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Abstract 
The present work investigates using non-blocking and 

minimum-blocking Java library classes as a basis for 

improving performance of parallel bidirectional search 

on a multiple-instruction multiple-data (MIMD) 

processor. The approach represents individual states as 

minimum-size, immutable objects. It uses a work queue 

to distribute states-for-expansion among worker threads, 

and it uses two sets for keeping track of states previously 

explored in each direction. The queue class is thread-

safe and non-blocking, and the set class is thread-safe 

and non-blocking for read operations, with parallel 

locking of subsets for write operations. It is essentially a 

dataflow approach as opposed to a state machine 

approach. Rather than step worker threads through state 

transitions using blocking synchronization, it flows states 

to be expanded to worker threads in the order required 

by bidirectional search. This approach has clear, 

measurable advantages over approaches that use 

blocking synchronization. 
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1. Introduction and related work 
This report is an outcome of curriculum development for 

a senior and graduate-level course in multiprocessor 

programming.
1
 The course uses the Java™ programming 

language because of its extensive library of thread-safe 

container classes and atomic data types, and its explicit 

memory model that supports aggressive optimization of 

dynamically compiled code [1]. We have found that for 

some algorithm benchmarks Java outperforms statically 

optimized C/C++ using the native compiler. This report 

focuses on applying Java library classes to the problems 

of parallel bidirectional search. 

 Bidirectional search is a classic approach to solving 

search space problems when both the initial and final 

states of the search are known in advance [2]. It searches 

for paths that connect these two states, typically 
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searching for minimum-length paths. In problems with 

exponential growth of the search space size as a function 

of search path length, bidirectional search reduces the 

number of states inspected over unidirectional 

approaches by integrating the results of two shorter paths 

that grow simultaneously from the initial and final states. 

 Bidirectional search is an interesting algorithm for 

adaptation to parallel programming because it aims at 

improving run-time performance over simpler search 

algorithms such as depth-first or breadth-first search, and 

because it lends itself to parallel implementation. Figure 

1 is a schematic view of bidirectional search as 

exploration of a maze in search of the shortest path, 

given knowledge of both the entrance and exit locations. 

Regardless of the concrete problem being solved, 

bidirectional search always requires knowledge of the 

starting and ending states of the search. It often utilizes 

problem-specific heuristics to prune the search space of 

dead ends, but it is not required to do so. 

 

 
 

Figure 1: Bidirectional Search as a Maze 
 

 The fundamental point of bidirectional search is to 

limit the exponential growth in number of states explored 

in a single direction by exploring two shorter paths, one 

from each direction, and then detecting states in which 

those opposing paths meet. The outermost set of states 

currently being explored in either direction constitutes 

that direction’s frontier. A single-threaded search based 

on breadth-first search uses a first-in first-out (FIFO) 

queue of states to expand as a work queue. The algorithm 

first enqueues the initial state and final state in the work 

queue, after which it iteratively removes a state, 

computes its single-step expansions, checks for cycles 

and converging DAG paths within the states of its 



originating direction, and checks for collisions with 

states coming from the opposite direction. Cycle / 

converging paths and collision checking require storing 

explored states in a set (keyed on location in the space + 

search direction) or two sets (keyed on location only). 

Detection of opposing-path collisions uncovers shortest-

path solutions to the problems. In the absence of cycles / 

converging paths and solutions, the algorithm enqueues 

one or more single-step expansions and repeats these 

steps until it locates a solution. 

 The worst case time, space complexity for 

unidirectional breadth-first search is O(b
d+1

), where base 

b is the number of alterative branches (branching factor) 

in the search path that can be taken at any step, and 

exponent d is the depth (or equivalently length) of the 

path. When b==3, for example, an un-pruned frontier 

contains 3 possible states after 1 step, 9 possible states 

after 2 steps, and so on, generalizing to b
d
 states at the 

frontier, although some may be eliminated through 

detection of cycles, converging DAG paths, or via 

application-specific heuristics. The total states explored 

leading up to the frontier + the frontier itself grows at the 

rate O(b
d+1

). 

 Bidirectional breadth-first search, in contrast, grows at 

the much lower rate O(b
d/2

). Each of the two search 

directions in bidirectional search grows to only half the 

length of the corresponding unidirectional search, 

thereby cutting down on the massive exponential growth 

in explored states that comes with the relative doubling 

of length in unidirectional search. 

 Recent work reported on integrating parallel processing 

with bidirectional search focuses on applying parallel 

implementation of heuristic strategies to prune the search 

space [3-5]. Using application-oriented heuristics to 

radically reduce the number of states explored is the 

primary means for accelerating the basic bidirectional 

algorithm. Observing the incremental state expansion of 

a search domain often uncovers useful heuristics. 

2. Minimum Blocking Approach 
Our initial solution to parallel bidirectional search used 

the following algorithm, which implements a two-phase 

state machine. Each immutable state object contains its 

internal state fields and an immutable reference to its 

predecessor in its search path. 

 

enqueue initial state into work queue 

enqueue final state into work queue 

set forwardStatesSet to the set of {initial state} 

set backwardStatesSet to the set of {final state} 

set setOfSolutions to empty set {} 

set direction to Forward 

set isdone flag to False 

while not isdone 

  dequeue a state-to-expand from front of work queue 

  if directionOf(state-to-expand) not equal direction 

   post a pending-change-of-direction to all threads. 

   block until all threads ready to reverse direction. 

   set direction to its reverse. 

  for each single-step expansion of state-to-expand 

   if expansion is in StatesSet from opposing side 

    if 1
st
 solution or cost equals solution’s cost 

     add expansion’s path to setOfSolutions 

    else (cost is greater) 

     set isdone flag to True 

   else if expansion is in StatesSet from this side 

    // a cycle or converging DAG path detected 

    do not use this expansion 

   else 

    add expansion to StatesSet from this side 

    enqueue expansion in work queue 

 

Listing 1: Parallel, blocking state machine 

 

 Enqueues into the work queue and dequeues from the 

work queue do not block in this algorithm. The viability 

of non-blocking retrieval depends on the fact that 

exponential growth of the search space ensures that most 

dequeue operations will receive a state-to-expand from 

the work queue. It is only at the beginning of the search 

that some threads do not initially find states-to-expand 

via the non-blocking dequeue operation within a given 

phase (forward or backward). Those threads resort to a 

polling loop, trying the queue repeatedly until they 

receive data or until another thread posts a pending-

change-of-direction flag.  Idle polling consumes 

processors only until the work queue begins to grow at 

an exponential rate. Our implementation uses the 

ConcurrentLinkedQueue from the java.util.concurrent 

library package as the work queue. The documentation 

for that class states that, “This implementation employs 

an efficient "wait-free" algorithm.” [6, 7]  

 The forwardStatesSet and backwardStatesSet of Listing 

1 are objects of class ConcurrentHashMap of 

java.util.concurrent. There is no comparable Set class per 

se, but the keys of a Map can serve as elements of a Set. 

The documentation for this class states, “However, even 

though all operations are thread-safe, retrieval operations 

do not entail locking.” Write locks are distributed across 

a number of stripes, where a stripe is a subset of the 

buckets in the hash table [8]. When two writers do not 

collide on the same stripe, they do not impede each other. 

Application programmers can adjust the number of 

stripes, trading increased parallelism against the memory 

cost of maintaining additional lock stripes. 

 A change of direction in the algorithm of Listing 1 

entails waiting until all threads have completed 

expansion of the current direction, forward or backward. 

Referring to Figure 1, all threads expand the frontier of 

only one direction at a time during one phase of this state 

machine approach. Our thinking was to keep the set of 

states coming from the opposing side stable for collision 

testing during the expansion of states in the current side. 

We implemented blocking using the CyclicBarrier class 

from java.util.concurrent [6]. This library class blocks all 

calling worker threads until the last worker thread has 

entered the barrier. The final thread to enter reverses the 

direction of the search state variables, and then all 

threads enter the next phase of the search. CyclicBarrier 

provides very coarse-grain synchronization. The intent in 



using CyclicBarrier was to minimize fine-grain 

synchronization while supporting stability in testing for 

state membership in the opposing StateSet. 

 After working with our implementation of Listing 1 we 

realized that we could eliminate locking altogether. 

Listing 2 gives the revised algorithm. 

 

enqueue initial state into work queue 

enqueue final state into work queue 

set forwardStatesSet to the set of {initial state} 

set backwardStatesSet to the set of {final state} 

set setOfSolutions to empty set {} 

set isdone flag to False 

while not isdone 

  dequeue a state-to-expand from front of work queue 

  for each single-step expansion of state-to-expand 

   if expansion is in StatesSet from opposing side 

    if 1
st
 solution or cost equals solutions’ cost 

     add expansion’s path to setOfSolutions 

    else (cost is greater) 

     set isdone flag to True 

   else if expansion is in StatesSet from this side 

    // a cycle or converging DAG path detected 

    do not use this expansion 

   else 

    add expansion to StatesSet from this side 

    enqueue expansion in work queue 

 

Listing 2: Parallel, minimum-blocking dataflow 

machine 

 

 The dataflow algorithm of Listing 2 dispenses with the 

CyclicBarrier waiting of Listing 1. The dequeue 

operation remains a non-blocking poll with looping until 

the work queue begins to fill, tests for StatesSet 

membership are non-blocking, and insertion of new 

states into StatesSet occurs using concurrent lock stripes. 

With a high lookup-to-insertion ratio for StatesSet 

members (all insertions are preceded by lookups to detect 

cycles and solutions), locking is minimal and 

configurable via the StatesSet’s stripes constructor 

parameter. 

 Dispensing with coarse-grain synchronization of the 

two-phase state machine is possible because states flow 

through the work queue in approximately the correct 

order. Forward states-to-expand alternate with reverse 

states-to-expand, partitioned by frontier-being-expanded 

for the most part. 

 This temporal sequencing of wave fronts is stochastic, 

not deterministic. A thread that finds most (but not all) of 

its state expansions to be dead ends (cycles or 

converging DAG paths) for a series of dequeue 

operations places frontier states onto the work queue 

quickly; some worker threads could be two phases ahead 

of other threads, expanding a path of length L+1 for a 

given direction while some threads are expanding paths 

of length L for that same direction. There is no particular 

problem in occasionally “getting ahead,” as implied by 

the overlapping frontiers of Figure 1. A thread that has 

gotten ahead on one turn may find an opposing path one 

level deeper into the opposing side’s search space, but 

the discovered path is still a solution path. The algorithm 

retains only the set of minimum-length solution paths. 

Normally, by the time a thread has reached level N+1 in 

the search from its dequeued state-to-expand’s origin, all 

other threads have dequeued all level N states from the 

work queue, and they will complete expansion of those 

N-level states before checking the isdone flag set by the 

first solution’s discovery. Some of those N level 

expansions may be redundant with the N+1 level solution 

from the thread that “got ahead.” The algorithm discards 

such redundant solutions. 

 There is still a potential problem, although we have not 

seen it in practice. The algorithm of Listing 2 makes it 

possible for some advanced state-to-expand to be 

multiple frontier levels ahead of other states being 

expanded in the same direction. If the thread that is 

expanding a level N+2 (or higher) state sets the isdone 

flag while other level N states are being expanded in the 

same direction, then some solutions could be missed in 

an exhaustive search for all distinct minimum-length 

paths. The fix is to discard a state-to-expand after a 

solution has been found, if the state-to-expand has a path 

length greater than the integer ceiling of ½ of the known 

solution’s length, setting the isdone flag at that point. 

The length of the first known solution helps to prune 

state expansions. At the point that the work queue 

becomes empty after the isdone flag is set to True, 

worker threads can terminate their work. Of course, a 

thread may detect this condition and terminate just before 

another thread enqueues a state-to-expand, but at that 

point processing is converging on the last of the 

solutions, and the thread that enqueued the state-to-

expand is guaranteed to be available to dequeue that 

state-to-expand, if no other thread gets there first. States-

to-expand in possible solution paths will not be left in the 

work queue by all terminating threads, and detection of 

the isdone flag in combination with an empty work 

queue indicates convergence on the last of the solution 

paths. 

 One final problem with the fact that some states-to-

expand may get multiple levels ahead of most states 

being expanded in a direction is the fact that these states 

may not lie in a solution path. The advanced state has 

gotten outside of the intersecting cones of the frontiers of 

Figure 1. This problem is a small efficiency concern, not 

a bug. There may be some unnecessary searching outside 

the intersecting frontiers of Figure 1, but the performance 

impact is insignificant compared to the benefits of the 

minimum-blocking algorithm. Exploration of such states 

does not lead to false solutions or premature termination. 

3. Shortest path performance 
For the performance measurements of this section we ran 

two representative applications of bidirectional search. 

The first finds the solution of the so-called “Penny-Dime 

problem,” where there is an arrangement of some number 

N of pennies P, followed by one blank space, followed 

the same number N of dimes D. The goal is to find the 

series of moves that will reverse a sequence such as 



PPPPPP_DDDDDD to the sequence 

DDDDDD_PPPPPP. Legal moves consist of moving a 

coin one location into the space, or jumping a coin over a 

single neighbor (as in checkers) to the space. Heuristics 

such as avoiding retrograde moves can accelerate the 

search, but the overall form of the algorithm remains 

unchanged. 

 The other benchmark, which is the one reported here, is 

a simplification of a maze construction problem. The 

original algorithm searches for non-shortest paths that 

match some minimum-length threshold, in the interest of 

constructing interesting mazes. 

 For the benchmark reported here, we use an algorithm 

that simply searches for the shortest path from the maze 

entrance to its exit by crossing empty space with no 

obstacles other than outside walls. When the program 

starts, there is a pseudo-randomly selected entrance 

location, exit location, and outer walls, but the inside of 

the proposed maze is empty at that point. The algorithm 

simply finds the shortest path between two points, where 

the search from the entrance does not have knowledge of 

the location of the exit, and the search from the exit does 

not have knowledge of the location of the entrance. This 

is essentially blind search. 

 The machine used for this benchmark is a 64-threaded 

Sparc server obtained via a 2009 grant from Sun 

Microsystems [9]. It houses 8 cores x 8 threads-per-core 

= 64 hardware threads, 16 Gbytes of main memory, and a 

1.2 Ghz clock speed. Each core is limited to a rather 

small 16 Kbytes of L1 instruction cache and 8 Kbytes of 

L1 data cache, with 4 Mbytes of L2 cache distributed 

across the cores. While not the best fit for large data sets 

with random access patterns due to the limited cache, it 

performs admirably when running Java programs with 

good memory locality or modest memory consumption. 

The individual states of the bidirectional search problems 

that we have benchmarked are small, although references 

to a large number of these small state objects can reside 

in the work queue and sets of the algorithm. 

 

 
 

Graph 1: Multithreaded bidirectional maze construction 

 

 Graph 1 plots execution time in real seconds on the Y 

axis as a function of number of threads on the 

logarithmic X axis for construction of a minimal path of 

length 2947 in a 2500 x 2500 space using blind 

bidirectional search. The dashed cyclic barrier curve of 

Listing 1 reaches its peak performance at 8 threads (56.1 

seconds compared to 74.7 seconds of its single-threaded 

case), after which execution time grows with the number 

of hardware threads employed. Normally adding threads 

beyond some optimal spot for an algorithm increases 

start-up and scheduling overhead, although in this case 

scheduling overhead is minimal because all 64 hardware 

threads are available for execution. The problem here is 

that when one or two threads lag behind the others in the 

exploration of a frontier, the remaining 30-to-31 or 62-

to-63 threads block idly in the cyclic barrier until those 

one or two threads enter the barrier. With only 8 

hardware threads employed, each thread has more states 

to expand for a given frontier, and the cost of exploration 

averages more evenly across the threads, so there are 

fewer opportunities for entering this degenerate state 

repeatedly. More threads wait repeatedly until time-

consuming laggards complete their work in the 64-

threaded case. In the 8-threaded case the per-thread 

workload averages out, minimizing the stalling effect of 

the cyclic barrier. 

 The dotted minimum blocking curve of Listing 2 starts 

at 74.3 seconds, shows a loss of performance due to two-

threaded contention at 101 seconds, after which 

execution time decreases consistently to 34.5 seconds for 

64 threads. 

 The final, blocking queue curve shows the result of 

replacing the ConcurrentLinkedQueue of minimum 

blocking case with the LinkedBlockingQueue class of the 

Java library, and using the blocking take() method 

instead of the non-blocking poll() method for dequeueing 

states-to-expand. Replacing queue polling with blocked 

waiting increases processing and scheduling overhead by 

the Java Virtual Machine and operating system. Polling, 

even when its finds no work in the queue, is better for 

this application because it avoids calls into the operating 

system.  Given the exponential growth in number of 

states to be searched, most dequeue  calls for 

LinkedBlockQueue do not block, yet the cost of calling 

dequeue methods that must acquire and release locks is 

clear from looking at Graph 1. After starting at 75.4 

seconds for the single-threaded case and then rising to 

104 seconds for the double-threaded case, the blocking 

queue approach drops to 52.4 seconds at 8 threads and 

then essentially levels off. 

 

 
 

Graph 2: Improved nonblocking data structures 



 

 Because the overall halving of execution time in going 

from 1 thread to 64 threads for the minimum blocking 

approach is disappointing, we decided to attempt to tune 

the thread-safe data structures to get additional gains. 

Graph 2 shows the results. The dotted minimum blocking 

curve is the same as in Graph 1. The solid enhanced set 

curve shows the modest gains resulting from initializing 

the StatesSet implemented using ConcurrentHashMap to 

its known maximum size (4 million elements, determined 

empirically), reducing its load factor from the default .75 

to .5, and increasing its number of lock stripes from the 

default 16 to 128. Initializing the set size reduces 

repeated growth overhead. Reducing the load factor 

reduces hash table collision overhead, and increasing the 

number of lock stripes reduces contention among 

concurrent writing threads. 

 More substantial gains come with the multiple queues 

test case that allocates one work queue per worker 

thread. Whenever a worker thread is about to enqueue a 

new state-to-expand, it increments an atomic integer and 

uses that value as an index to a thread-specific queue. 

The round-robin nature of enqueuing reduces the 

probability of thread contention for enqueuing, because a 

given queue will have its enqueue operation invoked 

only once for every T enqueue operations, where T is the 

number of worker threads. A given queue will have 

dequeue invoked only by its worker thread, eliminating 

dequeue contention entirely. This multiple queues 

approach bottoms out at an execution time of 16.2 

seconds for the 64-threaded case, as compared with 27 

seconds of the enhanced set approach and the 34.5 

seconds of the basic minimum blocking approach at 64 

threads. The multiple queue approach basically yields a 

second doubling of performance from its 66.4 second 

starting point when compared to the other approaches of 

Graph 2. 

 

 
 

Graph 3: Graph 1 benchmarks on a 16-threaded Opteron 

 

 Graphs 3 and 4 repeat the benchmarks of Graphs 1 and 

2 on a 16-threaded AMD Opteron server also obtained 

via a grant from Sun Microsystems. The server houses 8 

cores x 2 threads-per-core = 16 hardware threads, 32 

Gbytes of main memory, and a 2.7 Ghz clock speed. 

Each core has a substantial 128 Kbyte L1 cache and a 1 

Mbyte L2 cache. 

 

 
 

Graph 4: Graph 2 benchmarks on a 16-threaded Opteron 

 

 Differences in machine architectures such as 

instruction sets or cache sizes can make substantial 

differences in performance curves, but in this case the 

curves of Graphs 3 and 4 repeat the dynamics of Graphs 

1 and 2. 
 

4. Conclusions and future work 
Bidirectional search is amenable to minimum blocking 

implementation using immutable state objects, non-

blocking queuing of states-to-expand, non-blocking set 

membership tests in checking for cycles, converging 

DAG paths and solutions, and parallel lock stripes for 

updating sets. Java’s ConcurrentLinkedQueue and 

ConcurrentHashMap library classes are excellent 

matches for the queue and set data structures required by 

this approach. Adjusting initial set size, load factor and 

lock striping can contribute modest performance 

enhancement. Replacing a single non-blocking work 

queue with multiple work queues that are written by all 

threads in round-robin order, and that are read 

respectively by only a single worker thread, leads to a 

second doubling of performance over the basic minimum 

blocking approach. 

 We anticipate porting this work to a NVIDIA Tesla 

graphical processing unit (GPU) in search of further 

performance gains. Initial study indicates that a 

heterogeneous MIMD CPU / GPU approach may be 

effective. A multithreaded CPU can construct multiple 

queues for GPU processing elements, one per element, 

during a CPU phase, along with building the required 

sets in GPU global, read-only memory. During a GPU 

phase, the processing elements drain their respective 

queues, discard cyclic and converging-path states, and 

send queue and set updates back to the CPU phase. The 

CPU can update set membership in global, read-only 

memory incrementally, redistribute the queues, and 

resume the GPU phase for the next round of state 

expansion. There are many details remaining to be ironed 

out in this basic plan. 
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