

USING JYTHON TO PROTOTYPE AND EXTEND JAVA-BASED SYSTEMS

Dale Parson, Dylan Schwesinger and Thea Steele

Department of Computer Science, Kutztown University

parson@kutztown.edu, {dschw531,tstee423}@live.kutztown.edu

ABSTRACT
1

Jython is an implementation of the interpretive

programming language Python written in Java and

designed to generate Java Virtual Machine byte codes. It

provides easy access to compiled Java classes including

substantial Java libraries. It also provides many of the

libraries that are popular with programmers of C-based

Python. Python‟s object-oriented language constructs

support creation of executable specifications for object-

oriented Java systems. Python‟s high-level source

language mechanisms include generic container types,
meta-classes, first-class functions, closures, generators,

list comprehensions, source-level reflection and run-time

interpretation of generated source code. Consequently,

Jython can serve as a powerful rapid prototyping and

extension environment for Java applications and

frameworks. Its integration into the Java Virtual Machine

allows construction of layered systems composed of

Jython and Java layers. Example systems discussed in the

paper include a prototype computer game that uses Java‟s

graphical user interface libraries, a computer music

performance system that allows users to write instrument

control code as part of a performance, a Jython-Java
layered system for analyzing audio data streams, and

multiprocessor performance benchmarks written in Jython

and Java.

KEY WORDS

Extension language, object-oriented software, Python,

Java, Jython, rapid prototype.

1. Introduction

This report on using the Jython [1,2] implementation of

the Python programming language [3,4] to prototype and

extend object-oriented Java systems [5] grows out of four

projects that the authors have undertaken recently. The

first project is a graphical game for a course in advanced

object-oriented system design that illustrates the power of

using Jython to prototype Java applications while

1
 Portions of this work were made possible by a PASSHE (PA State

System of Higher Education) Faculty Professional Development Grant

for the summer of 2010, and by an Instructional Materials Grant from

the Kutztown University Professional Development Committee.

leveraging Java‟s graphical user interface (GUI) classes
and other classes from Java‟s substantial class library [6].

The second project is a graphical computer music

performance application that includes support for live

coding, an established means of electronic instrument

control, that in this application relies on Jython‟s ability to

compile and run extension code at execution time. The

third project is a benchmark program that compares

performance of a CPU intensive task on two

multiprocessor server systems in several multithreaded

programming languages including Java and Jython. The

fourth project is an investigation into a Java streaming
audio library that uses a Java application layer for

performance-critical audio analysis tasks and a Jython

layer for user interface construction as well as command

line exploration of the audio library. Jython, Java and C-

based Python are open source languages with freely

available implementations of compilers, run-time

systems, code libraries, documentation and support

communities.

2. Related Work

Python, Tcl and Perl are representative scripting

languages [7] originating in the late 1980‟s that remain

popular. Interpreted languages such as LISP, BASIC and

the assorted UNIX Shell languages exerted strong

influences on the creation of these language

environments. Emphases in using these languages include

interpretation and interactive coding, dynamic typing,

high-level container types such as associative arrays, and

availability of an eval function that can interpret
generated code at run time. They provide mechanisms for

easily invoking and coordinating (a.k.a. “gluing

together”) compiled executable programs written in

system programming languages such as C, C++ and Java.

Python and Tcl go further in serving as extension

languages for application frameworks. While all scripting

languages provide means for dispatching and coordinating

other programs, an extension language provides software

interfaces whereby a developer can load compiled

libraries into the extension language interpreter at run

time and create application-specific commands for the
operations of those plug-in libraries. Scripting languages

support program-level granularity in integrating system

programs and other scripts into aggregate programs;

extension languages go further in supporting command-

level extension of the language itself via an extensible

interpreter and dynamic loading of compiled procedures.

An extension language caters to the incremental creation

of a domain-specific language via the loading of domain-
specific command libraries into the language interpreter.

Figure 1: Extension language extension mechanisms

Figure 1 shows three general types of extension supported

by extension languages; arrows show direction of

procedure invocation. With category 1 the programmer

creates extension language procedures that invoke built-in

language mechanisms. With category 2 the programmer

extends the language‟s set of built-in commands via

dynamic loading of compiled, plug-in extensions.

Category 3 consists of callbacks from built-in or plug-in

primitives to code written in the extension language. For

example, handlers for events triggered in the compiled
system programming language can be written in the

extension language. An example usage of a category 3

mechanism is the coding of event handlers for graphical

user interface (GUI) events in the extension language.

3. Jython in Java-based systems

3.1 The Jython language and libraries

Jython is an implementation of the Python language
specification written in Java. Python is a dynamically

typed, interpreted language. The Jython interpreter

compiles Python source code into Java byte code at

runtime. The Java Virtual Machine (JVM) sees the same

result from compilation of either Java or Jython – JVM

byte code. However, the code generated from the Jython

interpreter will in most cases contain more instructions

than a semantically equivalent block of code compiled

from Java. This is because dynamically typed languages

put off the type decisions until runtime. Statically typed

languages handle type checking at compile time,
eliminating some instructions that are otherwise necessary

to handle type checking at runtime.

The Jython distribution includes the core Python libraries.

This inclusion allows for most existing Python code to

run on the Jython interpreter with no modification. The

real power of Jython over the official C based

implementation is the ability not only to leverage existing

Python libraries, but also existing Java libraries as well.

The mechanism that achieves this integration of Python

and Java code is the import statement. Unlike Java's

import statement, which is a compiler directive, Jython's

import statement is an expression that imports at runtime.

Any compiled Java class is available to Jython. During

the import process Java reflection accesses class

information. Reflection is the examination of objects at

runtime to determine all pertinent information, such as

data members and methods. As Jython imports Java

classes, it converts Java data types into their equivalent

Jython types. Writing custom Java code for a Jython
framework is far less painful than writing C or C++ code

for C-based Python. While the latter activity requires

writing low level adapter functions in the system

programming language, integrating custom Java code into

a Jython framework is accomplished via a simple import

statement.

Moreover, the integration infrastructure between Java and

Jython also enables utilizing Python modules from within

Java code. The most common method to accomplish this

is to create a factory method in the Java code that creates
an instance of the Jython interpreter, which is itself a Java

class, to load the Python module. The module can then be

converted from a Python object to a Java object. This

integration requires a small amount of effort, but again it

is not nearly as troublesome as writing the convoluted

wrapper code that is necessary for other extension

language implementations in accomplishing similar tasks.

3.2 Rapid prototyping for Java-based systems

The key for building a prototype rapidly is the ability to

translate high level abstractions into code as effortlessly

as possible. The denser the code can be, i.e. the fewer

lines of code required to express a concept, the easier it is
to create a prototype quickly. A language that does not

require much boiler plate code and has high level

language abstractions is an ideal candidate for rapid

prototyping.

Python is such a language. The syntax of Python is

similar to pseudo code, and it is a fairly concise source

language. Python is an object-oriented language in the

sense that every data type is an object and all of the

standard object-oriented abstractions are present,

including inheritance and polymorphism. In the case of
Jython, these mechanisms offer an easy way to mirror

Java class hierarchies. This makes it fairly easy to create a

prototype in Jython, and once the high level design

decisions are ironed out, the classes can easily be

translated into Java equivalents.

Extension

language

interpreter

Extension

language

script (1)

Built-in

language

primitives

Dynamically

loaded

application

libraries (2)

Primitive-to-extension

callbacks (3)

Python offers more than just the object-orientated

abstractions. It also has implicitly polymorphic built-in

complex data types, primarily container objects that can

contain heterogeneous data, primitive and aggregate alike.

Container types include sequences, associative arrays, and
sets. Having these aggregate types built into the language

with a compact syntax increases the density of the source

code. For example, the following line of Python code sets

the variable a to refer to a list that contains a string, an

integer, and an associative array that maps a string to a

string.

a = ["Don't panic!", 42, {'key' : 'value'}]

While the preceding code could be duplicated in Java, it

would require much more effort than the single line of

Python code.

Python also supports powerful functional programming

features that increase the conciseness of the source

language and ability to abstract at a high level. The core

feature that supports functional programming is that

functions and closures are first-class objects. This means

that a function can be passed as an argument to another

function, a function can be returned from a function, and a

function can be stored in a variable. A closure is a first

class function that has one or more free variables bound

within its lexical environment. Closures can be used as
stateful objects. A full discussion of closures is beyond

the scope of this paper. The language also supports

lambda expressions and has higher-order functions

including map, filter, and reduce, for building and

applying composite functions, which are typical higher-

order functions in functional programming languages.

Most interpreted languages have the ability to invoke the

interpreter during runtime. Python is no exception. A

Python program can call the interpreter via eval and exec.

When eval is called on a string that is a valid Python

expression, the code is evaluated and the result of the
evaluation is returned. The exec statement is similar

except any arbitrary string of Python code is executed as

if it actually appeared in place of the exec statement. Exec

can compile Python class and function definitions for later

execution as byte code. Eval and exec allow for powerful

metaprogramming capabilities.

3.3 Example prototype: successes and pitfalls

In designing a graphical game, we considered a number of

possibilities for game play that we could not effectively

evaluate without playing the game. Rapid prototyping in

Jython let us quickly get to the point of testing the game
to make sure that we were on the right track. Had we not

used Jython, it is possible that we would have needed to

mock up a physical game first. But with Jython, we were

able to develop the code and the game play mechanics

simultaneously.

Another advantage of using Jython is the fact that the

code base is compact and readable, making it easy for

someone new to the project to use. Had we asked for

outside advice on some aspect of the game play, anyone

with the ability to read pseudocode could have understood
what was going on. Likewise, there is very little overhead

in bringing someone new to the project up to speed.

Many of the benefits above would have been apparent in

pure Python as well. One advantage to using Jython is

that we were able to add a GUI by leveraging the Java

Swing library without rewriting any of the code in Java.

In that sense, our prototype was not just a proof-of-

concept – we were able to use it to complete a finished

looking game. The syntax for using Java objects in Jython

is actually more concise than it is in Java. Thus, the GUI

code looks a lot cleaner in Jython.

Normally, the trade-off for using a dynamically typed

language is a hit to performance due to runtime type

checking. In this particular application performance was

really not an issue because most of time the game is just

waiting for player input. There is another trade-off in the

testing phase as well. A statically typed language will

catch most type errors at compile time. Programs written

in dynamically typed languages need to be more

thoroughly tested to ensure that all expressions are

providing the correct types. The game is a relatively small
amount of code, so in this case the additional testing was

also small.

Figure 2: A Java-based graphical, interactive game in Jython

The main pitfall when designing the game was

remembering that certain Java types are converted into
Jython types. In most cases a given Java object is used

like any Jython object, for example using dot notation to

call methods. But in the case of strings, the conversion

results in a Python string. So, instead of calling

string.length() as is done if the object behaved like a Java

object, it must be called as len(string) as in the Python

syntax.

3.4 Jython as an application-specific language

This section outlines a project that includes support for
live coding, an established means of electronic musical

instrument control, that in this application relies on

Jython‟s ability to compile and run extension code at

execution time. The need for this application grew out of

a desire to perform synthesized computer music using just

intonation, an approach to musical scale construction that

differs from the twelve-note equal-tempered scale used in

most modern Western music [8]. The primary non-

graphical mechanisms of this program are construction of

tables of per-note frequency information from scale

parameters, followed by translation of these frequency
table entries into ordered pairs of note number and pitch

bend values for the Musical Instrument Digital Interface

(MIDI) protocol [9] used to control music synthesizers.

Table construction and translation occur at start-up time

using the functional programming mechanisms of Python

to convert custom scale parameters to frequency values,

and then to convert these frequencies to MIDI values.

Java‟s extensive code library contains packages for the

control of MIDI-based synthesizers, including a large

array of built-in instrument voice generators. Java‟s MIDI

library can also control software synthesizers from third-

party vendors as well as external hardware synthesizers.

Figure 3 is a screenshot of the application‟s graphical user

interface, constructed after data table completion. As with

the previous game example, this application uses Java

GUI library classes to create the display. It also provides

event-handling classes written in Jython that extend

Java‟s event-handling interfaces. These Jython subclasses

of Java interfaces react to user actions and periodic timer

events.

Each row in the GUI configures performance data for one

of 16 MIDI channels in the sound synthesizers. Each

channel controls one instrument voice. Graphical controls

include buttons that play notes when pressed, spinners

that adjust the octave, volume and instrument voice of a

row‟s notes, and combo boxes for several parameters

including change of key and target MIDI synthesizer.

MIDI design is based on the Western equal-tempered

scale, so that each channel can play only one note at a

time in a non-equal-tempered scale, doing so by adjusting

the pitch of an equal-tempered note using MIDI pitch
bend messages. This note-at-a-time constraint, known as

monophonic synthesis, makes it impossible to play chords

and multi-voice parts using standard musical keyboard

techniques. Also, a computer mouse supports pressing

only one button at a time. Partial solutions to this

monophonic constraint include the checkboxes to the left

of the note buttons for latching key presses, thereby

sustaining notes, along with a 16 x 4 crossbar of

checkboxes that allow a button press on a single row to be

used in all other rows connected to that row via a crossbar

column. The crossbar enables the simultaneous sounding

of chords by multiple synthesized instruments, i.e.,
polyphony.

Figure 3: Graphical User Interface for a Jython / Java Just-Intonation Keyboard

The most important aspect of this musical interface for

the current discussion is the use of live coding, whereby

performers can write and modify snippets of stylized

Python code at performance time to control a row of GUI

controls in Figure 3 in a way that is reminiscent of a

player piano.

Listing 1: Live Python code for controlling the GUI keyboard

Listing 1 shows the code for one MIDI channel that

appears in the pop-up code editor window of Figure 3

when a performer clicks that row‟s “Code” button. This

code is pure Python, which the application interprets

periodically under the scheduling control of the code itself

within the run-time context of the GUI. Listing 1

illustrates that live coding can import any Python library

such as the random module used here. Mnemonic names
that appear across the top row of Figure 3, such as “b2”

for note button 2 or “o” for the octave spinner on the GUI,

provide the symbols through which a performer controls

the GUI via live coding. While a name such as “b2” does

not appear to be mnemonic, the use of terse names allows

for minimal typing when using the pop-up text editor

window during a performance. The appearance of these

terse names above their respective columns in the main

GUI window makes memorizing them unnecessary.

The code in Listing 1 sets values for local variables dur

for duration and de for delay in temporal units scaled
according to a tempo initialization parameter. It sets the

channel‟s instrument voice spinner to MIDI “patch”

number 80 via “s.p = 80” and sets the octave spinner

using the “s.o = -1” assignment. The “s” symbol

represents the scope of the row, and the properties such as

“.p” and “.o” represent controls in that row.

After initializing its variables and these two GUI controls,

the code of Listing 1 goes into an unbounded loop

wherein it presses one of the row‟s buttons for a duration

of dur via an assignment statement (e.g., “s.b2 = dur”),

then yields control back to the GUI event thread for de
units of time. The code of Listing 1 comprises a Python

generator, that acts as a coroutine by yielding control

periodically without losing the bindings of its local

variables. The program also supports regular Python

functions that return the delay until next invocation as a

return value at the end of each invocation. The GUI event

thread invokes execution of any channel‟s activated code

at its scheduled time under the scheduling control of a
Java GUI Timer object. Buttons at the bottom of the

editor window of Figure 3 allow a performer to compile

and run code after an edit, to cancel an edit or to

deactivate the performance code on a channel. The GUI

controls on a row remain active for performer interaction

even when live code is scheduled for that row.

Listing 2: Java checkbox class adapted in a Jython subclass

Four Python programming constructs make the live

coding shown in Figure 3 and Listing 1 possible. First is

the creation of Jython subclasses for the Java GUI control

classes that add the ability to read and write their values

as simple integers and strings via getValue and setValue

methods. Listing 2 shows an example subclass of Java‟s

JCheckBox class. These subclasses allow the GUI

controls to provide an identical pair of getValue /

setValue methods, regardless of the GUI control class.
Subclasses serve as adapters that make reading and

writing controls homogeneous with respect to method

names, number of parameters and return values. Python‟s

dynamic typing makes this task easier to achieve than it is

with Java, because the methods parameter types of Java

GUI controls vary according to control class, although it

could be done via java.lang.Object parameter and return

types and explicit type checking in Java.

Jython‟s subclass of Java‟s JButton control class was the

most complicated control class to write because of the
need to emulate timed button presses and releases across

rows tied together with a crossbar, but after completion

the button presses could be emulated in software or

triggered by user actions.

The line “v = property(getValue, setValue, None)” at the

bottom of Listing 2 shows the second of the four pertinent

Python constructs, which is the ability to create class

properties whose getValue / setValue methods are

invoked when the property is read / written respectively

within a Python expression. In the object representing a

row in Figure 3, all of the GUI controls are accessible via
mnemonic property names appearing across the top row,

such as “s.b2” which is the b2 property of the row, this

def genfunc(s): # „player piano‟ for MIDI channel

 import random
 def r(lower, upper):
 return random.randint(lower,upper)
 dur = 1.0
 de = 1
 s.p = 80
 s.o = -1
 while True:

 s.b2 = dur
 yield de
 if r(0,3) == 0: # do this 25% of the time
 s.b3 = dur
 yield de
 s.b1 = dur
 yield de
 s.b0 = dur

 yield de

class PJCheckBox(JCheckBox):
 def getValue(self):
 return self.isSelected()
 def setValue(self, value):
 issel = self.isSelected()
 if value and not issel:
 self.doClick()
 elif issel and not value:

 self.doClick()
 v = property(getValue, setValue, None)

property being tied to getValue / setValue method pairs

for the button object labelled “b2.” Tying GUI control

objects to mnemonic property names makes it possible for

GUI values to appear as rvalues (implicitly invoking

getValue) in expressions and as lvalues (implicitly

invoking setValue) in assignment statements such as
those appearing in Listing 1. The result is minimalist

syntax for a musician transforming live code during

performance, avoiding the more complex, alternative

function invocation syntax.

The third pertinent Python construct is support for adding

new fields, methods and properties to individual Python

objects as well as their defining classes at run time. This

program has a class called environ with sixteen instances,

one per MIDI channel. The “s” object reference

manipulated by statements such as “s.b2 = dur” in Listing

1 is an environ object reference. The environ class
provides a method for adding properties such as PJButton

“b2” at run time as the GUI is constructed. This

mechanism simplifies tying together GUI object

construction with extension code access to GUI objects

via incremental addition of these objects as symbolic

properties to the environ objects that are manipulated by

the live code.

The fourth and most powerful construct is application of

Python‟s exec function for compiling live coding source

functions, such as genfunc of Listing 1, at execution time
within the scope of class environ and the MIDI channel‟s

scope object. A musician‟s live code is compiled to byte

code via exec and then placed on a scheduling queue that

is maintained by Java‟s GUI Timer class. Compilation

and scheduling occur when a performer clicks the

Compile button at the bottom of the code editor window

of Figure 3. In this way user scripts can access GUI

controls as symbolic names within algebraic expressions

as they appear in Listing 1 (s.x0, s.b0, etc.), and the

underlying machinery outlined above takes care of the

work of converting appearance of these symbols-in-

expressions into method invocations.

 In a Java program without extension language support it

would be necessary to design a custom live coding

language, capture its grammar, build a scanner and parser

using custom code or a complex parser generator

package, compile live code functions, then schedule and

interpret their execution. Thanks to Jython‟s support for

run-time compilation and execution of Python source

code, this project has avoided the creation of a custom

language, along with the compiler and run-time support

for its execution. This live coding facility grows directly
out of Python, extending it into being a domain-specific

language for live coding.

3.5 Layered systems and performance

This section looks at performance issues from two

perspectives. The first is processing speed on two shared-

memory multiprocessors running multithreaded Jython,

Java and C++ code. The second is an overview of a two-

tiered approach to using an extension language, where

Jython serves to configure and direct time-critical signal

processing activities occurring in a Java thread.

The first program to discuss is one of a series of

benchmarks exploring the performance of several

multithreaded algorithms using several programming

languages on two shared-memory multiprocessor servers,

a 64-processor Sun Sparc server with limited per-core

cache [10] and a 16-processor Advanced Micro Devices

server with copious per-core cache [11]. Table 1 shows

execution results in seconds for running a multithreaded

solution to the N Queens Problem that finds all solutions

on a 15 x 15 chess board using Jython, Java and C++ on

these two multiprocessors. N Queens represents a search

problem with a high number of search states, but with
limited demands on memory. The algorithm spawns

parallel search threads when advancing to adjacent

columns in the board, with the number of threads being a

function of number of concurrent columns, configured as

a run-time parameter. Table 1 shows execution seconds as

a function of the number of software threads for each

machine-programming language pair.

threads 1 15 182 1764

Sparc

C++ 100.54 8.07 4.37 5.87

Sparc

Java 112.602 8.936 6.253 5.391

Sparc

Python 19028.483 1517.602 745.118 737.132

Sparc

Jython 24001.803 9654.617 12164.258 15132.37

AMD

C++ 16.12 5.71 3.59 3.82

AMD

Java 29.867 2.916 2.316 3.446

AMD

Python 2825.602 211.302 179.349 178.108

AMD

Jython 5807.911 11283.732 7065.99 9025.306

Table 1: Search time seconds as a function of thread count

The most obvious result is that Jython is the slowest of

the languages on both hardware platforms, despite the fact

that Jython generates and executes Java byte code. Jython

is slower even than C-based Python. This fact is

interesting because C-based Python does not support

concurrent execution of multiple threads within the

Python interpreter. It is necessary to spawn multiple

Python processes in order to achieve concurrent use of a

multiprocessor. Jython, which supports multithreading

within a single process, is nevertheless much slower.

Also, its multithreading performance is worse than its
single threaded performance on the AMD machine.

Perhaps a more important result is the fact that Java

execution speed is on par with C++ execution speed on

both platforms, in fact beating C++ performance in

multithreaded AMD runs. This result appears in other

benchmarks as well. In many cases multithreaded Java

surpasses optimized, multithreaded C++ in speed on the

Sparc machine. This result appears to be attributed largely

to advances in run-time, profiling-based optimization by

the Java just-in-time compiler that translates Java byte
codes to machine code during execution.

The conclusion, that Java execution has become fast

enough to deal with some classes of real-time processing

including audio signal processing, led to the architecture

of the final project of this study. Diagrammed in Figure 4,

this two-tiered software architecture uses Jython to

configure a signal processing thread, coded in Java, that

reads input audio streams, transforms them, for example

by mixing, adding delays and other effects, and sends

them to output streams. Jython‟s first use in this

architecture has been as a means to explore the
javax.sound.sampled Java library interactively. This

library includes reflective data access methods that

describe the audio input and output streams in symbolic

terms. A programmer can use Jython interaction with

reflective audio classes, in conjunction with the library

documentation, to learn how to use library components.

After that the programmer can write Jython GUI and

configuration code that interacts with Java components in

configuring a Java signal processing thread by

interconnecting Java signal processing objects used by the

Java thread. Jython can access locks and other Java
objects from java.lang.concurrent in synchronizing

construction of an audio signal processing flow. This two-

tiered architecture is an ideal match for the relative

strengths and weaknesses of Jython and Java. Jython

provides interactive access to reflective (self-describing)

classes and fast coding for constructing a GUI and

configuration classes, and Java provides fast execution of

a signal processing thread.

Figure 4: A two-tiered Jython-Java audio signal processor

4. Conclusion

Working with Jython and exploring its abilities to create

Java-based systems rapidly has been exciting. Standard

Python libraries are available in Jython, and any compiled

Java class including the massive Java standard library is

available via the use of a simple Python import statement.

Jython supports use of Java classes, and it supports

subclass extension of Java interfaces and classes in the

form of Jython classes. It is even possible to supply
Jython classes as event handlers for Java-triggered events

without writing any Java code.

Python as a source language supplies object-oriented

constructs that make it a good fit for specifying and

prototyping object-oriented Java systems. Python also

supplies powerful functional programming constructs and

generic container types built into the language. These

capabilities make Python a powerful vehicle for rapid

prototyping by enabling concise, specification-like

construction of prototype code.

Jython‟s support for interactive, run-time compilation of

Python source code procedures into Java byte code means

that Jython can serve as a domain-specific language for an

application written in Java. Interpretation, compilation

and extension mechanisms built into Python and Jython

eliminate any need to create custom domain-specific

languages, and to design and build special tools for their

support.

Finally, the advent of just-in-time Java compilers that

generate code that performs on par with optimized C++
code means that Java has become a viable language for

writing real-time systems. In such a system Jython serves

the needs of user interface construction and system

configuration, applying the interactive strengths of Jython

in working with users while leaving performance critical

“heavy lifting” to Java.

References:

[1] J. Juneau, J. Baker, F. Wierzbicki, L. S. Muñoz, & V.

Ng, The definitive guide to Jython: Python for the Java

platform (New York, NY: Apress, 2010). An open source

version is at http://www.jython.org/jythonbook/en/1.0/.

[2] The Jython Project, http://www.jython.org/, February,

2011.

[3] D. Beazley, Python essential reference, fourth edition

(Reading, MA: Addison-Wesley, 2009).

[4] Python Programming Language – Official Website,

http://www.python.org/, February, 2011.

[5] K. Arnold, J. Gosling, & D. Holmes, Java™
programming language, fourth edition (Upper Saddle

River, NJ: Prentice Hall, 2005).

[6] Oracle Corporation, Java™ Platform, Standard

Edition 6 API Specification,

http://download.oracle.com/javase/6/docs/api/index.html,

February, 2011.

Jython user interface and configuration

classes with synchronized interaction with

Java signal processing thread.

Java signal

processing thread

audio
outputs

audio
inputs

query

audio

meta-

data

configure

audio

signal

thread

http://www.jython.org/jythonbook/en/1.0/
http://www.jython.org/
http://www.python.org/
http://download.oracle.com/javase/6/docs/api/index.html

[7] J. Ousterhout, Scripting: Higher-Level Programming

for the 21st Century, IEEE Computer 31(3), 1998, 22-30.

[8] G. Loy, Musimathics, the mathematical foundations of

music (Cambridge, MA: MIT Press, 2006).

[9] MIDI Technical Fanatic‟s Brainwashing Center,

February 2011,
http://www.blitter.com/~russtopia/MIDI/~jglatt/.

[10] Fujitsu, Sparc Enterprise T5120, T5220, T5140 and

T5240 Server Architecture,

http://www.fujitsu.com/downloads/SPARCE/whitepapers/

T5x20-T5x40-wp-e-200907.pdf, July 2009, URL verified

February, 2011.

[11] Sun Microsystems, Sun Fire™ T1000 and T2000

Server Architecture,

http://www.sun.com/servers/x64/x4600/arch-wp.pdf,

December, 2005, URL verified February, 2011.

http://www.blitter.com/~russtopia/MIDI/~jglatt/
http://www.fujitsu.com/downloads/SPARCE/whitepapers/T5x20-T5x40-wp-e-200907.pdf
http://www.fujitsu.com/downloads/SPARCE/whitepapers/T5x20-T5x40-wp-e-200907.pdf
http://www.sun.com/servers/x64/x4600/arch-wp.pdf

