heap arrays accessible to the C functions (i.e., not auto arrays in the called

functions). Upon return from the functions PRIOPS will copy the arrays into its

own data space; consequently the next time such C functions are called, the C

arrays are accessible for reuse.

4.4: These are C functions returning void. They accept arguments similar to

user defined predicates and functions, and are called for side effects. One use is as

output port drivers.

4.5: This is a symbol set declaration. After the set name comes one or more

symbols which make up the universe of this set type. Sets are represented as bits

vectors contained in arrays of unsigned shorts. Assume that an unsigned short

contains 16 bits (the case for the 8086/8088 family). The first 16 symbols go into

bits 0 through 15 of the first unsigned short in the array, with the first symbol in

bit 0. Likewise the seventeenth symbol goes into bit 0 of the second unsigned

short. Since set size is determined from 4.5, all sets of this type take identical

storage. When passing sets to or returning them from C functions, the pointer to

- 251 -

-- --

this array of unsigned shorts is actually passed. The order of declaration is

therefore important. Symbols sets are useful in determining mutual exclusion of

test paths. The symbol to bit position mapping is maintained during program

execution; symbol variables placed into set fields or compared to sets are converted

into the correct set type with the symbol’s bit set to 1 implicitly. Furthermore sets

can be read and written as [symbol1 symbol2 "QUOTED-SYMBOL3" ...] by the

read and write functions; [] represents the empty set.

4.6: Structures correspond to C structures, and are made up of named fields of

type int, float, symbol, and user-defined symbol sets. The first three, atomic types

may be vector fields up to 1000 in length (as per 9.1). The total size required by a

structure may not exceed 10000 bytes.

4.7: Make a structured type working memory element, filling in the named

fields with the correct types. As in all cases where needed, integers and floats are

coerced automatically where needed. Uninitialized int fields are set to 0,

uninitialized float fields to 0.0, uninitialized symbol fields to the symbol "nil", and

uninitialized set fields to the empty set [].

4.8: Remove working memory elements with the corresponding time tags, or

all for "*". Timetags can be seen using "wm."

4.9 and 40.12: Open a file. As per OPS5, the first argument is a symbolic atom

used as the program’s name for the file. The second argument is the file system’s

name for the file. The third argument is "in", "out", or "append".

- 252 -

-- --

4.10 and 40.13: Using the program’s names for open files, close them.

4.11: If the environment variable PREDIT is set to the path for a valid

executable file, the DOS will be invoked to execute that file with the symbolic

atom as its argument. This is intended to be used for editing source files. Upon

completion of editing control is returned to PRIOPS command loop.

4.12: Use DOS COMSPEC environment variable (if set) to spawn a DOS shell.

4.13: Take command interpreter input from the named file; used to compile

source files and execute command files. Load commands may be nested up to 10

deep within files.

4.14: Dump working memory to the named file. Memory is dumped within a

sequence of "make" statements so that the named file can restore the memory

elements using "load." Working memory elements are dumped in order of creation

(i.e., oldest first) so that, upon subsequent loading, the memory element recency

relationships are maintained.

4.15: Call the user-defined C procedure for side effects.

4.16: Execute the inference engine. If CYCLES is a positive integer, then

execution continues until CYCLES rule firings have completed. Both control and

automatic rule firings are counted, and control rules which are preempted and

retracted from the conflict set during firing are added to the count, but are not

subtracted during retraction. If CYCLES is "stop" (or equivalently is not

specified), execution continues until both conflict sets are empty. If CYCLES is

- 253 -

-- --

"continue", then control will not be returned to the command interpreter on empty

conflict sets. Instead, the inference engine will wait for incoming interrupts to

trigger rules. In all cases executing a "halt" instruction will return control to the

command interpreter. A control-C will likewise return control after the currently

executing rule is completed. Both the automatic and controlled partitions are

inactive during top-level command interpretation. When CYCLE exhaustion, halt,

or keyboard control-C occur within an interrupt handler, the halt defers until

interrupt processing completes; the halt then occurs.

4.17: Display working memory elements.

4.18: Pretty print matching working memory elements.

4.19: Print the conflict set.

4.20: Show intermediate matching information for named productions.

4.21: Establish a watch level. Watch 0 performs no tracing and prints no

statistics; this is the default. Watch 1 prints summary statistics for both partitions

when returning to the command interpreter. Watch 2 displays changes to the

controlled partition’s working and production memories. Watch 3 displays

controlled partition conflict set changes in addition to the above. Watch 4 prints

traces of automatic partition firings and conflict set changes in addition to the

above. Note that any tracing, and automatic tracing in particular, slow execution

speed; these traces can affect timing-dependent processing. No watch reporting

occurs within interrupt-handler instantiations.

- 254 -

-- --

4.22: Trace toggles the trace status of a rule. Trace on for a rule traces when

the rule instantiation enters the conflict set, leaves the conflict set, and fires. Trace

with no arguments lists names of all rules with trace toggled on; default is trace

off. Both controlled and automatic rules can be traced (but see the warning in 4.21

above). No tracing occurs within interrupt-handler instantiations.

4.23: Pbreak toggles the break status of the rule. With pbreak on control returns

to the command interpreter when the rule is about to fire. Pbreak with no

arguments lists names of all rules with pbreak on. Pbreak processing applies to

both controlled and automatic rules. Pbreak within interrupt-handler instantiations

is deferred until all interrupt handling completes

4.24: Excise removes rules from production memory. Unlike OPS5, rule

storage is reclaimed.

4.25: Remove contents of working and production memory for both partitions.

All data type declarations are removed and open files are closed. Executing "reset"

is equivalent to starting a new PRIOPS session.

4.26: Exit PRIOPS, returning to the invoking process. Interrupt vectors are

restored to values held when PRIOPS was entered.

4.27: Send stderr messages (including all trace information) to the named file;

the name is the DOS file system path name, not an internal name. The command

(stderr stderr) returns standard error output to the console.

- 255 -

-- --

4.28: Compile a production. Priority may vary from -128 to 127; if not stated,

priority defaults to 0. All priorities > 0 place the production in the automatic

partition, where all matching memory nodes are unit size and statically allocated,

and production priorities defer portions of matching.

12.3: Constant symbol set.

16.1 and 16.2: Optional constant restrictions define the wme’s to be pretty

printed. When the structure type name is missing, field matching is performed

across all structure types. No restrictions (i.e., "(ppwm)") prints all wme’s. Set

fields may only be specified when a structure type name follows ppwm; matching

for the set field succeeds if the intersection of the set constant and matched field is

non-empty (i.e., if at least 1 element from the ppwm pattern is in the set), OR if

both sets are empty.

The LHS of rules corresponds closely to OPS5 syntax. Variables and element

variables occupy the same name space, so an entire memory element cannot have

the same variable tag as a field variable name. Element variables can be used as

integers in the RHS of rules; when so used, they represent the time tag of the

working memory element to which they are bound.

30.4: Call to a user-defined C predicate. There is always an implicit first

argument, the working memory field in which the predicate call appears.

31.2 and 33: A set value may consist of the empty set [], or any combination

of [symbolic-constant <variable>], where the variables are bound to symbolic

- 256 -

-- --

atoms contained in the universe of that set type. The symbol macro of 33.3 is

expanded to a symbol constant as discussed next. A symbol <variable> may NOT

be contained in an automatic production’s symbol set test. Such variables should

be resolved into symbols sets in controlled productions, which pass the resolved

symbols sets in symbol set variables to the automatic productions which use them.

32.4, 33.3, 34, 35, and 36: Symbol macros cause expansion of multiple

productions. The enclosing textual production is known as the "base production."

When a symbol macro is encountered, the base production is cloned into a number

of macro productions whose priorities and Rete nets are identical to the point of

macro expansion. Each macro production gets exactly one CONSTANT symbol at

the place of macro expansion; this symbol may be inside a symbol set (31.2), or

may be in a symbol field (32.4 when expanded is equivalent to 32.1). The base

production becomes undefined, and the names of the new productions become the

base name with -SYMBOL appended, where SYMBOL is the constant symbolic-

atom chosen for that production from the list. For example, if production "read-

sensor" contains the test "ˆ sensorid @ [a b c] @", production read-sensor becomes

undefined, and productions read-sensor-a, read-sensor-b, and read-sensor-c are

defined and compiled in parallel. The first contains the test "ˆ sensorid a" in the

place of the above symbol macro. Note that symbol macros may be expanded

inside of symbol set field tests. Testing "ˆ family-set [brother sister <relation> @

[mother father] @]", gives two productions, one testing "ˆ family-set [brother

- 257 -

-- --

sister <relation> mother]", and the other "ˆ family-set [brother sister <relation>

father]". Within the @ @ macro enclosure, the symbols supplied to the macro may

be the universe of a symbol set type instead of enumerated symbols (35.2 instead

of 35.1). In the latter case a production is generated for each symbol in the

universe of that set type. If the optional MACRO-TAG is included (34) using

variable notation, that variable represents the expanded symbol constant throughout

the rest of that production. If a test with production "p1" is "ˆsensorid @ [a b c]

<id>@", then for "p1-a" variable "<id>" represents the constant "a" wherever used.

It is important to note that these tags represent constants, not variables whose

contents are unknown until run-time. Macro tags may be used any place that a

symbol constant can be used (for example, inside an automatic production’s test of

a symbol set, where symbol variables cannot be used). If multiple @ @ macro

expansions are encountered, the cloning process is repeated for each of the already

cloned productions. At each expansion, the number of productions being compiled

is multiplied by the number of constant symbols within the macro call, and all

base productions become undefined.

37: Ints and floats may be intermixed, with the former coerced to the latter

when needed. For symbols and symbol sets, = and <> are self-explanatory; they

can be used in any production. For symbols, <, <=, >= and > may be used to test

lexicographic order WITHIN CONTROLLED PRODUCTIONS ONLY. For

symbol sets, <= tests "is a subset", < tests "is a proper subset", >= tests "is a

- 258 -

-- --

superset", and > tests "is a proper superset". These set tests can be used in any

production.

40: THE FOLLOWING ACTIONS MAY NOT BE USED IN AUTOMATIC

PRODUCTIONS: build, excise, write, writeh, writeq, openfile, and closefile.

Output from the automatic partition is accomplished through device drivers as

explained later. Modify is equivalent to remove followed by make as in OPS5.

40.12 and 40.13 correspond to 4.9 and 4.10 in the command interpreter.

40.5: Bind uses the program context to figure out the type of the bound object,

but this is not possible for situations such as "(bind <myvar> (read <myfile>)".

These cases default to type symbol, but can be explicitly coerced: "(bind <myvar>

(int (read <myfile>)))" OR "(bind <myvar> (set animals (read <myfile>)))".

40.6: Build is very different from its OPS5 namesake. The most important

distinction is that a production’s building may be dispersed across multiple firings

through string concatenation. Build itself is passed one argument, a string (symbol)

representing an entire production source text, including the opening "(p" and

closing ")". No macro expansion may be used in a built production. When a string

variable is supplied as the argument to build, its value will be substituted. See (48)

below for using "+" for string concatenation. Only controlled productions may

build new productions; the current contents of working memory are matched

against the new production immediately upon compilation (unlike OPS5).

- 259 -

-- --

40.7: Excise removes the named production(s) and reclaims their storage. An

excise, like a build, may result in modifications to priorities of the Rete nets.

40.8: Call a user-defined action.

40.9, 40.10, and 40.11: The standard write expands quoted symbol escape

sequences such as backslash-n into their control characters. Writeq surrounds all

symbols in quotes, and does not expand escape sequences; writeq is useful for

writing files to be read by PRIOPS. Writeh is identical to write, except that

integers are written in hexadecimal, preceded by a "!". Symbol sets may be read

and written using the "[symbol1 symbol2 "QUOTED.SYMBOL"]" notation

discussed in 4.5.

44: THE FOLLOWING FUNCTIONS MAY NOT BE USED IN AUTOMATIC

PRODUCTIONS: read and newline. Input in the automatic partition is

accomplished through device drivers as explained later.

44.1: Generate a new symbol as in OPS5 genatom.

44.2: Read one field value from the named, open file. A type check is

performed upon input.

44.3: Read all input as though a quoted string up to the next end of line, and

discard the end of line. If end of line is the next character, a single space is

returned as the symbol. No analysis of the input line characters is performed; the

characters are stored verbatim.

- 260 -

-- --

44.4, 46, and 47: Compute, as in OPS5, is right-associative with no precedence.

Precedence can be forced through the use of parentheses.

44.5: This is explicit type coercion. Ints and floats may be freely coerced.

Symbols may be coerced to and from ints and floats ONLY IN CONTROLLED

PRODUCTIONS. A number is coerced to a string representation using "sprintf." A

symbol is coerced to a number using "sscanf," but if some part of the symbol does

not represent a number, an error is reported. A symbol beginning with a "!" is

taken to contain a hexadecimal integer in the remaining characters. The only time

SET COERCION is appropriate is in RHS expressions with constant sets, where

the type of the expected set is not obvious. For example, in "(bind <myset> [dog

cat rat])," the type of [dog cat rat] may be indeterminate; several universes may

contain these set members. To disambiguate constant sets in RHS’s, PRIOPS

requires "(bind <myset> (set animal [dog cat rat]))," Explicit set identification is

not needed where the type of set is already determined by a field reference in a

working memory element change.

44.6 and 45: A call to a user-defined C function.

48.: Compute operators are standard for floats and ints, with type coercion

between the two being implicit. Modulo (%), bitwise inclusive or (⎪), and (&),

exclusive or (ˆ), shift left (<<) and shift right (>>) are binary operators allowed

only on integers; floats may not be used. For symbol sets, + signifies union, * is

intersection, - is set difference; these may be used in any production. Symbols may

- 261 -

-- --

use + for concatenation. Set and symbol compute operations apply to

CONTROLLED PRODUCTIONS ONLY.

C Language Interface:

The current version of PRIOPS defines its own main, and PRIOPS cannot be

called as a subtask from an enclosing C program. C functions and device drivers

can, however, be called from PRIOPS. When compiling PRIOPS, the void function

"map_externals()" must be supplied; it takes no arguments. Within

"map_externals()", calls to PRIOPS functions c_pred(name,funcptr),

c_action(name,funcptr), and c_func(name,funcptr) must be made for all user-

defined predicates, actions, and functions (respectively). These are declared in

"external.h" and are defined in "external.c"; name is a char *, pointing to the name

used in the PRIOPS predicate (4.2), function (4.3), or action (4.4) declaration.

funcptr is a pointer to the function associated with that name. "map_externals" is

called from "main" before the PRIOPS compilation process begins. A default

empty "map_externals()" is supplied in the PRIOPS library for when no external C

functions are called.

User defined device drivers must also be initialized before PRIOPS is begun.

At present all direct I/O for the automatic partition is through device drivers; OS

and BIOS calls cannot be used by the automatic partition, since interrupts can

cause automatic processing to preempt the controlled partition while it is in an OS

- 262 -

-- --

critical section. No memory management occurs in the automatic partition. Output

can be controlled through action calls from automatic productions.

Consult "external.h" and the maze demo C file "primaze.c" for details and

examples.

- 263 -

-- --

Appendix B: PRIOPS Source File Organization

This appendix identifies source file names, lengths (in number of non-blank

lines), and functions for the current PRIOPS compiler. Two makefiles exist,

"priops.mk" and "maze.mk". The former is for generic PRIOPS, the latter for the

maze program. All compilation was done using Microsoft® C 5.1. PRIOPS

comprises about 12,000 lines of C code. The PRIOPS executable file consumes

about 200,000 bytes of storage when loaded, not counting the considerable

dynamic storage needed to compile and run production system programs.

Header files:

compile.h (52): Command interpreter & production compiler declarations. See

compile.c

declare.h (12): Top-level data type function declarations for "predicate,"

"function," "action," "set," & "structure." See declare.c.

external.h (171): External C function coordination. See declare.c for c_pred,

c_action & c_func. See runtime.c for utility functions used by user C functions.

Include this in application C code I/O driver files (e.g., drivers.c & primaze.c).

rete.h (533): Rete network node structure declarations and associated priority

queue scheduling declarations. See runtime.c and runrete.c.

runtime.h (82): Global declarations needed at run time. Also top-level "run" &

- 264 -

-- --

Rete traversal support. See runtime.c.

scanner.h (89): Lexical analyzer header file. Tokens and related definitions.

Compiler error logger. See scanner.c.

symbol.h (148): Symbolic atom manager header file. See symbol.c.

wme.h (81): Working memory element (structure) declarations and top-level

interpreter wm operation declarations. See wme.c.

Total header file lines: 1168.

C source files:

compile.c (3476): Recursive descent production compiler.

declare.c (717): PRIOPS top-level data declaration symbol table manipulation.

priops.c (688): Program entry, initialization, and top-level interactive command

interpretation.

runrete.c (1472): Run-time interpreter for intermediate code.

runtime.c (2393): Run-time Rete traversal and queue handling code, controlled

and automatic inference drivers, miscellaneous run-time support.

scanner.c (531): Lexical analyzer for compiler and PRIOPS symbols at run-

time.

symbol.c (261): Unique symbol handling functions.

test87.c (34): 8087 math processor test code.

wme.c (1134): working memory element manipulation.

- 265 -

-- --

Total lines of ".c" C code: 10706.

priop86.asm (66): assembler, saves/restores 8087 state

Maze files:

maze.pri (940): The PRIOPS part of the demo application. 2 initialization

productions, 9 garbage collection, 2 declarative memory update, 31 maze search, 1

controlled move, 1 automatic move, 24 automatic panics, 5 exit reactors, 14

learning productions = 89 productions.

primaze.c (768): The C part of the demo application. 1708 lines of code for the

demo.

TOTAL C code lines from above (.h & .c files): 12642.

TOTAL C code lines + assembler + PRIOPS source: 13648

maze.mk (54): Make file for maze demo.

priops.mk (53): Make file for generic PRIOPS.

runmaze.c (2400): A slight variant of runtime.c for the maze demo.

- 266 -

-- --

A
u
to

m
at

ic
 p

ar
ti

ti
o
n

C
o

n
tr

o
ll

ed
 p

ar
ti

ti
o

n

E
nv

ir
on

m
en

t

S
en

so
rs

E
ff

ec
to

rs
S

ig
na

l
D

ec
od

in
g

C
om

bi
na

ti
on

al
O

ut
pu

t

d
ri

v
er

s
lo

gi
c

-
g
a
ti

n
g
 -

R
ea

ct
iv

e
p

ro
ce

ss
in

g

b
 u

 f
 f

 e
 r

 s
b

 u
 f

 f
 e

 r
 s

G
o

al
 &

 d
at

a
d

ri
v

en
,

m
em

o
ry

-b
as

ed
 p

ro
ce

ss
in

g

(e
.g

.,
 p

ro
b

le
m

 s
o

lv
in

g
,

p
la

n
n

in
g

,
le

ar
n

in
g

)

co
nd

it
io

ni
ng

F
ig

u
re

 2
 -

 T
h

e
tw

o
-t

ie
re

d
 P

R
IO

P
S

 a
rc

h
it

ec
tu

re

A
u
to

m
at

ic
 p

ar
ti

ti
o
n

C
o

n
tr

o
ll

ed
 p

ar
ti

ti
o

n

E
nv

ir
on

m
en

t

b
 u

 f
 f

 e
 r

 s

T
em

pe
ra

tu
re

se
n
so

rs

A
bn

or
m

al
te

m
p

er
at

u
re

de
co

di
ng

te
m

p
er

at
u

re

de
co

di
ng

D
an

ge
ro

us

W
he

el
s

W
he

el

d
ri

v
er

en
ab

le
 &

 d
is

ab
le

L
im

it
s

R
ea

di
ng

s

In
it

ia
te

go
al

in
sp

ec
ti

o
n

&
 r

ep
o
rt

in
g

In
it

ia
te

in
sp

ec
ti

o
n

F
ig

u
re

 4
 -

 A
 t

em
p
er

at
u
re

 s
en

so
r

d
ri

v
en

 e
x
am

p
le

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

^
li

m
it

-t
y

p
e

h
i-

in
te

re
st

li
m

it
se

ns
or

go
al

al
ar

m
-r

ec
o
rd

^a
ct

io
n

in
sp

ec
t

al
ar

m
-m

ov
e

^s
en

so
r-

id

no
 a

la
rm

-m
ov

e

m
o

v
e-

to
-i

n
sp

ec
t-

ta
rg

et

re
p

o
rt

-a
la

rm

at
te

n
d

-t
o

-h
it

em
p

<
in

te
re

st
in

g
>

-1
0

-1
0

0

^l
im

it
-v

al
u
e

<
=

<
h
i-

re
ad

in
g
>

^
ta

rg
et

 >
=

[
<

lo
n
g
te

m
p
-i

d
>

]

C
o
n
tr

o
ll

ed
 p

ar
ti

ti
o
n
 R

et
e

n
et

F
ig

u
re

 5

tr
ac

e-
g

o
al

-i
n

sp
ec

t
-1

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r

R
eg

is
te

r

se
ns

or
li

m
it

al
ar

m
-m

ov
e

ac
ti

o
n

^s
en

so
r-

id
t1

^
li

m
it

-t
y

p
e

h
i-

d
an

g
er

^
ta

rg
et

 >
=

[t
1

 t
2

t3
 t

4
]

^l
im

it
-v

al
u

e
<

=
 <

hi
te

m
p>

^a
la

rm
-t

y
p

e

h
i-

te
m

p
er

at
u
re

^a
la

rm
ed

-s
en

so
r

t1

n
o
 t

es
ts

^r
ea

di
ng

 >
=

<
h

i-
d

an
g

er
-l

im
it

>

^a
ct

io
n

-t
y

p
e

m
ov

e

^
ac

ti
o
n
-t

ar
g
et

w
he

el
s

re
a
c
t-

to
-o

v
e
rt

e
m

p
-t

1

10

re
tr

a
c
t-

o
v

e
rt

e
m

p
-t

1

1

st
ar

t-
m

o
v
in

g

10
0

A
u
to

m
at

ic
 p

ar
ti

ti
o
n
 R

et
e

n
et

10
0

10
0

10
10 10

10

10

10

1 1

1

1 1

1

1

10
0

t2 t3 t4
(a

d
d

it
io

n
al

t2
 t

3
 t

4
 p

a
th

s)

10

F
ig

u
re

 6

P
H

F
ig

u
re

 7
 -

 T
h

e
m

az
e

A
u

to
m

at
ic

 p
ar

ti
ti

o
n

C
o
n
tr

o
ll

ed
 p

ar
ti

ti
o
n

b
 u

 f
 f

 e
 r

 s

se
n
so

rs

o
b
st

ac
le

up
 &

 d
ow

n

PR
O

G
RA

M

m
ov

em
en

t

in
 m

az
e

S
en

so
ry

re
ad

in
gs

L
ea

rn
ed

 O
(1

)
es

ca
p

e
fo

r
a

kn
ow

n
m

az
e

(p
ri

o
ri

ty
 1

2
7
)

H
ar

d
-c

o
d
ed

 a
v
o
id

an
ce

 o
f

se
ns

ed
 H

U
M

A
N

 a
nd

 p
ro

gr
es

si
on

to
w

ar
d

 s
en

se
d

 E
X

IT

(p
ri

o
ri

ty
 1

2
4

 t
o

 1
2

7
)

M
ov

em
en

t
d
ri

v
er

In
it

ia
li

z
a
ti

o
n

G
ar

b
ag

e
co

ll
ec

ti
o

n

(p
ri

o
ri

ty
 0

)

A
cc

um
ul

at
e

m
az

e
de

cl
ar

at
iv

e
m

em
or

y
(p

ri
o
ri

ty
 -

5
0
 t

o
 -

6
0
)

S
el

ec
t

n
ex

t
m

o
v

e
in

 s
ea

rc
h
 f

o
r

ex
it

(p
ri

o
ri

ty
 -

5
0
 t

o
 -

6
0
)

L
ea

rn
 e

sc
ap

e
ro

u
te

af
te

r
m

az
e

co
m

p
le

ti
o
n

(p
ri

o
ri

ty
 -

2
)

L
e
ft

,
ri

g
h
t,

M
az

e
en

vi
ro

nm
en

t

F
ig

u
re

 8
 -

 P
R

O
G

R
A

M
 d

at
a

fl
o

w
 d

u
ri

n
g

 m
az

e
tr

av
er

sa
l

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r

R
eg

is
te

r
R

eg
is

te
r

ty
pe

2
ty

pe
1

^x
 3

12
7

12
7

12
7

12
7

12
7

12
7

12
7

12
7

1

1

1

1

^y
 4

^y
 9

^a
 1

^b
 2

^c
 =

 ^
z

^q
 >

 ^
z

A
u

to
m

at
ic

 R
et

e
lo

g
ic

al
 v

ie
w

F
ig

u
re

 9

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r

R
eg

is
te

r
R

eg
is

te
r

ty
pe

2
ty

pe
1

^x
 3

12
7

12
7

12
7

12
7

12
7

12
7

12
7

12
7

1

1

1

1

^y
 4

^y
 9

^a
 1

^b
 2

^c
 =

 ^
z

^q
 >

 ^
z

A
ut

om
at

ic
 n

od
e

li
nk

ag
e

ri
g

h
t

si
b
li

n
g

si
b
li

n
g

le
ft

de
sc

en
de

nt
ri

g
h

t
de

sc
en

de
nt

le
ft

de
sc

en
de

nt

F
ig

u
re

 1
0

S
ta

n
d

ar
d

 a
n

d
 b

al
an

ce
d

 R
et

e
n

et
s

p
re

-j
o
in

p
re

-j
o
in

p
re

-j
o
in

p
re

-j
o
in

p
re

-j
o
in

p
re

-j
o
in

p
re

-j
o
in

p
re

-j
o
in

jo
in

jo
in

jo
in

jo
in

jo
in

jo
in

ch
ai

n
ch

ai
n

ch
ai

n

ch
ai

n

ch
ai

n
ch

ai
n

ch
ai

n
ch

ai
n

A
B C D

A
BC

D

AB A
BC

A
B

C
D

CD
AB

A
BC

D

F
ig

u
re

 1
1

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

(p
 t

h
in

g
2
 (

th
in

g
)

(t
h
in

g
)

->
 R

H
S

)
(p

 t
h

in
g

3
 (

th
in

g
)

(t
h

in
g

)
(t

h
in

g
)

->
 R

H
S

)

W
o
rk

in
g
 m

em
o
ry

 e
le

m
en

t
se

lf
-j

o
in

s

jo
in

 A

jo
in

 B

jo
in

 C
F

ig
u

re
 1

2

	priopsthesis
	dissert2
	dissert4
	dissert5
	dissert6
	dissert7
	dissert8
	dissert9
	disser10
	disser11
	disser12

