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Bidirectional Search

nitial state is known.
inal state is known.

Path connecting them is unknown.

Worst case time, space for breadth-first

unidirectional search is O(bd).
* b is branching factor, d is depth.

For bidirectional it is O(b%?2).



Searches meet at the frontier

initial state
‘ (entrance) ’

‘ final state ‘
(exit)

state space
daS a maze

Each direction
has a search
frontier.




Data Structures Required

* Breadth-first maintains a queue of states to
expand.

e Each expansion step dequeues one state, computes up
to b expansions, and enqueues them.

* A state maintains a back-link to its predecessor.
* |t compares each expansion to the final state.

e Bidirectional adds two sets of states, those
reached via forward search and those reached
via backward search.



Related Work

* Related work on multiprocessing of
bidirectional search focuses on parallel
implementation of heuristic-based pruning of
the search space.

* Our work is orthogonal -- heuristic-based
pruning is supported, but it is not our focus.
Focus is on finding most effective approach to
algorithm / data structures for bidirectional

search.



MIMD Multiprocessing

* QOur initial attempt used a CyclicBarrier to
restrict all threads to one side’s frontier.

* Two-phase state machine.
* Dequeue a state, if it is a reversal of direction then wait
in the CylicBarrier until all threads enter this barrier.

* Otherwise, compute its expansions. If an expansion is in
this side’s set, discard it. If an expansion is in the other
side’s set, it is a solution. Otherwise, add it to this side’s

set and to the state queue.

e Java’s ConcurrentLinkedQueue uses no locks.
ConcurrentHashMap uses minimal write locks.



Non-blocking Version

It eliminates the CyclicBarrier.

Threads finish out a frontier and check a
volatile isdone flag.

Directions of search may overlap in time.

Some threads may search a little too deeply
after a solution is found.

* This does not affect correctness nor increase time.

We also tried a LinkedBlockQueue approach.
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Algorithm Enhancements

Initialize each ConcurrentHashMap to its
maximum size of 4 million elements.

Reduce load factor from .75 to .5.
Increase lock stripes from 16 to 128.

We also tried a variation with each thread

getting its own state queue.
* This eliminates polling read contention.

* Write contention is minimized by using round-robin
order given by an atomic index variable.
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Subsequent work: C++11

C++11 port in May / June 2012.

* Support for atomic operations.
e Addition of C++ wrappers for POSIX threads, mutexes
and condition variables.
Implemented open address hash table using lock free
atomic pointers to state objects.

* Entries are never deleted in bidirectional search.
Implemented circular buffer queues using atomic
“spin locks” on next spot to read (spin on NULL),
next-to-write (non-NULL), and tail and head indices.



C++11 and Cuda/C2070 GPU

* C++11 results are slightly better than Java.

* Static storage allocation of state object space makes
another substantial improvement.

* Deletion of “bad state objects” is avoided by reusing
their storage. Allocation is from a first-out queue.

e Cuda did not do so well.

* Poor spatial and temporal locality of the hash table
does not work with Cuda memory & caches well.

* Doing state expansion on GPU and everything else on
MIMD Intel machine on par with MIMD-only approach.



Conclusions

Use a dataflow architecture that streams states-to-
expand to threads via a non-blocking, atomic-based,
FIFO queue. Sync on a volatile isdone flag.

Give each thread its own queue, eliminating read
contention. Feed the queues in round-robin order to
minimize write contention.

Use minimal locking sets. An open address hash table
using atomics needs no locks.

Pre-allocate everything by determining size growth
curves, often empirically.



