Fundamentals of Machine Learning for Predictive Data Analytics Machine Learning for Predictive Data Analytics

John Kelleher and Brian Mac Namee and Aoife D'Arcy

john.d.kelleher@dit.ie brian.macnamee@ucd.ie aoife@theanalyticsstore.com

- What is Predictive Data Analytics?
- What is Machine Learning?
- How Does Machine Learning Work?
- What Can Go Wrong With ML?
- The Predictive Data Analytics Project Lifecycle: Crisp-DM
- **Summary**

What is ML?

What is Predictive Data Analytics?

What is ML?

 Predictive Data Analytics encompasses the business and data processes and computational models that enable a business to make data-driven decisions.

Figure: Predictive data analytics moving from data to insights to decisions.

Example Applications:

- Price Prediction
- Fraud Detection
- Dosage Prediction
- Risk Assessment
- Propensity modelling
- Diagnosis
- Document Classification
- ...

What is Machine Learning?

 (Supervised) Machine Learning techniques automatically learn a model of the relationship between a set of descriptive features and a target feature from a set of historical examples.

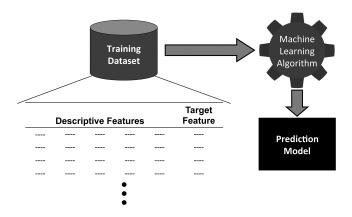


Figure: Using machine learning to induce a prediction model from a training dataset.

Figure: Using the model to make predictions for new query instances.

			LOAN-SALARY	
ID	OCCUPATION	A GE	RATIO	Оитсоме
1	industrial	34	2.96	repaid
2	professional	41	4.64	default
3	professional	36	3.22	default
4	professional	41	3.11	default
5	industrial	48	3.80	default
6	industrial	61	2.52	repaid
7	professional	37	1.50	repaid
8	professional	40	1.93	repaid
9	industrial	33	5.25	default
10	industrial	32	4.15	default

 What is the relationship between the descriptive features (OCCUPATION, AGE, LOAN-SALARY RATIO) and the target feature (OUTCOME)?

```
if LOAN-SALARY RATIO > 3 then
  OUTCOME='default'
else
 OUTCOME='repay'
end if
```

```
if LOAN-SALARY RATIO > 3 then
  OUTCOME='default'
else
 OUTCOME='repay'
end if
```

This is an example of a prediction model

```
if LOAN-SALARY RATIO > 3 then
  OUTCOME='default'
else
  OUTCOME='repay'
end if
```

- This is an example of a prediction model
- This is also an example of a consistent prediction model

What is Predictive Data Analytics?

```
if LOAN-SALARY RATIO > 3 then
  OUTCOME='default'
else
  OUTCOME='repay'
end if
```

- This is an example of a prediction model
- This is also an example of a consistent prediction model
- Notice that this model does not use all the features and the feature that it uses is a derived feature (in this case a ratio): feature design and feature selection are two important topics that we will return to again and again.

• What is the relationship between the descriptive features and the target feature (OUTCOME) in the following dataset?

			Loan- Salary					
ID	Amount	Salary	Ratio	Age	Occupation	House	Type	Outcome
1	245,100	66,400	3.69	44	industrial	farm	stb	repaid
2	90,600	75,300	1.2	41	industrial	farm	stb	repaid
3	195,600	52,100	3.75	37	industrial	farm	ftb	default
4	157,800	67,600	2.33	44	industrial	apartment	ftb	repaid
5	150,800	35,800	4.21	39	professional	apartment	stb	default
6	133,000	45,300	2.94	29	industrial	farm	ftb	default
7	193,100	73,200	2.64	38	professional	house	ftb	repaid
8	215,000	77,600	2.77	17	professional	farm	ftb	repaid
9	83,000	62,500	1.33	30	professional	house	ftb	repaid
10	186,100	49,200	3.78	30	industrial	house	ftb	default
11	161,500	53,300	3.03	28	professional	apartment	stb	repaid
12	157,400	63,900	2.46	30	professional	farm	stb	repaid
13	210,000	54,200	3.87	43	professional	apartment	ftb	repaid
14	209,700	53,000	3.96	39	industrial	farm	ftb	default
15	143,200	65,300	2.19	32	industrial	apartment	ftb	default
16	203,000	64,400	3.15	44	industrial	farm	ftb	repaid
17	247,800	63,800	3.88	46	industrial	house	stb	repaid
18	162,700	77,400	2.1	37	professional	house	ftb	repaid
19	213,300	61,100	3.49	21	industrial	apartment	ftb	default
20	284,100	32,300	8.8	51	industrial	farm	ftb	default
21	154,000	48,900	3.15	49	professional	house	stb	repaid
22	112,800	79,700	1.42	41	professional	house	ftb	repaid
23	252,000	59,700	4.22	27	professional	house	stb	default
24	175,200	39,900	4.39	37	professional	apartment	stb	default
25	149,700	58,600	2.55	35	industrial	farm	stb	default

```
if LOAN-SALARY RATIO < 1.5 then
  OUTCOME='repay'
else if LOAN-SALARY RATIO > 4 then
  OUTCOME='default'
else if AGE < 40 and OCCUPATION = 'industrial' then
  OUTCOME='default'
else
  OUTCOME='repay'
end if
```

What is Predictive Data Analytics?

```
if LOAN-SALARY RATIO < 1.5 then
  OUTCOME='repay'
else if LOAN-SALARY RATIO > 4 then
  OUTCOME='default'
else if AGF < 40 and OCCUPATION = 'industrial' then
  OUTCOME='default'
else
  OUTCOME='repay'
end if
```

 The real value of machine learning becomes apparent in situations like this when we want to build prediction models from large datasets with multiple features.

How Does Machine Learning Work?

 Machine learning algorithms work by searching through a set of possible prediction models for the model that best captures the relationship between the descriptive features and the target feature.

- Machine learning algorithms work by searching through a set of possible prediction models for the model that best captures the relationship between the descriptive features and the target feature.
- An obvious search criteria to drive this search is to look for models that are consistent with the data.

- Machine learning algorithms work by searching through a set of possible prediction models for the model that best captures the relationship between the descriptive features and the target feature.
- An obvious search criteria to drive this search is to look for models that are consistent with the data.
- However, because a training dataset is only a sample ML is an ill-posed problem.

Table: A simple retail dataset

ID	Вву	ALC	Org	GRP
1	no	no	no	couple
2	yes	no	yes	family
3	yes	yes	no	family
4	no	no	yes	couple
5	no	yes	yes	single

Table: A full set of potential prediction models before any training data becomes available.

BBY	ALC	ORG	GRP	M_1	\mathbb{M}_2	\mathbb{M}_3	\mathbb{M}_4	M_5	 [™] 6 561
no	no	no	?	couple	couple	single	couple	couple	couple
no	no	yes	?	single	couple	single	couple	couple	single
no	yes	no	?	family	family	single	single	single	family
no	yes	yes	?	single	single	single	single	single	couple
yes	no	no	?	couple	couple	family	family	family	 family
yes	no	yes	?	couple	family	family	family	family	couple
yes	yes	no	?	single	family	family	family	family	single
yes	yes	yes	?	single	single	family	family	couple	family

Table: A sample of the models that are consistent with the training data

BBY	ALC	ORG	GRP	M_1	M_2		\mathbb{M}_4	M_5	
no	no	no	couple	couple	couple	single	couple	couple	couple
no	no	yes	couple	single	couple		couple	couple	
no	yes	no	?	family	family		single	single	
no	yes	yes	single	single	single		single	single	
yes	no	no	?	couple	couple		family	family	
yes	no	yes	family	couple	family		family	family	
yes	yes	no	family	single	family		family	family	
yes	yes	yes	? -	single	single	family	family	couple	family

Table: A sample of the models that are consistent with the training data

Вву	/ ALC	ORG	GRP	M_1	\mathbb{M}_2		\mathbb{M}_4	M_5	
no	no	no	couple	couple	couple	single	couple	couple	couple
no	no	yes	couple	single	couple		couple	couple	
no	yes	no	?	family	family		single	single	
no	yes	yes	single	single	single		single	single	
yes	no no	no	?	couple	couple		family	family	
yes	no no	yes	family	couple	family		family	family	
yes	yes	no	family	single	family		family	family	
yes	yes	yes	?	single	single	family	family	couple	family

 Notice that there is more than one candidate model left! It is because a single consistent model cannot be found based on a sample training dataset that ML is ill-posed.

- Consistency ≈ memorizing the dataset.
- Consistency with noise in the data isn't desirable.
- Goal: a model that generalises beyond the dataset and that isn't influenced by the noise in the dataset.
- So what criteria should we use for choosing between models?

Lifecycle

- Inductive bias the set of assumptions that define the model selection criteria of an ML algorithm.
- There are two types of bias that we can use:
 - restriction bias
 - preference bias
- Inductive bias is necessary for learning (beyond the dataset).

How ML works (Summary)

- ML algorithms work by searching through sets of potential models.
- There are two sources of information that guide this search:
 - the training data,
 - 2 the inductive bias of the algorithm.

What is ML?

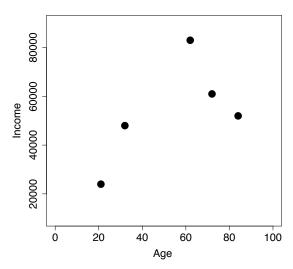
What is ML?

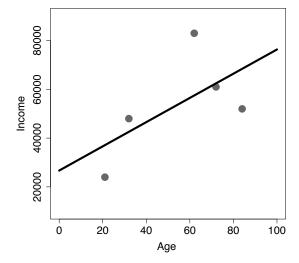
What Can Go Wrong With ML?

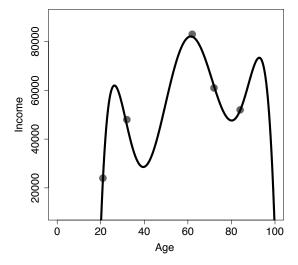
- No free lunch!
- What happens if we choose the wrong inductive bias:
 - underfitting
 - overfitting

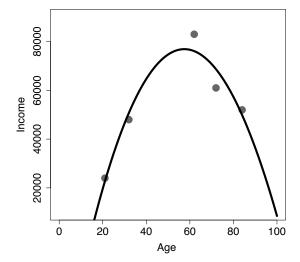
Table: The age-income dataset.

ID	AGE	INCOME
1	21	24,000
2	32	48,000
3	62	83,000
4	72	61,000
5	84	52,000









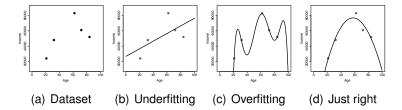


Figure: Striking a balance between overfitting and underfitting when trying to predict age from income.

Lifecycle

What is Predictive Data Analytics?

- There are many different types of machine learning algorithms.
- In this course we will cover four families of machine learning algorithms:
 - Information based learning
 - Similarity based learning
 - Probability based learning
 - Error based learning

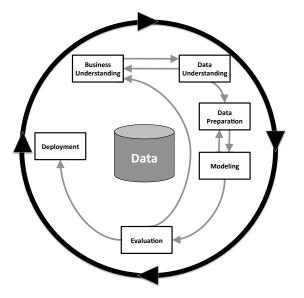


Figure: A diagram of the CRISP-DM process which shows the six key phases and indicates the important relationships between them. This figure is based on Figure 2 of [1].

Summary

Lifecycle

- Machine Learning techniques automatically learn the relationship between a set of descriptive features and a target feature from a set of historical examples.
- Machine Learning is an ill-posed problem:
 - generalize,
 - inductive bias.
 - underfitting.
 - overfitting.
- Striking the right balance between model complexity and simplicity (between underfitting and overfitting) is the hardest part of machine learning.

[1] R. Wirth and J. Hipp.

Crisp-dm: Towards a standard process model for data mining.

In Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining, pages 29–39. Citeseer, 2000.

- What is Predictive Data Analytics?
- What is Machine Learning?
- How Does Machine Learning Work?
- What Can Go Wrong With ML?
- The Predictive Data Analytics Project Lifecycle: Crisp-DM
- **Summary**