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ABSTRACT
1
 

 

Jython is an implementation of the interpretive 

programming language Python written in Java and 

designed to generate Java Virtual Machine byte codes. It 

provides easy access to compiled Java classes including 

substantial Java libraries. It also provides many of the 

libraries that are popular with programmers of C-based 

Python. Python‟s object-oriented language constructs 

support creation of executable specifications for object-

oriented Java systems. Python‟s high-level source 

language mechanisms include generic container types, 
meta-classes, first-class functions, closures, generators, 

list comprehensions, source-level reflection and run-time 

interpretation of generated source code. Consequently, 

Jython can serve as a powerful rapid prototyping and 

extension environment for Java applications and 

frameworks. Its integration into the Java Virtual Machine 

allows construction of layered systems composed of 

Jython and Java layers. Example systems discussed in the 

paper include a prototype computer game that uses Java‟s 

graphical user interface libraries, a computer music 

performance system that allows users to write instrument 

control code as part of a performance, a Jython-Java 
layered system for analyzing audio data streams, and 

multiprocessor performance benchmarks written in Jython 

and Java. 

 

KEY WORDS 

 

Extension language, object-oriented software, Python, 

Java, Jython, rapid prototype.  

1.  Introduction 

This report on using the Jython [1,2] implementation of 

the Python programming language [3,4] to prototype and 

extend object-oriented Java systems [5] grows out of four 

projects that the authors have undertaken recently. The 

first project is a graphical game for a course in advanced 

object-oriented system design that illustrates the power of 

using Jython to prototype Java applications while 
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leveraging Java‟s graphical user interface (GUI) classes 
and other classes from Java‟s substantial class library [6]. 

The second project is a graphical computer music 

performance application that includes support for live 

coding, an established means of electronic instrument 

control, that in this application relies on Jython‟s ability to 

compile and run extension code at execution time. The 

third project is a benchmark program that compares 

performance of a CPU intensive task on two 

multiprocessor server systems in several multithreaded 

programming languages including Java and Jython. The 

fourth project is an investigation into a Java streaming 
audio library that uses a Java application layer for 

performance-critical audio analysis tasks and a Jython 

layer for user interface construction as well as command 

line exploration of the audio library. Jython, Java and C-

based Python are open source languages with freely 

available implementations of compilers, run-time 

systems, code libraries, documentation and support 

communities. 

2.  Related Work 

Python, Tcl and Perl are representative scripting 

languages [7] originating in the late 1980‟s that remain 

popular. Interpreted languages such as LISP, BASIC and 

the assorted UNIX Shell languages exerted strong 

influences on the creation of these language 

environments. Emphases in using these languages include 

interpretation and interactive coding, dynamic typing, 

high-level container types such as associative arrays, and 

availability of an eval function that can interpret 
generated code at run time. They provide mechanisms for 

easily invoking and coordinating (a.k.a. “gluing 

together”) compiled executable programs written in 

system programming languages such as C, C++ and Java. 

 

Python and Tcl go further in serving as extension 

languages for application frameworks. While all scripting 

languages provide means for dispatching and coordinating 

other programs, an extension language provides software 

interfaces whereby a developer can load compiled 

libraries into the extension language interpreter at run 

time and create application-specific commands for the 
operations of those plug-in libraries. Scripting languages 

support program-level granularity in integrating system 



programs and other scripts into aggregate programs; 

extension languages go further in supporting command-

level extension of the language itself via an extensible 

interpreter and dynamic loading of compiled procedures. 

An extension language caters to the incremental creation 

of a domain-specific language via the loading of domain-
specific command libraries into the language interpreter. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 1: Extension language extension mechanisms 

 

Figure 1 shows three general types of extension supported 

by extension languages; arrows show direction of 

procedure invocation. With category 1 the programmer 

creates extension language procedures that invoke built-in 

language mechanisms. With category 2 the programmer 

extends the language‟s set of built-in commands via 

dynamic loading of compiled, plug-in extensions. 

Category 3 consists of callbacks from built-in or plug-in 

primitives to code written in the extension language. For 

example, handlers for events triggered in the compiled 
system programming language can be written in the 

extension language. An example usage of a category 3 

mechanism is the coding of event handlers for graphical 

user interface (GUI) events in the extension language. 

3.  Jython in Java-based systems 

3.1 The Jython language and libraries 

Jython is an implementation of the Python language 
specification written in Java. Python is a dynamically 

typed, interpreted language. The Jython interpreter 

compiles Python source code into Java byte code at 

runtime. The Java Virtual Machine (JVM) sees the same 

result from compilation of either Java or Jython – JVM 

byte code. However, the code generated from the Jython 

interpreter will in most cases contain more instructions 

than a semantically equivalent block of code compiled 

from Java. This is because dynamically typed languages 

put off the type decisions until runtime. Statically typed 

languages handle type checking at compile time, 
eliminating some instructions that are otherwise necessary 

to handle type checking at runtime. 

 

The Jython distribution includes the core Python libraries. 

This inclusion allows for most existing Python code to 

run on the Jython interpreter with no modification. The 

real power of Jython over the official C based 

implementation is the ability not only to leverage existing 

Python libraries, but also existing Java libraries as well. 
 

The mechanism that achieves this integration of Python 

and Java code is the import statement. Unlike Java's 

import statement, which is a compiler directive, Jython's 

import statement is an expression that imports at runtime. 

Any compiled Java class is available to Jython. During 

the import process Java reflection accesses class 

information. Reflection is the examination of objects at 

runtime to determine all pertinent information, such as 

data members and methods. As Jython imports Java 

classes, it converts Java data types into their equivalent 

Jython types. Writing custom Java code for a Jython 
framework is far less painful than writing C or C++ code 

for C-based Python. While the latter activity requires 

writing low level adapter functions in the system 

programming language, integrating custom Java code into 

a Jython framework is accomplished via a simple import 

statement. 

 

Moreover, the integration infrastructure between Java and 

Jython also enables utilizing Python modules from within 

Java code. The most common method to accomplish this 

is to create a factory method in the Java code that creates 
an instance of the Jython interpreter, which is itself a Java 

class, to load the Python module. The module can then be 

converted from a Python object to a Java object. This 

integration requires a small amount of effort, but again it 

is not nearly as troublesome as writing the convoluted 

wrapper code that is necessary for other extension 

language implementations in accomplishing similar tasks. 

3.2 Rapid prototyping for Java-based systems 

The key for building a prototype rapidly is the ability to 

translate high level abstractions into code as effortlessly 

as possible. The denser the code can be, i.e. the fewer 

lines of code required to express a concept, the easier it is 
to create a prototype quickly. A language that does not 

require much boiler plate code and has high level 

language abstractions is an ideal candidate for rapid 

prototyping. 

 

Python is such a language. The syntax of Python is 

similar to pseudo code, and it is a fairly concise source 

language. Python is an object-oriented language in the 

sense that every data type is an object and all of the 

standard object-oriented abstractions are present, 

including inheritance and polymorphism. In the case of 
Jython, these mechanisms offer an easy way to mirror 

Java class hierarchies. This makes it fairly easy to create a 

prototype in Jython, and once the high level design 

decisions are ironed out, the classes can easily be 

translated into Java equivalents.  

Extension 

language 

interpreter 

Extension 

language 

script (1) 

Built-in 

language 

primitives 

Dynamically 

loaded 

application 

libraries (2) 

Primitive-to-extension 

callbacks (3) 



 

Python offers more than just the object-orientated 

abstractions. It also has implicitly polymorphic built-in 

complex data types, primarily container objects that can 

contain heterogeneous data, primitive and aggregate alike. 

Container types include sequences, associative arrays, and 
sets. Having these aggregate types built into the language 

with a compact syntax increases the density of the source 

code. For example, the following line of Python code sets 

the variable a to refer to a list that contains a string, an 

integer, and an associative array that maps a string to a 

string. 

 

a = ["Don't panic!", 42, {'key' : 'value'}] 

 

While the preceding code could be duplicated in Java, it 

would require much more effort than the single line of 

Python code.  
 

Python also supports powerful functional programming 

features that increase the conciseness of the source 

language and ability to abstract at a high level. The core 

feature that supports functional programming is that 

functions and closures are first-class objects. This means 

that a function can be passed as an argument to another 

function, a function can be returned from a function, and a 

function can be stored in a variable. A closure is a first 

class function that has one or more free variables bound 

within its lexical environment. Closures can be used as 
stateful objects. A full discussion of closures is beyond 

the scope of this paper. The language also supports 

lambda expressions and has higher-order functions 

including map, filter, and reduce, for building and 

applying composite functions, which are typical higher-

order functions in functional programming languages.  

 

Most interpreted languages have the ability to invoke the 

interpreter during runtime.  Python is no exception. A 

Python program can call the interpreter via eval and exec. 

When eval is called on a string that is a valid Python 

expression, the code is evaluated and the result of the 
evaluation is returned. The exec statement is similar 

except any arbitrary string of Python code is executed as 

if it actually appeared in place of the exec statement. Exec 

can compile Python class and function definitions for later 

execution as byte code. Eval and exec allow for powerful 

metaprogramming capabilities. 

3.3 Example prototype: successes and pitfalls 

In designing a graphical game, we considered a number of 

possibilities for game play that we could not effectively 

evaluate without playing the game. Rapid prototyping in 

Jython let us quickly get to the point of testing the game 
to make sure that we were on the right track. Had we not 

used Jython, it is possible that we would have needed to 

mock up a physical game first. But with Jython, we were 

able to develop the code and the game play mechanics 

simultaneously.  

 

Another advantage of using Jython is the fact that the 

code base is compact and readable, making it easy for 

someone new to the project to use. Had we asked for 

outside advice on some aspect of the game play, anyone 

with the ability to read pseudocode could have understood 
what was going on. Likewise, there is very little overhead 

in bringing someone new to the project up to speed.  

 

Many of the benefits above would have been apparent in 

pure Python as well. One advantage to using Jython is 

that we were able to add a GUI by leveraging the Java 

Swing library without rewriting any of the code in Java. 

In that sense, our prototype was not just a proof-of-

concept –   we were able to use it to complete a finished 

looking game. The syntax for using Java objects in Jython 

is actually more concise than it is in Java. Thus, the GUI 

code looks a lot cleaner in Jython. 
 

Normally, the trade-off for using a dynamically typed 

language is a hit to performance due to runtime type 

checking. In this particular application performance was 

really not an issue because most of time the game is just 

waiting for player input. There is another trade-off in the 

testing phase as well. A statically typed language will 

catch most type errors at compile time. Programs written 

in dynamically typed languages need to be more 

thoroughly tested to ensure that all expressions are 

providing the correct types. The game is a relatively small 
amount of code, so in this case the additional testing was 

also small. 

 

 
 

Figure 2: A Java-based graphical, interactive game in Jython 

 

The main pitfall when designing the game was 

remembering that certain Java types are converted into 
Jython types. In most cases a given Java object is used 

like any Jython object, for example using dot notation to 

call methods. But in the case of strings, the conversion 



results in a Python string. So, instead of calling 

string.length() as is done if the object behaved like a Java 

object, it must be called as len(string) as in the Python 

syntax. 

3.4 Jython as an application-specific language 

This section outlines a project that includes support for 
live coding, an established means of electronic musical 

instrument control, that in this application relies on 

Jython‟s ability to compile and run extension code at 

execution time. The need for this application grew out of 

a desire to perform synthesized computer music using just 

intonation, an approach to musical scale construction that 

differs from the twelve-note equal-tempered scale used in 

most modern Western music [8]. The primary non-

graphical mechanisms of this program are construction of 

tables of per-note frequency information from scale 

parameters, followed by translation of these frequency 
table entries into ordered pairs of note number and pitch 

bend values for the Musical Instrument Digital Interface 

(MIDI) protocol [9] used to control music synthesizers. 

Table construction and translation occur at start-up time 

using the functional programming mechanisms of Python 

to convert custom scale parameters to frequency values, 

and then to convert these frequencies to MIDI values. 

Java‟s extensive code library contains packages for the 

control of MIDI-based synthesizers, including a large 

array of built-in instrument voice generators. Java‟s MIDI 

library can also control software synthesizers from third-

party vendors as well as external hardware synthesizers. 
 

Figure 3 is a screenshot of the application‟s graphical user 

interface, constructed after data table completion. As with 

the previous game example, this application uses Java 

GUI library classes to create the display. It also provides 

event-handling classes written in Jython that extend 

Java‟s event-handling interfaces. These Jython subclasses 

of Java interfaces react to user actions and periodic timer 

events. 
 

Each row in the GUI configures performance data for one 

of 16 MIDI channels in the sound synthesizers. Each 

channel controls one instrument voice. Graphical controls 

include buttons that play notes when pressed, spinners 

that adjust the octave, volume and instrument voice of a 

row‟s notes, and combo boxes for several parameters 

including change of key and target MIDI synthesizer. 

 

MIDI design is based on the Western equal-tempered 

scale, so that each channel can play only one note at a 

time in a non-equal-tempered scale, doing so by adjusting 

the pitch of an equal-tempered note using MIDI pitch 
bend messages. This note-at-a-time constraint, known as 

monophonic synthesis, makes it impossible to play chords 

and multi-voice parts using standard musical keyboard 

techniques. Also, a computer mouse supports pressing 

only one button at a time. Partial solutions to this 

monophonic constraint include the checkboxes to the left 

of the note buttons for latching key presses, thereby 

sustaining notes, along with a 16 x 4 crossbar of 

checkboxes that allow a button press on a single row to be 

used in all other rows connected to that row via a crossbar 

column. The crossbar enables the simultaneous sounding 

of chords by multiple synthesized instruments, i.e., 
polyphony. 

 

 
 

Figure 3: Graphical User Interface for a Jython / Java Just-Intonation Keyboard 

 



The most important aspect of this musical interface for 

the current discussion is the use of live coding, whereby 

performers can write and modify snippets of stylized 

Python code at performance time to control a row of GUI 

controls in Figure 3 in a way that is reminiscent of a 

player piano. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Listing 1: Live Python code for controlling the GUI keyboard 

 

Listing 1 shows the code for one MIDI channel that 

appears in the pop-up code editor window of Figure 3 

when a performer clicks that row‟s “Code” button. This 

code is pure Python, which the application interprets 

periodically under the scheduling control of the code itself 

within the run-time context of the GUI. Listing 1 

illustrates that live coding can import any Python library 

such as the random module used here. Mnemonic names 
that appear across the top row of Figure 3, such as “b2” 

for note button 2 or “o” for the octave spinner on the GUI, 

provide the symbols through which a performer controls 

the GUI via live coding. While a name such as “b2” does 

not appear to be mnemonic, the use of terse names allows 

for minimal typing when using the pop-up text editor 

window during a performance. The appearance of these 

terse names above their respective columns in the main 

GUI window makes memorizing them unnecessary. 

The code in Listing 1 sets values for local variables dur 

for duration and de for delay in temporal units scaled 
according to a tempo initialization parameter. It sets the 

channel‟s instrument voice spinner to MIDI “patch” 

number 80 via “s.p = 80” and sets the octave spinner 

using the “s.o = -1” assignment. The “s” symbol 

represents the scope of the row, and the properties such as 

“.p” and “.o” represent controls in that row. 

 

After initializing its variables and these two GUI controls, 

the code of Listing 1 goes into an unbounded loop 

wherein it presses one of the row‟s buttons for a duration 

of dur via an assignment statement (e.g., “s.b2 = dur”), 

then yields control back to the GUI event thread for de 
units of time. The code of Listing 1 comprises a Python 

generator, that acts as a coroutine by yielding control 

periodically without losing the bindings of its local 

variables. The program also supports regular Python 

functions that return the delay until next invocation as a 

return value at the end of each invocation. The GUI event 

thread invokes execution of any channel‟s activated code 

at its scheduled time under the scheduling control of a 
Java GUI Timer object. Buttons at the bottom of the 

editor window of Figure 3 allow a performer to compile 

and run code after an edit, to cancel an edit or to 

deactivate the performance code on a channel. The GUI 

controls on a row remain active for performer interaction 

even when live code is scheduled for that row. 

 

 

 

 

 

 
 

 

 

 

 
Listing 2: Java checkbox class adapted in a Jython subclass 

 

Four Python programming constructs make the live 

coding shown in Figure 3 and Listing 1 possible. First is 

the creation of Jython subclasses for the Java GUI control 

classes that add the ability to read and write their values 

as simple integers and strings via getValue and setValue 

methods. Listing 2 shows an example subclass of Java‟s 

JCheckBox class. These subclasses allow the GUI 

controls to provide an identical pair of getValue / 

setValue methods, regardless of the GUI control class. 
Subclasses serve as adapters that make reading and 

writing controls homogeneous with respect to method 

names, number of parameters and return values. Python‟s 

dynamic typing makes this task easier to achieve than it is 

with Java, because the methods parameter types of Java 

GUI controls vary according to control class, although it 

could be done via java.lang.Object parameter and return 

types and explicit type checking in Java. 

 

Jython‟s subclass of Java‟s JButton control class was the 

most complicated control class to write because of the 
need to emulate timed button presses and releases across 

rows tied together with a crossbar, but after completion 

the button presses could be emulated in software or 

triggered by user actions. 

 

The line “v = property(getValue, setValue, None)” at the 

bottom of Listing 2 shows the second of the four pertinent 

Python constructs, which is the ability to create class 

properties whose getValue / setValue methods are 

invoked when the property is read / written respectively 

within a Python expression. In the object representing a 

row in Figure 3, all of the GUI controls are accessible via 
mnemonic property names appearing across the top row, 

such as “s.b2” which is the b2 property of the row, this 

def genfunc(s): # „player piano‟ for MIDI channel 

    import random 
    def r(lower, upper): 
        return random.randint(lower,upper) 
    dur = 1.0 
    de = 1 
    s.p = 80 
    s.o = -1 
    while True: 

        s.b2 = dur 
        yield de 
        if r(0,3) == 0: # do this 25% of the time 
            s.b3 = dur 
            yield de 
        s.b1 = dur 
        yield de 
        s.b0 = dur 

        yield de 

class PJCheckBox(JCheckBox): 
    def getValue(self): 
        return self.isSelected() 
    def setValue(self, value): 
        issel = self.isSelected() 
        if value and not issel: 
            self.doClick() 
        elif issel and not value: 

            self.doClick() 
    v = property(getValue, setValue, None) 

 



property being tied to getValue / setValue method pairs 

for the button object labelled “b2.” Tying GUI control 

objects to mnemonic property names makes it possible for 

GUI values to appear as rvalues (implicitly invoking 

getValue) in expressions and as lvalues (implicitly 

invoking setValue) in assignment statements such as 
those appearing in Listing 1. The result is minimalist 

syntax for a musician transforming live code during 

performance, avoiding the more complex, alternative 

function invocation syntax.  

 

The third pertinent Python construct is support for adding 

new fields, methods and properties to individual Python 

objects as well as their defining classes at run time. This 

program has a class called environ with sixteen instances, 

one per MIDI channel. The “s” object reference 

manipulated by statements such as “s.b2 = dur” in Listing 

1 is an environ object reference. The environ class 
provides a method for adding properties such as PJButton 

“b2” at run time as the GUI is constructed. This 

mechanism simplifies tying together GUI object 

construction with extension code access to GUI objects 

via incremental addition of these objects as symbolic 

properties to the environ objects that are manipulated by 

the live code. 

 

The fourth and most powerful construct is application of 

Python‟s  exec function for compiling live coding source 

functions, such as genfunc of Listing 1,  at execution time 
within the scope of class environ and the MIDI channel‟s 

scope object. A musician‟s live code is compiled to byte 

code via exec and then placed on a scheduling queue that 

is maintained by Java‟s GUI Timer class. Compilation 

and scheduling occur when a performer clicks the 

Compile button at the bottom of the code editor window 

of Figure 3. In this way user scripts can access GUI 

controls as symbolic names within algebraic expressions 

as they appear in Listing 1 (s.x0, s.b0, etc.), and the 

underlying machinery outlined above takes care of the 

work of converting appearance of these symbols-in-

expressions into method invocations. 
 

 In a Java program without extension language support it 

would be necessary to design a custom live coding 

language, capture its grammar, build a scanner and parser 

using custom code or a complex parser generator 

package, compile live code functions, then schedule and 

interpret their execution. Thanks to Jython‟s support for 

run-time compilation and execution of Python source 

code, this project has avoided the creation of a custom 

language, along with the compiler and run-time support 

for its execution. This live coding facility grows directly 
out of Python, extending it into being a domain-specific 

language for live coding. 

3.5 Layered systems and performance 

This section looks at performance issues from two 

perspectives. The first is processing speed on two shared-

memory multiprocessors running multithreaded Jython, 

Java and C++ code. The second is an overview of a two-

tiered approach to using an extension language, where 

Jython serves to configure and direct time-critical signal 

processing activities occurring in a Java thread. 

 
The first program to discuss is one of a series of 

benchmarks exploring the performance of several 

multithreaded algorithms using several programming 

languages on two shared-memory multiprocessor servers, 

a 64-processor Sun Sparc server with limited per-core 

cache [10] and a 16-processor Advanced Micro Devices 

server with copious per-core cache [11]. Table 1 shows 

execution results in seconds for running a multithreaded 

solution to the N Queens Problem that finds all solutions 

on a 15 x 15 chess board using Jython, Java and C++ on 

these two multiprocessors. N Queens represents a search 

problem with a high number of search states, but with 
limited demands on memory. The algorithm spawns 

parallel search threads when advancing to adjacent 

columns in the board, with the number of threads being a 

function of number of concurrent columns, configured as 

a run-time parameter. Table 1 shows execution seconds as 

a function of the number of software threads for each 

machine-programming language pair. 

 

threads 1 15 182 1764 

Sparc 

C++ 100.54 8.07 4.37 5.87 

Sparc 

Java 112.602 8.936 6.253 5.391 

Sparc 

Python 19028.483 1517.602 745.118 737.132 

Sparc 

Jython 24001.803 9654.617 12164.258 15132.37 

AMD 

C++ 16.12 5.71 3.59 3.82 

AMD 

Java 29.867 2.916 2.316 3.446 

AMD 

Python 2825.602 211.302 179.349 178.108 

AMD 

Jython 5807.911 11283.732 7065.99 9025.306 

 

Table 1: Search time seconds as a function of thread count 

 
The most obvious result is that Jython is the slowest of 

the languages on both hardware platforms, despite the fact 

that Jython generates and executes Java byte code. Jython 

is slower even than C-based Python. This fact is 

interesting because C-based Python does not support 

concurrent execution of multiple threads within the 

Python interpreter. It is necessary to spawn multiple 

Python processes in order to achieve concurrent use of a 

multiprocessor.  Jython, which supports multithreading 

within a single process, is nevertheless much slower. 

Also, its multithreading performance is worse than its 
single threaded performance on the AMD machine. 

 

Perhaps a more important result is the fact that Java 

execution speed is on par with C++ execution speed on 

both platforms, in fact beating C++ performance in 



multithreaded AMD runs. This result appears in other 

benchmarks as well. In many cases multithreaded Java 

surpasses optimized, multithreaded C++ in speed on the 

Sparc machine. This result appears to be attributed largely 

to advances in run-time, profiling-based optimization by 

the Java just-in-time compiler that translates Java byte 
codes to machine code during execution. 

 

The conclusion, that Java execution has become fast 

enough to deal with some classes of real-time processing 

including audio signal processing, led to the architecture 

of the final project of this study. Diagrammed in Figure 4, 

this two-tiered software architecture uses Jython to 

configure a signal processing thread, coded in Java, that 

reads input audio streams, transforms them, for example 

by mixing, adding delays and other effects, and sends 

them to output streams. Jython‟s first use in this 

architecture has been as a means to explore the 
javax.sound.sampled Java library interactively. This 

library includes reflective data access methods that 

describe the audio input and output streams in symbolic 

terms. A programmer can use Jython interaction with 

reflective audio classes, in conjunction with the library 

documentation, to learn how to use library components. 

After that the programmer can write Jython GUI and 

configuration code that interacts with Java components in 

configuring a Java signal processing thread by 

interconnecting Java signal processing objects used by the 

Java thread. Jython can access locks and other Java 
objects from java.lang.concurrent in synchronizing 

construction of an audio signal processing flow. This two-

tiered architecture is an ideal match for the relative 

strengths and weaknesses of Jython and Java. Jython 

provides interactive access to reflective (self-describing) 

classes and fast coding for constructing a GUI and 

configuration classes, and Java provides fast execution of 

a signal processing thread. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: A two-tiered Jython-Java audio signal processor 

4.  Conclusion 

Working with Jython and exploring its abilities to create 

Java-based systems rapidly has been exciting. Standard 

Python libraries are available in Jython, and any compiled 

Java class including the massive Java standard library is 

available via the use of a simple Python import statement. 

Jython supports use of Java classes, and it supports 

subclass extension of Java interfaces and classes in the 

form of Jython classes. It is even possible to supply 
Jython classes as event handlers for Java-triggered events 

without writing any Java code. 

 

Python as a source language supplies object-oriented 

constructs that make it a good fit for specifying and 

prototyping object-oriented Java systems. Python also 

supplies powerful functional programming constructs and 

generic container types built into the language. These 

capabilities make Python a powerful vehicle for rapid 

prototyping by enabling concise, specification-like 

construction of prototype code. 

 
Jython‟s support for interactive, run-time compilation of 

Python source code procedures into Java byte code means 

that Jython can serve as a domain-specific language for an 

application written in Java. Interpretation, compilation 

and extension mechanisms built into Python and Jython 

eliminate any need to create custom domain-specific 

languages, and to design and build special tools for their 

support. 

 

Finally, the advent of just-in-time Java compilers that 

generate code that performs on par with optimized C++ 
code means that Java has become a viable language for 

writing real-time systems. In such a system Jython serves 

the needs of user interface construction and system 

configuration, applying the interactive strengths of Jython 

in working with users while leaving performance critical 

“heavy lifting” to Java. 

References: 

[1] J. Juneau, J. Baker, F. Wierzbicki, L. S. Muñoz, & V. 

Ng, The definitive guide to Jython: Python for the Java 

platform (New York, NY: Apress, 2010). An open source 

version is at http://www.jython.org/jythonbook/en/1.0/. 

[2] The Jython Project, http://www.jython.org/, February, 

2011. 

[3] D. Beazley, Python essential reference, fourth edition 

(Reading, MA: Addison-Wesley, 2009). 

[4] Python Programming Language – Official Website, 

http://www.python.org/, February, 2011. 

[5] K. Arnold, J. Gosling, & D. Holmes, Java™ 
programming language, fourth edition (Upper Saddle 

River, NJ: Prentice Hall, 2005). 

[6] Oracle Corporation, Java™ Platform, Standard 

Edition 6 API Specification, 

http://download.oracle.com/javase/6/docs/api/index.html, 

February, 2011. 

Jython user interface and configuration 

classes with synchronized interaction with 

Java signal processing thread. 

Java signal 

processing thread 

audio 
outputs 

audio 
inputs 

query 

audio 

meta-

data 

configure 

audio 

signal 

thread 

http://www.jython.org/jythonbook/en/1.0/
http://www.jython.org/
http://www.python.org/
http://download.oracle.com/javase/6/docs/api/index.html


[7] J. Ousterhout, Scripting: Higher-Level Programming 

for the 21st Century, IEEE Computer 31(3), 1998, 22-30. 

[8] G. Loy, Musimathics, the mathematical foundations of 

music (Cambridge, MA: MIT Press, 2006). 

[9] MIDI Technical Fanatic‟s Brainwashing Center, 

February 2011, 
http://www.blitter.com/~russtopia/MIDI/~jglatt/. 

[10] Fujitsu, Sparc Enterprise T5120, T5220, T5140 and 

T5240 Server Architecture, 

http://www.fujitsu.com/downloads/SPARCE/whitepapers/

T5x20-T5x40-wp-e-200907.pdf, July 2009, URL verified 

February, 2011. 

[11] Sun Microsystems, Sun Fire™ T1000 and T2000 

Server Architecture, 

http://www.sun.com/servers/x64/x4600/arch-wp.pdf, 

December, 2005, URL verified February, 2011. 

http://www.blitter.com/~russtopia/MIDI/~jglatt/
http://www.fujitsu.com/downloads/SPARCE/whitepapers/T5x20-T5x40-wp-e-200907.pdf
http://www.fujitsu.com/downloads/SPARCE/whitepapers/T5x20-T5x40-wp-e-200907.pdf
http://www.sun.com/servers/x64/x4600/arch-wp.pdf

