Minimum Blocking Parallel
Bidirectional Search

PDPTA’12 Session 5
Dale Parson and Dylan Schwesinger
Kutztown University of PA

http://faculty.kutztown.edu/parson

Acknowledgements to Sun, NVIDIA, Intel,
and PA State System of Higher Education

Bidirectional Search

nitial state is known.
inal state is known.

Path connecting them is unknown.

Worst case time, space for breadth-first

unidirectional search is O(bd).
* b is branching factor, d is depth.

For bidirectional it is O(b%?2).

Searches meet at the frontier

initial state
‘ (entrance) ’

‘ final state ‘
(exit)

state space
daS a maze

Each direction
has a search
frontier.

Data Structures Required

* Breadth-first maintains a queue of states to
expand.

e Each expansion step dequeues one state, computes up
to b expansions, and enqueues them.

* A state maintains a back-link to its predecessor.
* |t compares each expansion to the final state.

e Bidirectional adds two sets of states, those
reached via forward search and those reached
via backward search.

Related Work

* Related work on multiprocessing of
bidirectional search focuses on parallel
implementation of heuristic-based pruning of
the search space.

* Our work is orthogonal -- heuristic-based
pruning is supported, but it is not our focus.
Focus is on finding most effective approach to
algorithm / data structures for bidirectional

search.

MIMD Multiprocessing

* QOur initial attempt used a CyclicBarrier to
restrict all threads to one side’s frontier.

* Two-phase state machine.
* Dequeue a state, if it is a reversal of direction then wait
in the CylicBarrier until all threads enter this barrier.

* Otherwise, compute its expansions. If an expansion is in
this side’s set, discard it. If an expansion is in the other
side’s set, it is a solution. Otherwise, add it to this side’s

set and to the state queue.

e Java’s ConcurrentLinkedQueue uses no locks.
ConcurrentHashMap uses minimal write locks.

Non-blocking Version

It eliminates the CyclicBarrier.

Threads finish out a frontier and check a
volatile isdone flag.

Directions of search may overlap in time.

Some threads may search a little too deeply
after a solution is found.

* This does not affect correctness nor increase time.

We also tried a LinkedBlockQueue approach.

8 core x 8 thread Sparc server,
basic algorithms

execution time in seconds

140

120

100

80

60

40

20

*
.....
e
.

1 2 4 8 16 32 64

number of threads (base 2 log scale)

"""" minimum blocking

= = cyclic barrier

blocking queue

Algorithm Enhancements

Initialize each ConcurrentHashMap to its
maximum size of 4 million elements.

Reduce load factor from .75 to .5.
Increase lock stripes from 16 to 128.

We also tried a variation with each thread

getting its own state queue.
* This eliminates polling read contention.

* Write contention is minimized by using round-robin
order given by an atomic index variable.

120

100

(o0]
o

N
o

execution time in seconds
N (@)
(] o

Enhanced Results

1 2 4 8 16 32 64

number of threads (base 2 log scale)

"""" minimum blocking

enhanced set

= = multiple queues

10

Subsequent work: C++11

C++11 port in May / June 2012.

* Support for atomic operations.
e Addition of C++ wrappers for POSIX threads, mutexes
and condition variables.
Implemented open address hash table using lock free
atomic pointers to state objects.

* Entries are never deleted in bidirectional search.
Implemented circular buffer queues using atomic
“spin locks” on next spot to read (spin on NULL),
next-to-write (non-NULL), and tail and head indices.

C++11 and Cuda/C2070 GPU

* C++11 results are slightly better than Java.

* Static storage allocation of state object space makes
another substantial improvement.

* Deletion of “bad state objects” is avoided by reusing
their storage. Allocation is from a first-out queue.

e Cuda did not do so well.

* Poor spatial and temporal locality of the hash table
does not work with Cuda memory & caches well.

* Doing state expansion on GPU and everything else on
MIMD Intel machine on par with MIMD-only approach.

Conclusions

Use a dataflow architecture that streams states-to-
expand to threads via a non-blocking, atomic-based,
FIFO queue. Sync on a volatile isdone flag.

Give each thread its own queue, eliminating read
contention. Feed the queues in round-robin order to
minimize write contention.

Use minimal locking sets. An open address hash table
using atomics needs no locks.

Pre-allocate everything by determining size growth
curves, often empirically.

