
page 1  

 

CSC 220 Object Oriented Multimedia Programming, Fall 2022 

Dr. Dale E. Parson, Assignment 4, 3D Recursive Graphics. 

 

Assignment is due via D2L Assignments CSC220Fall2022Recur3D by 11:59 PM on Friday 

November 25 via D2L. You need to supply your own PImage file (JPEG, PNG, or similar). Make sure 

to turn that in as well as the code. There will be an in-class overview on November 2 and work session 

on November 4. The usual 10% per day late charge applies. Please start early, use the work session, and 

come to Zoom office hours as needed. 

 

Follow the instructions in our Assignment 1 for setting up your sketchbook location or download the 

Processing 3.x environment if you need to do this. You probably don’t need to do this. However, if your 

laptop caused unresolved problems with 3D Assignment 2, then use the campus Windows PCs that have 

access to S: networked drive. Windows computer labs on the KU campus such as the CSC Lab in Old 

Main 248A at the end of the CSC office hallway and in Rohrbach Library should allow you to run 

Processing from the networked S:\ComputerScience\processing3.5.4 subdirectory. I believe we have fixed 

the new Mac problem by calling frameRate() immediately after size() in setup(). 

 

Download handout code linked on the course page and save it as Processing sketch 

CSC220Fall2021Recur3D. Make enhancements detailed in STUDENT comments in the code. 

Search and read all STUDENT comments in the code before starting. 
 

/* Author: STUDENT NAME 

 

PImage STUDENTIMAGE ; 

PShape STUDENTSHAPE ; // STUDENT I set this via createShape in setup() but use this in drawShape(). 

// See STUDENTSHAPE B requirement in drawShape() 

 

  size(1500, 1000, P3D);    // Use size() to avoid Zoom problem on fullScreen. 

  frameRate(fRate);         // Call frameRate() after size to avoid the new Mac problem. 

  colorMode(HSB, 360, 100, 100, 100); 

  STUDENTIMAGE = loadImage("Hex306090B.png"); 

  // STUDENT replace with your own image file for drawShape() 

 

// STUDENT A 20%: At this bottom section of the recursive case call drawShape(mydepth, rotation); 

// just like in the non-recursive case, with its full size, not scaled via scale(), 

// but showing the same rotation in effect as the base case (non-recursive) drawShape. 

// Achieving this requires some additional lines of code, properly placed. 

 

Here is a screen shot from my handout code without the STUDENT A feature. Note the recursive case centers. 

 

 
Here is a screen shot from my solution code with the STUDENT A feature. Note the recursive case centers. This 



page 2  

pic shows some rotation from the RIGHT arrow key. 

 

 
 

 

  // STUDENT B 50%: Each student creates their own shape according to handout spec. 

  // You must use 2D shapes only, with copies rotated in X, Y, and Z directions, and 

  // nested to the degree given by global recursionDepth+1.  

   

  /* 

    STUDENT B REVISION: 

    You do NOT need to texture a STUDENTSHAPE with the STUDENTIMAGE. That works only for a 

    subset of PShapes, notably RECT PShapes.  

     

    Instead, plot via shape(STUDENTSHAPE, 0, 0, yourwidth, yourheight) one library-supplied PShape 

    built with STUDENTSHAPE  = createShape(…) (could be a 2D vector file via loadShape() if you 

    know how to build those), AND display one STUDENTIMAGE loaded with loadImage() and plotted 

    with image(STUDENTIMAGE, 0, 0, yourwidth, yourheight).  

     

    Call createShape() and loadImage() up in setup() to avoid the overhead of creating them 

    in each call to drawShape(). 

 

    ALSO you do NOT need to use vertex() in creating your PShape. 

    You can use a canned library shape as documented in the createShape() documentation. 

  */ 

   

  // NOTE: If you plot 2 2D shapes of different colors in the same Z plane, their pixels will 

  // munge together. The later one plotted will NOT cover the earlier ones.  

  // Therefore, as you nest deeper to plot smaller shapes, you could plot 2 of each offset at 

  // increased z and -z distances from the outermost one. I just stuck with the same color instead 

  // of plotting multiple copies. However, I plotted 2 copies of the textured STUDENTSHAPE, 

  // one at a positive and one at a negative Z translate, to correct the problem. 

 

 

// STUDENT C 10% (within function keyPressed()):  

// on key of '2' set spanSteps to 2,  

// on key of '3' set spanSteps to 3. 

// on key of '4' set spanSteps to 4. 

// on key of '5' set spanSteps to 5. 

// on key of '6' set spanSteps to 6. 

// on key of '7' set spanSteps to 7. 

// on key of '8' set spanSteps to 8. 



page 3  

// Note you can treat character variables like key and constants like '0' 

// as integers for the purpose of arithmetic such as subtraction and 

// numeric comparisions of key to character constants. You don't necessarily 

// need to but it can shorten your code. Or you can just use individual 

// "else if" statements for each key constant or a switch statement. 

// Also, setting spanSteps greater than 4 runs slowly with more than 1 level 

// of recursion. When testing, the starting point is spanSteps == 2. 

// Hitting '2' after recursing 1 level deep should show no change. 

 

// controlKey, altKey, or both are currently engaged: 

// STUDENT D 20% (within function moveCameraRotateWorldKeys()):  

// IMPLEMENT THE FOLLOWING 

//  VVV CONTINUOUS CONTROL and ALT key closures, CONTROL or ALT key held down VVV 

// CONTROL-x CONTROL-y CONTROL-z continuously increment these by spanIncr. 

// CONTROL-X CONTROL-Y CONTROL-Z (upper case) continuously decrement these by spanIncr. 

// float xSpanLimit = 0.5, ySpanLimit = 0.5, zSpanLimit = .5 ; 

// The above SpanLimits may range from -[xyz]SpanRange to [xyz]SpanRange. 

// spanIncr is the increment, -spanIncr decrement for the above SpanLimits. 

// final float xSpanRange = 2.0, ySpanRange = 2.0, zSpanRange = 2.0, spanIncr = .002; 

if (controlKey) { 

   

} 

// ALT-x ALT-y ALT-z continuously increment these by spanIncr. 

// ALT-X ALT-Y ALT-Z (upper case) continuously decrement these by spanIncr. 

// float xScaleAmount = 0.5, yScaleAmount = 0.5, zScaleAmount = 0.5 ; 

// The ScaleAmounts may range from -[xyz]SpanRange to [xyz]SpanRange. 

// ^^^ END CONTINUOUS CONTROL and ALT key closures ^^^ 

if (altKey) { 

  // If both CONROL & ALT are down, do both. 

   

} 

 

I will demo all STUDENT requirements on 11/7. Watch the video if you need a refresher. 

 

Make sure to test thoroughly when you believe you are done and turn both the Processing code file and 

your PImage file into D2L by the due date. The usual 10% per day late penalty applies. There is plenty 

of lead time to work on this. 


	CSC 220 Object Oriented Multimedia Programming, Fall 2022
	Dr. Dale E. Parson, Assignment 4, 3D Recursive Graphics.


