
Minimum-Blocking Parallel Bidirectional Search

Dale E. Parson

Kutztown University of PA
15200 Kutztown Road

Kutztown, PA 19530-0730

Dylan Schwesinger
Lehigh University

Memorial Drive West
Bethlehem, PA 18015

Abstract
The present work investigates using non-blocking and

minimum-blocking Java library classes as a basis for

improving performance of parallel bidirectional search

on a multiple-instruction multiple-data (MIMD)

processor. The approach represents individual states as

minimum-size, immutable objects. It uses a work queue

to distribute states-for-expansion among worker threads,

and it uses two sets for keeping track of states previously

explored in each direction. The queue class is thread-

safe and non-blocking, and the set class is thread-safe

and non-blocking for read operations, with parallel

locking of subsets for write operations. It is essentially a

dataflow approach as opposed to a state machine

approach. Rather than step worker threads through state

transitions using blocking synchronization, it flows states

to be expanded to worker threads in the order required

by bidirectional search. This approach has clear,

measurable advantages over approaches that use

blocking synchronization.

Keywords
bidirectional search, concurrent programming, Java,

multiprocessing, parallel programming

1. Introduction and related work
This report is an outcome of curriculum development for

a senior and graduate-level course in multiprocessor

programming.
1
 The course uses the Java™ programming

language because of its extensive library of thread-safe

container classes and atomic data types, and its explicit

memory model that supports aggressive optimization of

dynamically compiled code [1]. We have found that for

some algorithm benchmarks Java outperforms statically

optimized C/C++ using the native compiler. This report

focuses on applying Java library classes to the problems

of parallel bidirectional search.

 Bidirectional search is a classic approach to solving

search space problems when both the initial and final

states of the search are known in advance [2]. It searches

for paths that connect these two states, typically

1 This work was made possible by equipment grants from

Sun Microsystems and the NVIDIA Corporation, and

by stipend grants from the Intel Corporation and the

PA State System of Higher Education. Please see the

Acknowledgements section for details.

searching for minimum-length paths. In problems with

exponential growth of the search space size as a function

of search path length, bidirectional search reduces the

number of states inspected over unidirectional

approaches by integrating the results of two shorter paths

that grow simultaneously from the initial and final states.

 Bidirectional search is an interesting algorithm for

adaptation to parallel programming because it aims at

improving run-time performance over simpler search

algorithms such as depth-first or breadth-first search, and

because it lends itself to parallel implementation. Figure

1 is a schematic view of bidirectional search as

exploration of a maze in search of the shortest path,

given knowledge of both the entrance and exit locations.

Regardless of the concrete problem being solved,

bidirectional search always requires knowledge of the

starting and ending states of the search. It often utilizes

problem-specific heuristics to prune the search space of

dead ends, but it is not required to do so.

Figure 1: Bidirectional Search as a Maze

 The fundamental point of bidirectional search is to

limit the exponential growth in number of states explored

in a single direction by exploring two shorter paths, one

from each direction, and then detecting states in which

those opposing paths meet. The outermost set of states

currently being explored in either direction constitutes

that direction’s frontier. A single-threaded search based

on breadth-first search uses a first-in first-out (FIFO)

queue of states to expand as a work queue. The algorithm

first enqueues the initial state and final state in the work

queue, after which it iteratively removes a state,

computes its single-step expansions, checks for cycles

and converging DAG paths within the states of its

originating direction, and checks for collisions with

states coming from the opposite direction. Cycle /

converging paths and collision checking require storing

explored states in a set (keyed on location in the space +

search direction) or two sets (keyed on location only).

Detection of opposing-path collisions uncovers shortest-

path solutions to the problems. In the absence of cycles /

converging paths and solutions, the algorithm enqueues

one or more single-step expansions and repeats these

steps until it locates a solution.

 The worst case time, space complexity for

unidirectional breadth-first search is O(b
d+1

), where base

b is the number of alterative branches (branching factor)

in the search path that can be taken at any step, and

exponent d is the depth (or equivalently length) of the

path. When b==3, for example, an un-pruned frontier

contains 3 possible states after 1 step, 9 possible states

after 2 steps, and so on, generalizing to b
d
 states at the

frontier, although some may be eliminated through

detection of cycles, converging DAG paths, or via

application-specific heuristics. The total states explored

leading up to the frontier + the frontier itself grows at the

rate O(b
d+1

).

 Bidirectional breadth-first search, in contrast, grows at

the much lower rate O(b
d/2

). Each of the two search

directions in bidirectional search grows to only half the

length of the corresponding unidirectional search,

thereby cutting down on the massive exponential growth

in explored states that comes with the relative doubling

of length in unidirectional search.

 Recent work reported on integrating parallel processing

with bidirectional search focuses on applying parallel

implementation of heuristic strategies to prune the search

space [3-5]. Using application-oriented heuristics to

radically reduce the number of states explored is the

primary means for accelerating the basic bidirectional

algorithm. Observing the incremental state expansion of

a search domain often uncovers useful heuristics.

2. Minimum Blocking Approach
Our initial solution to parallel bidirectional search used

the following algorithm, which implements a two-phase

state machine. Each immutable state object contains its

internal state fields and an immutable reference to its

predecessor in its search path.

enqueue initial state into work queue

enqueue final state into work queue

set forwardStatesSet to the set of {initial state}

set backwardStatesSet to the set of {final state}

set setOfSolutions to empty set {}

set direction to Forward

set isdone flag to False

while not isdone

 dequeue a state-to-expand from front of work queue

 if directionOf(state-to-expand) not equal direction

 post a pending-change-of-direction to all threads.

 block until all threads ready to reverse direction.

 set direction to its reverse.

 for each single-step expansion of state-to-expand

 if expansion is in StatesSet from opposing side

 if 1
st
 solution or cost equals solution’s cost

 add expansion’s path to setOfSolutions

 else (cost is greater)

 set isdone flag to True

 else if expansion is in StatesSet from this side

 // a cycle or converging DAG path detected

 do not use this expansion

 else

 add expansion to StatesSet from this side

 enqueue expansion in work queue

Listing 1: Parallel, blocking state machine

 Enqueues into the work queue and dequeues from the

work queue do not block in this algorithm. The viability

of non-blocking retrieval depends on the fact that

exponential growth of the search space ensures that most

dequeue operations will receive a state-to-expand from

the work queue. It is only at the beginning of the search

that some threads do not initially find states-to-expand

via the non-blocking dequeue operation within a given

phase (forward or backward). Those threads resort to a

polling loop, trying the queue repeatedly until they

receive data or until another thread posts a pending-

change-of-direction flag. Idle polling consumes

processors only until the work queue begins to grow at

an exponential rate. Our implementation uses the

ConcurrentLinkedQueue from the java.util.concurrent

library package as the work queue. The documentation

for that class states that, “This implementation employs

an efficient "wait-free" algorithm.” [6, 7]

 The forwardStatesSet and backwardStatesSet of Listing

1 are objects of class ConcurrentHashMap of

java.util.concurrent. There is no comparable Set class per

se, but the keys of a Map can serve as elements of a Set.

The documentation for this class states, “However, even

though all operations are thread-safe, retrieval operations

do not entail locking.” Write locks are distributed across

a number of stripes, where a stripe is a subset of the

buckets in the hash table [8]. When two writers do not

collide on the same stripe, they do not impede each other.

Application programmers can adjust the number of

stripes, trading increased parallelism against the memory

cost of maintaining additional lock stripes.

 A change of direction in the algorithm of Listing 1

entails waiting until all threads have completed

expansion of the current direction, forward or backward.

Referring to Figure 1, all threads expand the frontier of

only one direction at a time during one phase of this state

machine approach. Our thinking was to keep the set of

states coming from the opposing side stable for collision

testing during the expansion of states in the current side.

We implemented blocking using the CyclicBarrier class

from java.util.concurrent [6]. This library class blocks all

calling worker threads until the last worker thread has

entered the barrier. The final thread to enter reverses the

direction of the search state variables, and then all

threads enter the next phase of the search. CyclicBarrier

provides very coarse-grain synchronization. The intent in

using CyclicBarrier was to minimize fine-grain

synchronization while supporting stability in testing for

state membership in the opposing StateSet.

 After working with our implementation of Listing 1 we

realized that we could eliminate locking altogether.

Listing 2 gives the revised algorithm.

enqueue initial state into work queue

enqueue final state into work queue

set forwardStatesSet to the set of {initial state}

set backwardStatesSet to the set of {final state}

set setOfSolutions to empty set {}

set isdone flag to False

while not isdone

 dequeue a state-to-expand from front of work queue

 for each single-step expansion of state-to-expand

 if expansion is in StatesSet from opposing side

 if 1
st
 solution or cost equals solutions’ cost

 add expansion’s path to setOfSolutions

 else (cost is greater)

 set isdone flag to True

 else if expansion is in StatesSet from this side

 // a cycle or converging DAG path detected

 do not use this expansion

 else

 add expansion to StatesSet from this side

 enqueue expansion in work queue

Listing 2: Parallel, minimum-blocking dataflow

machine

 The dataflow algorithm of Listing 2 dispenses with the

CyclicBarrier waiting of Listing 1. The dequeue

operation remains a non-blocking poll with looping until

the work queue begins to fill, tests for StatesSet

membership are non-blocking, and insertion of new

states into StatesSet occurs using concurrent lock stripes.

With a high lookup-to-insertion ratio for StatesSet

members (all insertions are preceded by lookups to detect

cycles and solutions), locking is minimal and

configurable via the StatesSet’s stripes constructor

parameter.

 Dispensing with coarse-grain synchronization of the

two-phase state machine is possible because states flow

through the work queue in approximately the correct

order. Forward states-to-expand alternate with reverse

states-to-expand, partitioned by frontier-being-expanded

for the most part.

 This temporal sequencing of wave fronts is stochastic,

not deterministic. A thread that finds most (but not all) of

its state expansions to be dead ends (cycles or

converging DAG paths) for a series of dequeue

operations places frontier states onto the work queue

quickly; some worker threads could be two phases ahead

of other threads, expanding a path of length L+1 for a

given direction while some threads are expanding paths

of length L for that same direction. There is no particular

problem in occasionally “getting ahead,” as implied by

the overlapping frontiers of Figure 1. A thread that has

gotten ahead on one turn may find an opposing path one

level deeper into the opposing side’s search space, but

the discovered path is still a solution path. The algorithm

retains only the set of minimum-length solution paths.

Normally, by the time a thread has reached level N+1 in

the search from its dequeued state-to-expand’s origin, all

other threads have dequeued all level N states from the

work queue, and they will complete expansion of those

N-level states before checking the isdone flag set by the

first solution’s discovery. Some of those N level

expansions may be redundant with the N+1 level solution

from the thread that “got ahead.” The algorithm discards

such redundant solutions.

 There is still a potential problem, although we have not

seen it in practice. The algorithm of Listing 2 makes it

possible for some advanced state-to-expand to be

multiple frontier levels ahead of other states being

expanded in the same direction. If the thread that is

expanding a level N+2 (or higher) state sets the isdone

flag while other level N states are being expanded in the

same direction, then some solutions could be missed in

an exhaustive search for all distinct minimum-length

paths. The fix is to discard a state-to-expand after a

solution has been found, if the state-to-expand has a path

length greater than the integer ceiling of ½ of the known

solution’s length, setting the isdone flag at that point.

The length of the first known solution helps to prune

state expansions. At the point that the work queue

becomes empty after the isdone flag is set to True,

worker threads can terminate their work. Of course, a

thread may detect this condition and terminate just before

another thread enqueues a state-to-expand, but at that

point processing is converging on the last of the

solutions, and the thread that enqueued the state-to-

expand is guaranteed to be available to dequeue that

state-to-expand, if no other thread gets there first. States-

to-expand in possible solution paths will not be left in the

work queue by all terminating threads, and detection of

the isdone flag in combination with an empty work

queue indicates convergence on the last of the solution

paths.

 One final problem with the fact that some states-to-

expand may get multiple levels ahead of most states

being expanded in a direction is the fact that these states

may not lie in a solution path. The advanced state has

gotten outside of the intersecting cones of the frontiers of

Figure 1. This problem is a small efficiency concern, not

a bug. There may be some unnecessary searching outside

the intersecting frontiers of Figure 1, but the performance

impact is insignificant compared to the benefits of the

minimum-blocking algorithm. Exploration of such states

does not lead to false solutions or premature termination.

3. Shortest path performance
For the performance measurements of this section we ran

two representative applications of bidirectional search.

The first finds the solution of the so-called “Penny-Dime

problem,” where there is an arrangement of some number

N of pennies P, followed by one blank space, followed

the same number N of dimes D. The goal is to find the

series of moves that will reverse a sequence such as

PPPPPP_DDDDDD to the sequence

DDDDDD_PPPPPP. Legal moves consist of moving a

coin one location into the space, or jumping a coin over a

single neighbor (as in checkers) to the space. Heuristics

such as avoiding retrograde moves can accelerate the

search, but the overall form of the algorithm remains

unchanged.

 The other benchmark, which is the one reported here, is

a simplification of a maze construction problem. The

original algorithm searches for non-shortest paths that

match some minimum-length threshold, in the interest of

constructing interesting mazes.

 For the benchmark reported here, we use an algorithm

that simply searches for the shortest path from the maze

entrance to its exit by crossing empty space with no

obstacles other than outside walls. When the program

starts, there is a pseudo-randomly selected entrance

location, exit location, and outer walls, but the inside of

the proposed maze is empty at that point. The algorithm

simply finds the shortest path between two points, where

the search from the entrance does not have knowledge of

the location of the exit, and the search from the exit does

not have knowledge of the location of the entrance. This

is essentially blind search.

 The machine used for this benchmark is a 64-threaded

Sparc server obtained via a 2009 grant from Sun

Microsystems [9]. It houses 8 cores x 8 threads-per-core

= 64 hardware threads, 16 Gbytes of main memory, and a

1.2 Ghz clock speed. Each core is limited to a rather

small 16 Kbytes of L1 instruction cache and 8 Kbytes of

L1 data cache, with 4 Mbytes of L2 cache distributed

across the cores. While not the best fit for large data sets

with random access patterns due to the limited cache, it

performs admirably when running Java programs with

good memory locality or modest memory consumption.

The individual states of the bidirectional search problems

that we have benchmarked are small, although references

to a large number of these small state objects can reside

in the work queue and sets of the algorithm.

Graph 1: Multithreaded bidirectional maze construction

 Graph 1 plots execution time in real seconds on the Y

axis as a function of number of threads on the

logarithmic X axis for construction of a minimal path of

length 2947 in a 2500 x 2500 space using blind

bidirectional search. The dashed cyclic barrier curve of

Listing 1 reaches its peak performance at 8 threads (56.1

seconds compared to 74.7 seconds of its single-threaded

case), after which execution time grows with the number

of hardware threads employed. Normally adding threads

beyond some optimal spot for an algorithm increases

start-up and scheduling overhead, although in this case

scheduling overhead is minimal because all 64 hardware

threads are available for execution. The problem here is

that when one or two threads lag behind the others in the

exploration of a frontier, the remaining 30-to-31 or 62-

to-63 threads block idly in the cyclic barrier until those

one or two threads enter the barrier. With only 8

hardware threads employed, each thread has more states

to expand for a given frontier, and the cost of exploration

averages more evenly across the threads, so there are

fewer opportunities for entering this degenerate state

repeatedly. More threads wait repeatedly until time-

consuming laggards complete their work in the 64-

threaded case. In the 8-threaded case the per-thread

workload averages out, minimizing the stalling effect of

the cyclic barrier.

 The dotted minimum blocking curve of Listing 2 starts

at 74.3 seconds, shows a loss of performance due to two-

threaded contention at 101 seconds, after which

execution time decreases consistently to 34.5 seconds for

64 threads.

 The final, blocking queue curve shows the result of

replacing the ConcurrentLinkedQueue of minimum

blocking case with the LinkedBlockingQueue class of the

Java library, and using the blocking take() method

instead of the non-blocking poll() method for dequeueing

states-to-expand. Replacing queue polling with blocked

waiting increases processing and scheduling overhead by

the Java Virtual Machine and operating system. Polling,

even when its finds no work in the queue, is better for

this application because it avoids calls into the operating

system. Given the exponential growth in number of

states to be searched, most dequeue calls for

LinkedBlockQueue do not block, yet the cost of calling

dequeue methods that must acquire and release locks is

clear from looking at Graph 1. After starting at 75.4

seconds for the single-threaded case and then rising to

104 seconds for the double-threaded case, the blocking

queue approach drops to 52.4 seconds at 8 threads and

then essentially levels off.

Graph 2: Improved nonblocking data structures

 Because the overall halving of execution time in going

from 1 thread to 64 threads for the minimum blocking

approach is disappointing, we decided to attempt to tune

the thread-safe data structures to get additional gains.

Graph 2 shows the results. The dotted minimum blocking

curve is the same as in Graph 1. The solid enhanced set

curve shows the modest gains resulting from initializing

the StatesSet implemented using ConcurrentHashMap to

its known maximum size (4 million elements, determined

empirically), reducing its load factor from the default .75

to .5, and increasing its number of lock stripes from the

default 16 to 128. Initializing the set size reduces

repeated growth overhead. Reducing the load factor

reduces hash table collision overhead, and increasing the

number of lock stripes reduces contention among

concurrent writing threads.

 More substantial gains come with the multiple queues

test case that allocates one work queue per worker

thread. Whenever a worker thread is about to enqueue a

new state-to-expand, it increments an atomic integer and

uses that value as an index to a thread-specific queue.

The round-robin nature of enqueuing reduces the

probability of thread contention for enqueuing, because a

given queue will have its enqueue operation invoked

only once for every T enqueue operations, where T is the

number of worker threads. A given queue will have

dequeue invoked only by its worker thread, eliminating

dequeue contention entirely. This multiple queues

approach bottoms out at an execution time of 16.2

seconds for the 64-threaded case, as compared with 27

seconds of the enhanced set approach and the 34.5

seconds of the basic minimum blocking approach at 64

threads. The multiple queue approach basically yields a

second doubling of performance from its 66.4 second

starting point when compared to the other approaches of

Graph 2.

Graph 3: Graph 1 benchmarks on a 16-threaded Opteron

 Graphs 3 and 4 repeat the benchmarks of Graphs 1 and

2 on a 16-threaded AMD Opteron server also obtained

via a grant from Sun Microsystems. The server houses 8

cores x 2 threads-per-core = 16 hardware threads, 32

Gbytes of main memory, and a 2.7 Ghz clock speed.

Each core has a substantial 128 Kbyte L1 cache and a 1

Mbyte L2 cache.

Graph 4: Graph 2 benchmarks on a 16-threaded Opteron

 Differences in machine architectures such as

instruction sets or cache sizes can make substantial

differences in performance curves, but in this case the

curves of Graphs 3 and 4 repeat the dynamics of Graphs

1 and 2.

4. Conclusions and future work
Bidirectional search is amenable to minimum blocking

implementation using immutable state objects, non-

blocking queuing of states-to-expand, non-blocking set

membership tests in checking for cycles, converging

DAG paths and solutions, and parallel lock stripes for

updating sets. Java’s ConcurrentLinkedQueue and

ConcurrentHashMap library classes are excellent

matches for the queue and set data structures required by

this approach. Adjusting initial set size, load factor and

lock striping can contribute modest performance

enhancement. Replacing a single non-blocking work

queue with multiple work queues that are written by all

threads in round-robin order, and that are read

respectively by only a single worker thread, leads to a

second doubling of performance over the basic minimum

blocking approach.

 We anticipate porting this work to a NVIDIA Tesla

graphical processing unit (GPU) in search of further

performance gains. Initial study indicates that a

heterogeneous MIMD CPU / GPU approach may be

effective. A multithreaded CPU can construct multiple

queues for GPU processing elements, one per element,

during a CPU phase, along with building the required

sets in GPU global, read-only memory. During a GPU

phase, the processing elements drain their respective

queues, discard cyclic and converging-path states, and

send queue and set updates back to the CPU phase. The

CPU can update set membership in global, read-only

memory incrementally, redistribute the queues, and

resume the GPU phase for the next round of state

expansion. There are many details remaining to be ironed

out in this basic plan.

5. Acknowledgements
This work was made possible by the generous grant of

three multiprocessor servers from Sun Microsystems in

2009. A curriculum development grant from the PA State

System of Higher Education supported the initial round

of designing benchmarks and course projects such as the

one described here. A second curriculum development

grant from Intel’s Parallelism in the Classroom program

is making ongoing extension of such materials possible.

Finally, an equipment grant from NVIDIA makes the

exploration of a Tesla GPU implementation of this work

possible.

6. References
[1] Goetz, Brian, et. al., Java Concurrency in Practice,

Addison-Wesley, 2006.

[2] I. Pohl, “Bi-Directional Search”, Machine

Intelligence, 1971, pp. 127-140.

[3] A. Toptsis, R. A. Chaturvedi, and A. Feroze,

“Kohonen-guided Parallel Bidirectional Voronoi-

assisted Heuristic Search,” International Journal of

Advanced Science and Technology Vol. 5, April,

2009.

[4] P.C. Nelson, “Parallel Bidirectional Search Using

Multi-Dimensional Heuristics”, Ph.D. Dissertation,

Northwestern University, Evanston, Illinois, June

1998

[5] P.C. Nelson, and A.A. Toptsis, “Unidirectional and

Bidirectional Search Algorithms”, IEEE Software,

Vol. 9, No. 2, March 1992, pp. 77-83.

[6] Oracle Corporation, documentation for classes in

package javat.util.concurrent,

http://docs.oracle.com/javase/6/docs/api/index.html,

March 2012.

[7] M. M. Michael and M. L. Scott, “Simple, Fast and

Practical Non-blocking and Blocking Concurrent

Queue Algorithms,” Proceedings of Fifteenth ACM

Symposium on Principles of Distributed Computing

(PODC '96), Philadelphia, PA, 1996.

[8] Herlihy and Shavit, The Art of Multiprocessor

Programming, Morgan Kaufmann, 2008.

[9] Fujitsu, Sparc Enterprise T5120, T5220, T5140 and

T5240 Server Architecture,

http://www.fujitsu.com/downloads/SPARCE/whitep

apers/T5x20-T5x40-wp-e-200907.pdf, July 2009.

