
page 1

CSC 220 Object Oriented Multimedia Programming, Fall 2023

Dr. Dale E. Parson, Assignment 1, 2D automated avatars in 2D spaces in Processing.

This assignment is due via D2L Assignments Assignment 1 CSC220F23AvatarClassInAvatarRoom

by 11:59 PM on 26 September. CHANGED TO end of SEPT 28 (changed 9/19).

I recommend using your home machine as the Preferences -> Sketchbook location, or a USB thumb drive

if you are moving from machine to machine. When using Processing on the Kutztown campus Windows

computers, make sure to start out every time by setting your Processing Preferences -> Sketchbook

Location. If you save it to your desktop or the lab PC you are using, you will lose your work when you log

out. If you do not have a folder1 called Processing, you must create one using the Windows Explorer on a

permanent drive. You can use a USB thumb drive with a folder for your sketchpad location, and use that

on Windows, Mac, or Linux. Windows computer labs on the KU campus such as Rohrbach Library should

allow you to run Processing from the networked S:\ComputerScience\processing4.3 subdirectory. I have

tried using OneDrive to hold my sketch book for on-campus machines, but OneDrive went to different

networked folders on different campus PCs, so I gave up on that.

If you will be downloading Processing 4.32 and running it using an off-campus computer (do not use version

2.x or 3.x for this semester), you can set up your sketch folder on your thumb drive and use that on campus
machines.

You should copy and paste the text for my handout sketch into a new sketch in the Processing IDE, then

save it as a starting point. Create your CSC220F23AvatarClassInAvatarRoom folder by running File ->

Save As -> CSC220F23AvatarClassInAvatarRoom after setting up your sketch folder.

The handout code is here:

https://faculty.kutztown.edu/parson/fall2023/CSC220F23AvatarClassInAvatarRoom.txt (handout code)

HOWEVER, to earn 100% you must complete all redesigns specified below. It must not be a small change

to mine; it must be your own visual design. Nevertheless, starting with mine is necessary because substantial

parts of the assignment remain intact, including the interface Avatar, the abstract class CollisionDetector

(formerly AvatarHelper), the setup() function, draw(), overlap(), and the keyPressed() function. The

1 Another name for a folder is a directory.
2 https://processing.org/download/

https://faculty.kutztown.edu/parson/fall2023/CSC220F23AvatarClassInAvatarRoom.txt
https://processing.org/download/
parson
Cross-Out

page 2

assignment Unified Modeling Language (UML) class diagram is on the last page of this handout.

NOTE: If you have only 1 display monitor and want to have the Processing editor and the graphical window

available at the same time, do this:

Up in setup(), change this:

void setup() {

 // setup() runs once when the sketch starts, initializes sketch state.

 // size(1000, 800);

 fullScreen();

to this

void setup() {

 // setup() runs once when the sketch starts, initializes sketch state.

 size(1000, 800);

 // fullScreen();

and adjust the pixels in size() to work for your setup. Feel free to turn it in that way.

When running your sketch you may have to click into its display window in order for Processing to detect

keyboard entries.

REQUIREMENTS:

1. 40% of grade: Write another direct subclass of abstract class CollisionDetector (formerly AvatarHelper)

that implements your custom avatar. You can use Processing shape-drawing primitives

arc/ellipse/line/point/quad/rect/triangle3, or a .svg vector graphics file, or include at most one .jpg or

.png image file in your class. You must use at least one Processing shape-drawing primitive. Your

avatar class must be mobile and support creation of multiple objects. You may rename my Professor

class as your starting point, essentially deleting class Professor if you do not want to keep it. (If you

want to keep it, copy & paste & rename the copy as your class.) Name your Avatar-derived class

whatever you want. Tell me its name in a comment at the top of the file.

2. 5% of grade: Your class’ display() method must use push() and translate() as the first two instructions.

Make sure to have a well-defined 0,0 reference point within the body of your class objects. Denote the

well-defined 0,0 reference point with a comment in the code. Also, pop() must be the final instruction

in your display function.

3. 5% of grade: Your move() method must change one or more of scaleX, and/or scaleY; you may have

to add data fields to your class for this requirement. You must perform rotation. You may change color

or other custom properties of your avatar. Make sure to call detectCollisions() as the final step of

move().

4. 15% of grade: Redefine method getBoundingBox() in your class to accurately depict the bounding box

for your object. Use my rotateBB(…) helper function to compensate for rotation; one of my supplied

Avatar-derived classes provides an example. Test this using the ‘b’ key command to show the bounding

box. The box must closely encompass your avatar.

5. 10% of grade: Construct some number of your avatars and store them in the avatars[] array within

setup(). Make sure your constructor initializes any data fields you add, and use super(…) to call its base

3 https://processing.org/reference/

https://processing.org/reference/

page 3

class constructor.

6. 10% of grade: Change the immobile Furniture class’ methods to create obstacles (they work more like

membranes) that use Processing’s arc or ellipse or quad or triangle shapes instead of (or in addition to)

my Furniture’s use of rect. Make sure that getBoundingBox() is correct for your class. Place some of

your immobile Furniture objects in your scene.

7. 10% of grade: Create a mobile peer class to Paddle that moves in a periodic manner using Processing

shape(s). Make sure that getBoundingBox() is correct for your class. Place some of your mobile class

objects in your sketch. Modifying class Paddle to meet this requirement is OK.

8. 5% of grade: Update your sketch documentation comments at the top to include your name and any

other appropriate changes. Identify the classes you have added or changed in comments at the top; put

the add/change detail comments within the classes themselves. Add documentation comments to your

new classes. Make especially sure to document the body parts for your avatar similar to comments in

Professor.display(). Make sure to document your avatar’s internal 0,0 reference point within display().

9. Test thoroughly. Each substantial bug results in a 10% deduction. Get with me during lab time or office

hours if you get stuck.

10. Do not change any code other than that specified here without checking with me first. Interface Avatar

and the abstract class CollisionDetector (formerly AvatarHelper) MUST remain unchanged. Function

setup() requires some new constructor calls for your classes and space in the avatars[] array. You will

need a new global variable or two if you load a .svg, .jpg, or .png file (no extra credit and no requirement

for using such files); load them within setup(), not within your class, in order to avoid duplicate files in

memory. Functions draw(), keyPressed(), and overlap() should work correctly in the handout; do not

change them without checking with me. The reason for these restrictions is that assignment 2 may use

teams of 2 or 3 students to create a 3D counterpart to this sketch, and if you change the non-class

framework too much, your sketch will be incompatible with others.

We will have a class period for working on this project. If you do not get it done in class, you will have to

complete it as homework. I expect it to be to me by the due date via D2L. I will deduct 10% for

each day it is late. Also, re-read the above requirements when you turn it in, to ensure that you don’t

miss anything. If you make changes after turning it in, just turn in another copy of your sketch via D2L. I

will look at the last one that you turn in.

TURNING IT IN: When your work is completed, and you have re-read and satisfied the project

requirements, you can use the Windows Explorer to find the file

CSC220F23AvatarClassInAvatarRoom.pde in your sketchbook folder. Drag

CSC220F23AvatarClassInAvatarRoom.pde into the Assignment 1 dropbox under our course’s D2L

account by the due date. If you find you have created an error, you can drop an updated

CSC220F23AvatarClassInAvatarRoom.pde into the dropbox. Assignment 1 is under Assessments ->

Assignments in our D2L account. If you are working on a laptop or your machine at home, turn it in via

D2L in the same way. Finally, if your sketch loads any image or .svg vector graphics files, drag those into

the D2L assignment dropbox as well. I cannot run a sketch that depends on additional files without receiving

those files.

The UML class diagram is on the next page.

page 4

