Fundamentals of Machine Learning for Predictive Data Analytics
 Chapter 6: Probability-based Learning
 Sections 6.4, 6.5

John Kelleher and Brian Mac Namee and Aoife D'Arcy
john.d.kelleher@dit.ie brian.macnamee@ucd.ie aoife@theanalyticsstore.com
(1) Smoothing
(2) Continuous Features: Probability Density Functions
(3) Continuous Features: Binning

4 Bayesian Networks
(5) Summary

Smoothing

$$
\begin{aligned}
& P(f r)=0.3 \quad P(\neg f r)=0.7 \\
& P(\mathrm{CH}=\text { 'none' } \mid \text { fr })=0.1666 \\
& P(\mathrm{CH}=\text { 'paid' } \mid \text { fr })=0.1666 \\
& P(\mathrm{CH}=\text { 'current' } \mid \text { fr })=0.5 \\
& P(\mathrm{CH}=\text { 'arrears' } \mid \mathrm{fr})=0.1666 \\
& P(\mathrm{GC}=\text { 'none' } \mid \mathrm{fr})=0.8334 \\
& P(\mathrm{GC}=\text { 'guarantor' } \mid \text { fr })=0.1666 \\
& P(\mathrm{GC}=\text { 'coapplicant' } \mid \text { fr })=0 \\
& P(\mathrm{ACC}=\text { 'own' } \mid f r)=0.6666 \\
& P(\mathrm{ACC}=\text { 'rent' } \mid \mathrm{fr})=0.3333 \\
& P(\mathrm{ACC}=\text { 'free' } \mid \mathrm{fr})=0 \\
& P(\mathrm{CH}=\text { 'none' } \mid \neg f r)=0 \\
& P(\mathrm{CH}=\text { 'paid' } \mid \neg \mathrm{fr})=0.2857 \\
& P(\mathrm{CH}=\text { 'current' } \mid \neg f r)=0.2857 \\
& P(\mathrm{CH}=\text { 'arrears' } \mid \neg f r)=0.4286 \\
& P(\mathrm{GC}=\text { 'none' } \mid \neg f r)=0.8571 \\
& P(\mathrm{GC}=\text { 'guarantor' } \mid \neg f r)=0 \\
& P(\mathrm{GC}=\text { 'coapplicant' } \mid \neg f r)=0.1429 \\
& P(\mathrm{ACC}=\text { 'own' } \mid \neg f r)=0.7857 \\
& P(\mathrm{ACC}=\text { 'rent' } \mid \neg f r)=0.1429 \\
& P(\mathrm{ACC}=\text { 'free' } \mid \neg f r)=0.0714
\end{aligned}
$$

CREDIT HISTORY	GUARANTOR/COAPPLICANT	ACCOMMODATION	FRAUDULENT
paid	guarantor	free	$?$

$$
\begin{array}{rlrl}
P(f r) & =0.3 & P(\neg f r) & =0.7 \\
P(C H=\text { paid } \mid \text { fr }) & =0.1666 & P(C H=\text { paid } \mid \neg f r) & =0.2857 \\
P(G C=\text { guarantor } \mid \text { fr }) & =0.1666 & P(G C=\text { guarantor } \mid \neg f r) & =0 \\
P(A C C=\text { free } \mid \text { fr }) & =0 & P(\text { ACC }=\text { free } \mid \neg f r) & =0.0714 \\
\left(\prod_{k=1}^{m} P(\mathbf{q}[k] \mid f r)\right) \times P(f r)=0.0 &
\end{array}
$$

CREDIT HISTORY	GUARANTOR/COAPPLICANT	ACCOMMODATION	FRAUDULENT
paid	guarantor	free	$?$

- The standard way to avoid this issue is to use smoothing.
- Smoothing takes some of the probability from the events with lots of the probability share and gives it to the other probabilities in the set.
- There are several different ways to smooth probabilities, we will use Laplacian smoothing.

Laplacian Smoothing (conditional probabilities)

$$
P(f=v \mid t)=\frac{\operatorname{count}(f=v \mid t)+k}{\operatorname{count}(f \mid t)+(k \times|\operatorname{Domain}(f)|)}
$$

Raw	$P(G C=$ none $\mid \neg f r)$	$=0.8571$
Probabilities	$P(G C=$ guarantor $\mid \neg f r)$	$=0$
	$P(G C=$ coapplicant $\mid \neg f r)$	$=0.1429$
Smoothing	k	$=3$
Parameters	count $(G C \mid \neg f r)$	$=14$
	$\operatorname{count}(G C=$ none $\mid \neg f r)$	$=12$
	$\operatorname{count}(G C=$ guarantor $\mid \neg f r)$	$=0$
	$\operatorname{count}(G C=$ coapplicant $\mid \neg f r)$	$=2$
\mid Domain $(G C) \mid$	$=3$	
Smoothed	$P(G C=$ none $\mid \neg f r)=\frac{12+3}{14+(3 \times 3)}$	$=0.6522$
Probabilities	$P(G C=$ guarantor $\mid \neg f r)=\frac{0+3}{14+(3 \times 3)}$	$=0.1304$
	$P(G C=$ coapplicant $\mid \neg f r)=\frac{2+3}{14+(3 \times 3)}$	$=0.2174$

Table: Smoothing the posterior probabilities for the Guarantor/CoApplicant feature conditioned on Fraudulent being False.

$P(f r)$	$=0.3$	$P(\neg f r)$	$=0.7$
$P(C H=$ none $\mid f r)$	$=0.2222$	$P(C H=$ none $\mid \neg f r)$	$=0.1154$
$P(C H=$ paid $\mid f r)$	$=0.2222$	$P(C H=$ paid $\mid \neg f r)$	$=0.2692$
$P(C H=$ current $\mid f r)$	$=0.3333$	$P(C H=$ current $\mid \neg f r)$	$=0.2692$
$P(C H=$ arrears $\mid f r)$	$=0.2222$	$P(C H=$ arrears $\mid \neg f r)$	$=0.3462$
$P(G C=$ none $\mid f r)$	$=0.5333$	$P(G C=$ none $\mid \neg f r)$	$=0.6522$
$P(G C=$ guarantor $\mid f r)$	$=0.2667$	$P(G C=$ guarantor $\mid \neg f r)$	$=0.1304$
$P(G C=$ coapplicant $\mid f r)$	$=0.2$	$P(G C=$ coapplicant $\mid \neg f r)$	$=0.2174$
$P(A C C=$ own $\mid f r)$	$=0.4667$	$P(A C C=$ own $\mid \neg f r)$	$=0.6087$
$P(A C C=$ rent $\mid f r)$	$=0.3333$	$P(A C C=$ rent $\mid \neg f r)$	$=0.2174$
$P(A C C=$ Free $\mid f r)$	$=0.2$	$P(A C C=$ Free $\mid \neg f r)$	$=0.1739$

Table: The Laplacian smoothed, with $k=3$, probabilities needed by a Naive Bayes prediction model calculated from the fraud detection dataset. Notation key: FR=Fraudulent, CH=Credit History, GC = Guarantor/CoApplicant, ACC = Accomodation, T='True',
F='False'.

CREDIT HISTORY	GUARANTOR/COAPPLICANT	ACCOMMODATION	FRAUDULENT
paid	guarantor	free	$?$

$$
\begin{array}{rlrl}
P(f r) & =0.3 & P(\neg f r) & =0.7 \\
P(C H=\text { paid } \mid f r) & =0.2222 & P(C H=\text { paid } \mid \neg f r) & =0.2692 \\
P(G C=\text { guarantor } \mid f r) & =0.2667 & P(G C=\text { guarantor } \mid \neg f r) & =0.1304 \\
P(\text { ACC }=\text { Free } \mid f r) & =0.2 & P(\text { ACC })=\text { Free } \mid \neg f r) & =0.1739 \\
\left(\prod_{k=1}^{m} P(\mathbf{q}[m] \mid f r)\right) \times P(f r)=0.0036 & \\
\left(\prod_{k=1}^{m} P(\mathbf{q}[m] \mid \neg f r)\right) \times P(\neg f r)=0.0043 &
\end{array}
$$

Table: The relevant smoothed probabilities, from Table $2{ }^{[9]}$, needed by the Naive Bayes prediction model in order to classify the query from the previous slide and the calculation of the scores for each candidate classification.

Continuous Features: Probability Density Functions

- A probability density function (PDF) represents the probability distribution of a continuous feature using a mathematical function, such as the normal distribution.

$$
N(x, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- A PDF defines a density curve and the shape of the of the curve is determined by:
- the statistical distribution that is used to define the PDF
- the values of the statistical distribution parameters

Table: Definitions of some standard probability distributions.

```
Normal
l
```

$N(x, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
Student- t
$x \in \mathbb{R}$
$\phi \in \mathbb{R}$
$\rho \in \mathbb{R}_{>0}$
$\kappa \in \mathbb{R}_{>0}$
$z=\frac{x-\phi}{\rho}$
$\tau(x, \phi, \rho, \kappa)=\frac{\Gamma\left(\frac{\kappa+1}{2}\right)}{\Gamma\left(\frac{\kappa}{2}\right) \times \sqrt{\pi \kappa} \times \rho} \times\left(1+\left(\frac{1}{\kappa} \times z^{2}\right)\right)^{-\frac{\kappa+1}{2}}$

Exponential
$x \in \mathbb{R}$
$\lambda \in \mathbb{R}_{>0}$

$$
E(x, \lambda)= \begin{cases}\lambda e^{-\lambda x} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

Mixture of n Gaussians

```
x\in\mathbb{R}
{\mp@subsup{\mu}{1}{},\ldots,\mp@subsup{\mu}{n}{}|\mp@subsup{\mu}{i}{}\in\mathbb{R}}
{\mp@subsup{\sigma}{1}{},\ldots,\mp@subsup{\sigma}{n}{}|\mp@subsup{\sigma}{i}{}\in\mathbb{R}>0}
{\mp@subsup{\omega}{1}{},\ldots,\mp@subsup{\omega}{n}{}|\mp@subsup{\omega}{i}{}\in\mp@subsup{\mathbb{R}}{>0}{}}
```

$N\left(x, \mu_{1}, \sigma_{1}, \omega_{1}, \ldots, \mu_{n}, \sigma_{n}, \omega_{n}\right)=\sum_{i=1}^{n} \frac{\omega_{i}}{\sigma_{i} \sqrt{2 \pi}} e^{-\frac{\left(x-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}}$

Figure: Plots of some well known probability distributions.

(a)

(b)

Figure: Histograms of two unimodal datasets: (a) the distribution has light tails; (b) the distribution has fat tails.

- Normal

Student-t

(a)

(b)

Figure: Illustration of the robustness of the student- t distribution to outliers: (a) a density histogram of a unimodal dataset overlaid with the density curves of a normal and a student- t distribution that have been fitted to the data; (b) a density histogram of the same dataset with outliers added, overlaid with the density curves of a normal and a student- t distribution that have been fitted to the data. The student- t distribution is less affected by the introduction of outliers. (This figure is inspired by Figure 2.16 in (Bishop, 2006).)

Figure: Illustration of how a mixture of Gaussians model is composed of a number of normal distributions. The curve plotted using a solid line is the mixture of Gaussians density curve, created using an appropriately weighted summation of the three normal curves, plotted using dashed and dotted lines.

- A PDF is an abstraction over a density histogram and consequently PDF represents probabilities in terms of area under the curve.
- To use a PDF to calculate a probability we need to think in terms of the area under an interval of the PDF curve.
- We can calculate the area under a PDF by looking this up in a probability table or to use integration to calculate the area under the curve within the bounds of the interval.

Figure: (a) The area under a density curve between the limits $x-\frac{\epsilon}{2}$ and $x+\frac{\epsilon}{2}$; (b) the approximation of this area computed by $\operatorname{PDF}(x) \times \epsilon$; and (c) the error in the approximation is equal to the difference between area A, the area under the curve omitted from the approximation, and area B, the area above the curve erroneously included in the approximation. Both of these areas will get smaller as the width of the interval gets smaller, resulting in a smaller error in the approximation.

- There is no hard and fast rule for deciding on interval size - instead, this decision is done on a case by case basis and is dependent on the precision required in answering a question.
- To illustrate how PDFs can be used in Naive Bayes models we will extend our loan application fraud detection query to have an Account Balance feature

Table: The dataset from the loan application fraud detection domain with a new continuous descriptive features added: Account Balance

ID	CREDIT HISTORY	GUARANTOR/ COAPPLICANT	ACCOMMODATION	ACCOUNT BALANCE	FRAUD
1	current	none	Own	56.75	true
2	current	none	own	$1,800.11$	false
3	current	none	own	$1,341.03$	false
4	paid	guarantor	rent	749.50	true
5	arrears	none	own	$1,150.00$	false
6	arrears	none	own	928.30	true
7	current	none	own	250.90	false
8	arrears	none	own	806.15	false
9	current	none	rent	$1,209.02$	false
10	none	none	own	405.72	true
11	current	coapplicant	own	550.00	false
12	current	none	free	223.89	true
13	current	none	rent	103.23	true
14	paid	none	own	758.22	false
15	arrears	none	own	430.79	false
16	current	none	own	675.11	false
17	arrears	coapplicant	rent	$1,657.20$	false
18	arrears	none	free	$1,405.18$	false
19	arrears	none	own	760.51	false
20	current	none	own	985.41	false

- We need to define two PDFs for the new Account BALANCE (AB) feature with each PDF conditioned on a different value in the domain or the target:
- $P(A B=X \mid f r)=P D F_{1}(A B=X \mid f r)$
- $P(A B=X \mid \neg f r)=P D F_{2}(A B=X \mid \neg f r)$
- Note that these two PDFs do not have to be defined using the same statistical distribution.

Figure: Histograms, using a bin size of 250 units, and density curves for the Account Balance feature: (a) the fraudulent instances overlaid with a fitted exponential distribution; (b) the non-fraudulent instances overlaid with a fitted normal distribution.

- From the shape of these histograms it appears that
- the distribution of values taken by the Account Balance feature in the set of instances where the target feature FraUdULENT='True' follows an exponential distribution
- the distributions of values taken by the Account Balance feature in the set of instances where the target feature FRAUDULENT='False' is similar to a normal distribution.
- Once we have selected the distributions the next step is to fit the distributions to the data.
- To fit the exponential distribution we simply compute the sample mean, \bar{x}, of the Account Balance feature in the set of instances where FraUDULENT='True' and set the λ parameter equal to one divided by \bar{x}.
- To fit the normal distribution to the set of instances where Fraudulent= 'False' we simply compute the sample mean and sample standard deviation, s, for the Account BALANCE feature for this set of instances and set the parameters of the normal distribution to these values.

Table: Partitioning the dataset based on the value of the target feature and fitting the parameters of a statistical distribution to model the Account Balance feature in each partition.

		ACCOUNT	
ID	\ldots	BALANCE	FRAUD
1		56.75	true
4		749.50	true
6		928.30	true
10	\ldots	405.72	true
12		223.89	true
13		103.23	true
$\overline{\mathrm{AB}}$		411.22	
$\lambda={ }^{1}!/ \overline{\mathrm{AB}}$	0.0024		

		ACCOUNT	
ID	\ldots	BALANCE	FRAUD
2		1800.11	false
3		1341.03	false
5		1150.00	false
7		250.90	false
8		806.15	false
9		1209.02	false
11		550.00	false
14		758.22	false
15		430.79	false
16		675.11	false
17		1657.20	false
18		1405.18	false
19		760.51	false
20	985.41	false	
$\overline{\mathrm{AB}}$	984.26		
$s d(\mathrm{AB})$	460.94		

Table: The Laplace smoothed (with $k=3$) probabilities needed by a naive Bayes prediction model calculated from the dataset in Table 5 ${ }^{[23]}$, extended to include the conditional probabilities for the new Account Balance feature, which are defined in terms of PDFs.

$P(f r)$	$=$	0.3	$P(\neg f r)$	$=$	0.7
$P(C H=$ none \mid fr $)$	$=$	0.2222	$P(C H=n o n e \mid \neg f r)$	$=$	0.1154
$P(C H=$ paid \mid fr $)$	$=$	0.2222	$P(\mathrm{CH}=$ paid $\mid \neg f r)$	$=$	0.2692
$P(C H=$ current \mid fr $)$	$=$	0.3333	$P(\mathrm{CH}=$ current $\mid \neg f r)$	$=$	0.2692
$P(C H=$ arrears \mid fr $)$	$=$	0.2222	$P(\mathrm{CH}=$ arrears $\mid \neg \mathrm{fr})$	$=$	0.3462
$P(G C=n o n e \mid f r)$	$=$	0.5333	$P(G C=n o n e \mid \neg f r)$	$=$	0.6522
$P(G C=$ guarantor \mid fr $)$	=	0.2667	$P(G C=$ guarantor $\mid \neg f r)$	$=$	0.1304
$P(G C=$ coapplicant \mid fr $)$	$=$	0.2	$P(G C=$ coapplicant $\mid \neg$ fr $)$	$=$	0.2174
$P(A C C=o w n \mid f r)$	$=$	0.4667	$P(A C C=o w n \mid \neg f r)$	$=$	0.6087
$P(A C C=r e n t \mid f r)$	$=$	0.3333	$P(A C C=r e n t \mid \neg f r)$	$=$	0.2174
$P(A C C=$ free \mid fr $)$	$=$	0.2	$P(A C C=f r e e \mid \neg f r)$	$=$	0.1739
$P(A B=x \mid f r)$			$P(A B=x \mid \neg f r)$		
		$\left.\begin{array}{c}x, \\ \lambda=0.0024\end{array}\right)$	\approx	N	$\left(\begin{array}{c}x, \\ \mu=984.26, \\ \sigma=460.94\end{array}\right)$

Table: A query loan application from the fraud detection domain.

Credit	Guarantor/ History		Account					
CoApplicant				Accomodation	Balance	Fraudulent		
---:	---:	---:	---:					
paid	guarantor	free	759.07					

Table: The probabilities, from Table $7{ }^{[29]}$, needed by the naive Bayes prediction model to make a prediction for the query $\langle\mathrm{CH}=$ 'paid', $\mathrm{GC}=$ 'guarantor', $\mathrm{ACC}=$ 'free', $\mathrm{AB}=759.07\rangle$ and the calculation of the scores for each candidate prediction.

$$
\begin{array}{rlrl}
P(f r) & =0.3 & P(\neg f r) & =0.7 \\
P(C H=\text { paid } \mid f r) & =0.2222 & P(C H=\text { paid } \mid \neg f r) & =0.2692 \\
P(G C=\text { guarantor } \mid f r) & =0.2667 & P(G C=\text { guarantor } \mid \neg f r) & =0.1304 \\
P(A C C=\text { free } \mid f r) & =0.2 & P(A C C=\text { free } \mid \neg f r) & =0.1739 \\
P(A B=759.07 \mid f r) & & P(A B=759.07 \mid \neg f r) \\
\approx E\binom{759.07,}{\lambda=0.0024} & =0.00039 & \approx N\left(\begin{array}{c}
759.07, \\
\mu=984.26, \\
\sigma=460.94
\end{array}\right) & =0.00077
\end{array}
$$

Continuous Features: Binning

- In Section 3.6.2 we explained two of the best known binning techniques equal-width and equal-frequency.
- We can use these techniques to bin continuous features into categorical features
- In general we recommend equal-frequency binning.

Table: The dataset from a loan application fraud detection domain with a second continuous descriptive feature added: LOAN AMOUNT

	CREDIT HISTORY	GUARANTOR/ COAPPLICANT	Accommodation	ACCOUNT BALANCE	LOAN AMOUNT	FRAUD
1	current	none	Own	56.75	900	true
2	current	none	own	1800.11	150000	false
3	current	none	own	1341.03	48000	false
4	paid	guarantor	rent	749.50	10000	true
5	arrears	none	own	1150.00	32000	false
6	arrears	none	own	928.30	250000	true
7	current	none	own	250.90	25000	false
8	arrears	none	own	806.15	18500	false
9	current	none	rent	1209.02	20000	false
10	none	none	own	405.72	9500	true
11	current	coapplicant	own	550.00	16750	false
12	current	none	free	223.89	9850	true
13	current	none	rent	103.23	95500	true
14	paid	none	own	758.22	65000	false
15	arrears	none	own	430.79	500	false
16	current	none	own	675.11	16000	false
17	arrears	coaplicant	none	rent	1657.20	15450
18	arrears	free	1405.18	50000	false	
19	arrears	none	own	760.51	500	false
20	current	none	own	985.41	35000	false

Table: The LOAN AMOUNT continuous feature discretized into 4 equal-frequency bins.

BINNED				BinNED			
	LOAN	LoAN			LOAN	LOAN	
ID	Amount	Amount	Fraud	ID	Amount	Amount	Fraud
15	500	bin1	false	9	20,000	bin3	false
19	500	bin1	false	7	25,000	bin3	false
1	900	bin1	true	5	32,000	bin3	false
10	9,500	bin1	true	20	35,000	bin3	false
12	9,850	bin1	true	3	48,000	bin3	false
4	10,000	bin2	true	18	50,000	bin4	false
17	15,450	bin2	false	14	65,000	bin4	false
16	16,000	bin2	false	13	95,500	bin4	true
11	16,750	bin2	false	2	150,000	bin4	false
8	18,500	bin2	false	6	250,000	bin4	true

- Once we have discretized the data we need to record the raw continuous feature threshold between the bins so that we can use these for query feature values.

Table: The thresholds used to discretize the LOAN AMOUNT feature in queries.

Bin Thresholds			
Bin1 $\leq 9,925$			
$9,925<$	Bin2 $\leq 19,250$		
$19,225<$	Bin3	$\leq 49,000$	
$49,000<$	Bin4		

Table: The Laplace smoothed (with $k=3$) probabilities needed by a naive Bayes prediction model calculated from the fraud detection dataset. Notation key: FR = Fraud, CH = Credit History, AB = Account Balance, GC = Guarantor/CoApplicant, ACC = Accommodation, BLA = Binned Loan Amount.

$P(f r)$	0.3	$P(\neg f r)$	0.7
$P(C H=$ none \mid fr $)$	0.2222	$P(\mathrm{CH}=$ none $\mid \neg$ fr $)$	0.1154
$P(C H=$ paid \mid fr $)$	0.2222	$P(\mathrm{CH}=$ paid $\mid \neg f r)$	0.2692
$P(C H=$ current \mid fr $)$	0.3333	$P(\mathrm{CH}=$ current $\mid \neg$ fr $)$	0.2692
$P(C H=$ arrears \mid fr $)$	0.2222	$P(C H=$ arrears $\mid \neg$ fr $)$	0.3462
$P(G C=$ none \mid fr $)$	0.5333	$P(G C=$ none $\mid \neg f r)$	0.6522
$P(G C=$ guarantor \mid fr $)$	0.2667	$P(G C=$ guarantor $\mid \neg f r$)	0.1304
$P(G C=$ coapplicant \mid fr $)$	0.2	$P(G C=$ coapplicant $\mid \neg f r)$	0.2174
$P(A C C=o w n \mid f r)$	0.4667	$P(A C C=o w n \mid \neg f r)$	0.6087
$P(A C C=r e n t \mid f r)$	0.3333	$P(A C C=r e n t \mid \neg f r)$	0.2174
$P(A C C=$ free \mid fr $)$	0.2	$P(A C C=$ free $\mid \neg$ fr $)$	0.1739
$P(A B=x \mid f r)$		$P(A B=x \mid \neg f r)$	
$\approx E\binom{x}{\lambda=0.0024}$		$\approx N\left(\begin{array}{c}x, \\ \mu=984.26, \\ \sigma=460.94\end{array}\right)$	
$P(B L A=b i n 1 \mid f r)$	0.3333	$P(B L A=b i n 1 \mid \neg f r)$	0.1923
$P(B L A=$ bin2 \mid fr $)$	0.2222	$P(B L A=b i n 2 \mid \neg f r)$	0.2692
$P(B L A=b i n 3 \mid f r)$	0.1667	$P(B L A=b i n 3 \mid \neg f r)$	0.3077
$P(B L A=b i n 4 \mid f r)=$	0.2778	$P(B L A=b i n 4 \mid \neg f r)$	0.2308

Table: A query loan application from the fraud detection domain.

Credit History	Guarantor/ CoApplicant	Accomodation	Account Balance	Loan Amount	Fraudulent

Table: The relevant smoothed probabilities, from Table $13{ }^{[37]}$, needed by the naive Bayes model to make a prediction for the query
$\langle\mathrm{CH}=$ 'paid', $\mathrm{GC}=$ 'guarantor', $\mathrm{ACC}=$ 'free', $\mathrm{AB}=759.07, \mathrm{LA}=8000\rangle$ and the calculation of the scores for each candidate prediction.

$$
\begin{array}{rlrl}
P(f r) & =0.3 & P(\neg f r) & =0.7 \\
P(C H=\text { paid } \mid f r) & =0.2222 & P(C H=\text { paid } \mid \neg f r) & =0.2692 \\
P(G C=\text { guarantor } \mid f r) & =0.2667 & P(G C=\text { guarantor } \mid \neg f r) & =0.1304 \\
P(A C C=\text { free } \mid f r) & =0.2 & P(A C C=\text { free } \mid \neg f r) & =0.1739 \\
P(A B=759.07 \mid f r) & & P(A B=759.07 \mid \neg f r) \\
\approx E\binom{759.07,}{\lambda=0.0024} & =0.00039 & \approx N\left(\begin{array}{c}
759.07, \\
\mu=984.26, \\
\sigma=460.94
\end{array}\right) & =0.00077 \\
P(B L A=\text { bin1 } \mid f r)=0.3333 & P(B L A=b i n 1 \mid \neg f r) & =0.1923 \\
\hline
\end{array}
$$

Bayesian Networks

- Bayesian networks use a graph-based representation to encode the structural relationships-such as direct influence and conditional independence-between subsets of features in a domain.
- Consequently, a Bayesian network representation is generally more compact than a full joint distribution, yet is not forced to assert global conditional independence between all descriptive features.

A Bayesian Network is a directed acyclical graph that is composed of thee basic elements:

- nodes
- edges
- conditional probability tables (CPT)

Figure: (a) A Bayesian network for a domain consisting of two binary features. The structure of the network states that the value of feature A directly influences the value of feature B. (b) A Bayesian network consisting of 4 binary features with a path containing 3 generations of nodes: D, C, and B.

- In probability terms the directed edge from A to B in Figure (a) on the previous slide states that:

$$
\begin{equation*}
P(A, B)=P(B \mid A) \times P(A) \tag{1}
\end{equation*}
$$

- For example, the probability of the event a and $\neg b$ is

$$
P(a, \neg b)=P(\neg b \mid a) \times P(a)=0.7 \times 0.4=0.28
$$

- Equation (1) ${ }^{[44]}$ can be generalized to the statement that for any network with N nodes, the probability of an event x_{1}, \ldots, x_{n}, can be computed using the following formula:

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{Parents}\left(x_{i}\right)\right) \tag{2}
\end{equation*}
$$

- For example, using the more complex Bayesian network in figure (b) above, we can calculate the probability of the joint event $P(a, \neg b, \neg c, d)$ as follows:

$$
\begin{aligned}
P(a, \neg b, \neg c, d) & =P(\neg b \mid a, \neg c) \times P(\neg c \mid d) \times P(a) \times P(d) \\
& =0.5 \times 0.8 \times 0.4 \times 0.4=0.064
\end{aligned}
$$

- We can uses Bayes' Theorem to invert the dependencies between nodes in a network.
- Returning to the simpler network in figure (a) above we can calculate $P(a \mid \neg b)$ as follows:

$$
\begin{aligned}
P(a \mid \neg b) & =\frac{P(\neg b \mid a) \times P(a)}{P(\neg b)}=\frac{P(\neg b \mid a) \times P(a)}{\sum_{i} P\left(\neg b \mid A_{i}\right)} \\
& =\frac{P(\neg b \mid a) \times P(a)}{(P(\neg b \mid a) \times P(a))+(P(\neg b \mid \neg a) \times P(\neg a))} \\
& =\frac{0.7 \times 0.4}{(0.7 \times 0.4)+(0.6 \times 0.6)}=0.4375
\end{aligned}
$$

- For conditional independence we need to take into account not only the parents of a node by also the state of its children and their parents.
- The set of nodes in a graph that make a node independent of the rest of the graph are known as the Markov blanket of a node.

Figure: A depiction of the Markov blanket of a node. The gray nodes define the Markov blanket of the black node. The black node is conditionally independent of the white nodes given the state of the gray nodes.

- The conditional independence of a node x_{i} in a graph with n nodes is defines as:

$$
\begin{align*}
& P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)= \\
& \quad P\left(x_{i} \mid \operatorname{Parents}\left(x_{i}\right)\right) \prod_{j \in \operatorname{Children}\left(x_{i}\right)} P\left(x_{j} \mid \operatorname{Parents}\left(x_{j}\right)\right) \tag{3}
\end{align*}
$$

- Applying the equation of the preceding slide to the network in figure (b) above we can calculate the probability of $P(c \mid \neg a, b, d)$ as

$$
\begin{aligned}
P(c \mid \neg a, b, d) & =P(c \mid d) \times P(b \mid c, \neg a) \\
& =0.2 \times 0.4=0.08
\end{aligned}
$$

- A naive Bayes classifier is a Bayesian network with a specific topological structure.

Figure: (a) A Bayesian network representation of the conditional independence asserted by a naive Bayes model between the descriptive features given knowledge of the target feature; (b) a Bayesian network representation of the conditional independence assumption for the naive Bayes model in the fraud example.

- When we computed a conditional probability for a target feature using a naive Bayes model, we used the following calculation

$$
P(t \mid \mathbf{d}[1], \ldots, \mathbf{d}[n])=P(t) \prod_{j \in \operatorname{Children}(t)} P(\mathbf{d}[j] \mid t)
$$

- This equation is equivalent to Equation (3) ${ }^{[50]}$ from earlier.
- Computing a conditional probability for a node becomes more complex if the value of one or more of the parent nodes is unknown.
- For example, in the context of the network in figure (b) above, to compute $P(b \mid a, d)$ where the status of node C in unknown we would do the following calculations:
(1) Compute the distribution for C given $D: P(c \mid d)=0.2$, $P(\neg c \mid d)=0.8$
(2) Compute $P(b \perp a, C)$ by summing out C : $P(b \mid a, C)=\sum_{i} P\left(b \mid a, C_{i}\right)$

$$
\begin{aligned}
P(b \mid a, C) & =\sum_{i} P\left(b \mid a, C_{i}\right)=\sum_{i} \frac{P\left(b, a, C_{i}\right)}{P\left(a, C_{i}\right)} \\
& =\frac{(P(b \mid a, c) \times P(a) \times P(c))+(P(b \mid a, \neg c) \times P(a) \times P(\neg c))}{(P(a) \times P(c))+(P(a) \times P(\neg c))} \\
& =\frac{(0.2 \times 0.4 \times 0.2)+(0.5 \times 0.4 \times 0.8)}{(0.4 \times 0.2)+(0.4 \times 0.8)}=0.44
\end{aligned}
$$

- This example illustrates the power of Bayesian networks.
- When complete knowledge of the state of all the nodes in the network is not available, we clamp the values of nodes that we do have knowledge of and sum out the unknown nodes.

Figure: Two different Bayesian networks, each defining the same full joint probability distribution.

- We can illustrate that these two networks encode the same joint probability distribution by using each network to compute $P(\neg a, b, c)$
- Using network (a) we get:

$$
\begin{aligned}
& P(\neg a, b, c)=P(c \mid \neg a, b) \times P(b \mid \neg a) \times P(\neg a) \\
& \quad=0.25 \times 0.5 \times 0.4=0.05
\end{aligned}
$$

- Using network (b) we get:

$$
\begin{aligned}
& P(\neg a, b, c)=P(\neg a \mid c, b) \times P(b \mid c) \times P(c) \\
& \quad=0.5 \times 0.5 \times 0.2=0.05
\end{aligned}
$$

- The simplest was to construct a Bayesian network is to use a hybrid approach where:
(1) the topology of the network is given to the learning algorithm,
(2) and the learning task involves inducing the CPT from the data.

Table: (a) Some socio-economic data for a set of countries; (b) a binned version of the data listed in (a).

COUNTRY ID	$\begin{aligned} & \text { GINI } \\ & \text { COEF } \end{aligned}$	$\begin{array}{r} \text { SCHOOL } \\ \text { YEARS } \end{array}$	$\begin{gathered} \hline \text { LIFE } \\ \text { ExP } \end{gathered}$	CPI	$\begin{aligned} & \text { GINI } \\ & \text { COEF } \end{aligned}$	$\begin{array}{r} \text { SCHOOL } \\ \text { YEARS } \end{array}$	$\begin{aligned} & \text { LIFE } \\ & \text { EXP } \end{aligned}$	CPI
Afghanistan	27.82	0.40	59.61	1.52	low	low	low	low
Argentina	44.49	10.10	75.77	3.00	high	low	low	low
Australia	35.19	11.50	82.09	8.84	low	high	high	high
Brazil	54.69	7.20	73.12	3.77	high	low	low	low
Canada	32.56	14.20	80.99	8.67	low	high	high	high
China	42.06	6.40	74.87	3.64	high	low	low	low
Egypt	30.77	5.30	70.48	2.86	low	low	low	low
Germany	28.31	12.00	80.24	8.05	low	high	high	high
Haiti	59.21	3.40	45.00	1.80	high	low	low	low
Ireland	34.28	11.50	80.15	7.54	low	high	high	high
Israel	39.2	12.50	81.30	5.81	low	high	high	high
New Zealand	36.17	12.30	80.67	9.46	low	high	high	high
Nigeria	48.83	4.10	51.30	2.45	high	low	low	low
Russia	40.11	12.90	67.62	2.45	high	high	low	low
Singapore	42.48	6.10	81.788	9.17	high	low	high	high
South Africa	63.14	8.50	54.547	4.08	high	low	low	low
Sweden	25.00	12.80	81.43	9.30	low	high	high	high
U.K.	35.97	13.00	80.09	7.78	low	high	high	high
U.S.A	40.81	13.70	78.51	7.14	high	high	high	high
Zimbabwe	50.10	6.7	53.684	2.23	high	low	low	low
(a) (b)								

Figure: A Bayesian network that encodes the causal relationships between the features in the corruption domain. The CPT entries have been calculated using the data from Table $16{ }^{[61]}(\mathrm{b})$.
$\mathbb{M}(\mathbf{q})=\operatorname{argmax}$ BayesianNetwork $(t=I, \mathbf{q})$ $t \in$ levels(t)

Example

- We wish to predict the CPI for a country with the follow profile:

> GINI COEF = 'high', SCHOOL YEARS = 'high'

$$
\begin{gathered}
P(C P I=H \mid S Y=H, G C=H)=\frac{P(C P I=H, S Y=H, G C=H)}{P(S Y=H, G C=H)} \\
=\frac{\sum_{i \in H, L} P(C P I=H, S Y=H, G C=H, L E=i)}{P(S Y=H, G C=H)}
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{i \in\{H, L\}} P(C P I=H, S Y=H, G C=H, L E=i) \\
&= \sum_{i \in\{H, L\}} P(C P I=H \mid S Y=H, L E=i) \times P(S Y=H \mid G C=H) \\
& \times P(L E=i \mid G C=H) \times P(G C=H) \\
&=(P(C P I=H \mid S Y=H, L E=H) \times P(S Y=H \mid G C=H) \\
&\times P(L E=H \mid G C=H) \times P(G C=H)) \\
&+(P(C P I=H \mid S Y=H, L E=L) \times P(S Y=H \mid G C=H) \\
&\times P(L E=L \mid G C=H) \times P(G C=H)) \\
&=(1.0 \times 0.2 \times 0.2 \times 0.5)+(0 \times 0.2 \times 0.8 \times 0.5)=0.02
\end{aligned}
$$

$$
\begin{aligned}
P(S Y & =H, G C=H)=P(S Y=H \mid G C=H) \times P(G C=H) \\
& =0.2 \times 0.5=0.1
\end{aligned}
$$

$$
P(C P I=H \mid S Y=H, G C=H)=\frac{0.02}{0.1}=0.2
$$

- Because of the calculation complexity that can arise when using Bayesian networks to do exact inference a popular approach is to approximate the required probability distribution using Markov Chain Monte Carlo algorithms.
- Gibbs sampling is one of the best known MCMC algorithms.
(1) Clamp the values of the evidence variables and randomly assign the values of the non-evidence variables.
(2) Generate samples by changing the value of one of the non-evidence variables using the distribution for the node conditioned on the state of the rest of the network.

Table: Examples of the samples generated using Gibbs sampling.

Sample Number	Gibbs Iteration	Feature Updated	GINI COEF	SCHOOL YEARS	LIFE EXP	CPI
1	37	CPI	high	high	high	low
2	44	LIFE EXP	high	high	high	low
3	51	CPI	high	high	high	low
4	58	LIFE EXP	high	high	low	high
5	65	CPI	high	high	high	low
6	72	LIFE EXP	high	high	high	low
7	79	CPI	high	high	low	high
8	86	LIFE EXP	high	high	low	low
9	93	CPI	high	high	high	low
10	100	LIFE EXP	high	high	high	low
11	107	CPI	high	high	low	high
12	114	LIFE EXP	high	high	high	low
13	121	CPI	high	high	high	low
14	128	LIFE EXP	high	high	high	low
15	135	CPI	high	high	high	low
16	142	LIFE EXP	high	high	low	low

$\mathbb{M}(\mathbf{q})=\operatorname{argmax} \operatorname{Gibbs}(t=I, \mathbf{q})$ $t \in$ levels(t)

Summary

- Naive Bayes models can suffer from zero probabilities of relatively rare events. Smoothing is an easy way to combat this.
- Two ways to handle continuous features in probability-based models are: Probability density functions and Binning
- Using probability density functions requires that we match the observed data to an existing distribution.
- Although binning results in information loss it is a simple and effective way to handle continuous features in probability-based models.
- Bayesian network representation is generally more compact than a full joint distribution, yet is not forced to assert global conditional independence between all descriptive features.
(2) Continuous Features: Probability Density Functions
(3) Continuous Features: Binning

4 Bayesian Networks
(5) Summary

