Fundamentals of Machine Learning for Predictive Data Analytics

Appendix A Descriptive Statistics and Data Visualization for Machine learning

John Kelleher and Brian Mac Namee and Aoife D'Arcy
john.d.kelleher@dit.ie brian.macnamee@ucd.ie aoife@theanalyticsstore.com
(1) Descriptive Statistics

- Descriptive Statistics for Continuous Features
- Descriptive Statistics for Categorical Features
- Populations \& Samples
(2) Data Visualization
- Bar Plots
- Histograms
- Box Plots
(3) Summary

Descriptive Statistics

- The arithmetic mean (or sample mean or just mean) of a set of n values for a feature $a, a_{1}, a_{2} \ldots a_{n}$, is denoted by the symbol \bar{a}, and is calculated as:

$$
\overline{\mathrm{a}}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{a}_{i}
$$

Example

ID	1	2	3	4	5	6	7	8
Height	150	163	145	140	157	151	140	149

$\frac{\text { APA }}{150163145140157151140149}$

Figure: The members of a school basketball squad. The dashed grey line shows the arithmetic mean of the players' heights.

Example

ID	1	2	3	4	5	6	7	8
Height	150	163	145	140	157	151	140	149

Figure: The members of a school basketball squad. The dashed grey line shows the arithmetic mean of the players' heights.

$$
\begin{aligned}
\overline{\mathrm{HEIGHT}} & =\frac{1}{8} \times(150+163+145+140+157+151+140+149) \\
& =149.375
\end{aligned}
$$

- The arithmetic mean is one measure of the central tendency of a sample (for our purposes a sample is just a set of values for a feature in an ABT).
- Any measure of central tendency is, however, just an approximation.

Example

- Suppose our basketball squad manage to sign a ringer measuring in at 229 cm

- The arithmetic mean for the full group is 158.235 cm and no longer represents the central tendency of the group.
- An unusually large or small value like this is referred to as an outlier - the arithmetic mean is very sensitive to outliers.
- The median of a set of values can be calculated by ordering the values from lowest to highest and selecting the middle value.
- If there is an even number of values in the sample then the median is obtained by calculating the arithmetic mean of the middle two values.

Example

Figure: The members of the school basketball squad ordered by height, the dashed grey line shows the median.

ID	4	7	3	8	1	6	5	2	9
Height	140	140	145	149	$\underline{\mathbf{1 5 0}}$	151	157	163	229

- We also measure the variation in our data.
- In essence, most of statistics, and in turn analytics, is about describing and understanding variation.
- The simplest measure of variation is the range:

$$
\text { range }=\max (a)-\min (a)
$$

Example

What is the range of the heights of the two basketball squads?

ID	1	2	3	4	5	6	7	8
Height	150	163	145	140	157	151	140	149
ID	1	2	3	4	5	6	7	8
Height	192	102	145	165	126	154	123	188

Example

What is the range of the heights of the two basketball squads?

$$
\begin{aligned}
& \text { range }=163-140=23 \\
& \text { range }=192-102=90
\end{aligned}
$$

- The variance of a sample measures the average difference between each value in a sample and the mean of that sample.
- The variance of the n values of a feature $a, a_{1}, a_{2} \ldots a_{n}$, is denoted $\operatorname{var}(a)$ and is calculated as:

$$
\operatorname{var}(a)=\frac{\sum_{i=1}^{n}\left(a_{i}-\bar{a}\right)^{2}}{n-1}
$$

Example

What is the variance of the heights of the two basketball squads?

ID	1	2	3	4	5	6	7	8
Height	150	163	145	140	157	151	140	149
ID	1	2	3	4	5	6	7	8
Height	192	102	145	165	126	154	123	188

Example

$$
\begin{aligned}
\operatorname{var}(\mathrm{HEIGHT}) & =\frac{(150-149.375)^{2}+(163-149.375)^{2}+\ldots+(149-149.375)^{2}}{8-1} \\
& =63.125 \\
\operatorname{var}(\mathrm{HEIGHT}) & =\frac{(192-149.375)^{2}+(102-149.375)^{2}+\ldots+(188-149.375)^{2}}{8-1} \\
& =1,011.41071
\end{aligned}
$$

- The standard deviation, sd, of a sample is calculated by taking the square root of the variance of the sample:

$$
\begin{align*}
s d(a) & =\sqrt{\operatorname{var}(a)} \tag{1}\\
& =\sqrt{\frac{\sum_{i=1}^{n}\left(a_{i}-\bar{a}\right)^{2}}{n-1}} \tag{2}
\end{align*}
$$

Example

What is the standard deviation of the heights of the two basketball squads?

ID	1	2	3	4	5	6	7	8
Height	150	163	145	140	157	151	140	149
ID	1	2	3	4	5	6	7	8
Height	192	102	145	165	126	154	123	188

Example

$$
\begin{aligned}
s d(\text { HEIGHT }) & =\sqrt{63.125} \\
& =7.9451 \ldots \\
s d(\text { HEIGHT })= & \sqrt{1,011.41071} \\
= & 31.8026 \ldots
\end{aligned}
$$

- Percentiles are another useful measure of the variation of the values for a feature: a proportion of $\frac{i}{100}$ of the values in a sample take values equal to or lower than the $i^{\text {th }}$ percentile of that sample.
- To calculate the $i^{\text {th }}$ percentile of the n values of a feature a, $a_{1}, a_{2} \ldots a_{n}$:
- First order the values in ascending order and then multiply n by $\frac{i}{100}$ to determine the index.
- If the index is a whole number we take the value at that position in the ordered list of values as the $i^{\text {th }}$ percentile.
- If index is not a whole number then we interpolate the value for the $i^{\text {th }}$ percentile as:
$i^{\text {th }}$ percentile $=(1-$ index_ $f) \times a_{\text {index_ }} w+i n d e x _f \times a_{i n d e x _w+1}$
where index_w is the whole part of index, index_f is the fractional part of index and $a_{\text {index_w }}$ is the value in the ordered list at position index_w.

Example

ID	2	7	5	3	6	4	8	1
Height	102	123	126	145	154	165	188	192

- What is the $25^{\text {th }}$ percentile of the heights of the basketball squad?
- What is the $80^{\text {th }}$ percentile of the heights of the basketball squad?

Example

- To calculate the $25^{\text {th }}$ percentile we first calculate index as $\frac{25}{100} \times 8=2$. So, the $25^{\text {th }}$ percentile is the second value in the ordered list which is 123.
- To calculate the $80^{\text {th }}$ percentile we first calculate index as $\frac{80}{100} \times 8=6.4$. Because index is not a whole number we set index_w to the whole part of index, 6, and index_f to the fractional part, 0.4. Then we can calculate the $80^{\text {th }}$ percentile as:

$$
(1-0.4) \times 165+0.4 \times 188=174.2
$$

- We can use percentiles to describe another measure of variation know as the inter-quartile range.
- The inter-quartile range is calculated as the difference between the $25^{\text {th }}$ percentile and the $75^{\text {th }}$ percentile. ${ }^{1}$
${ }^{1}$ These percentiles are also known the lower quartile (or $1^{\text {st }}$ quartile) and upper quartile (or $3^{r d}$ quartile) hence the name inter-quartile range.

Example

For the heights of the first basketball team the inter-quartile range is $151-140=11$, while for the second team it is $165-123=42$.

- For categorical features we are interested primarily in frequency counts and proportions.
- The frequency count of each level of a categorical feature is calculated by counting the number of times that level appears in the sample.
- The proportion for each level is calculated by dividing the frequency count for that level by the total sample size.
- Frequencies and proportions are typically presented in a frequency table.
- The mode is a measure of the central tendency of a categorical feature and is simply the most frequent level.
- We often also calculate a second mode which is just the second most common level of a feature.

Table: A dataset showing the positions and weekly training expenses of a school basketball squad.

ID	Position	Training Expenses	ID	Position	Training Expenses
1	center	56.75	11	center	550.00
2	guard	1,800.11	12	center	223.89
3	guard	1,341.03	13	center	103.23
4	forward	749.50	14	forward	758.22
5	guard	1,150.00	15	forward	430.79
6	forward	928.30	16	forward	675.11
7	center	250.90	17	guard	1,657.20
8	guard	806.15	18	guard	1,405.18
9	guard	1,209.02	19	guard	760.51
10	forward	405.72	20	forward	985.41

Table: A frequency table for the Position feature from the professional basketball squad dataset in Table $4{ }^{[34]}$.

Level	Count	Proportion
guard	8	40%
forward	7	35%
center	5	25%

- In statistics it is very important to understand the difference between a population and a sample.
- The term population is used in statistics to represent all possible measurements or outcomes that are of interest to us in a particular study or piece of analysis.
- The term sample refers to the subset of the population that is selected for analysis.
- The margin of error reported in poll results takes into account the fact that the result is based on a sample from a much larger population.

Table: A number of poll results from the run up to the 2012 US Presidential election.

Poll	Obama	Romney	Other	Date	Margin of Error	Sample Size
Pew Research	50	47	3	$04-$ Nov	± 2.2	2,709
Gallup	49	50	1	$04-$ Nov	± 2.0	2,700
ABC News/Wash Pos	50	47	3	$04-$ Nov	± 2.5	2,345
CNN/Opinion Research	49	49	2	$04-$ Nov	± 3.5	963
Pew Research	50	47	3	$03-$ Nov	± 2.2	2,709
ABC News/Wash Post	49	48	3	$03-$ Nov	± 2.5	2,069
ABC News/Wash Post	49	49	2	30-Oct	± 3.0	1,288

Data Visualization

- When performing data exploration data visualization can help enormously.
- In this section we will describe three important data visualization techniques that can be used to visualize the values in a single feature:
- the bar plot
- the histogram
- the box plot

Table: A dataset showing the positions and weekly training expenses of a school basketball squad.

ID	Position	Training Expenses	ID	Position	Training Expenses
1	center	56.75	11	center	550.00
2	guard	1,800.11	12	center	223.89
3	guard	1,341.03	13	center	103.23
4	forward	749.50	14	forward	758.22
5	guard	1,150.00	15	forward	430.79
6	forward	928.30	16	forward	675.11
7	center	250.90	17	guard	1,657.20
8	guard	806.15	18	guard	1,405.18
9	guard	1,209.02	19	guard	760.51
10	forward	405.72	20	forward	985.41

Bar plots are great for categorical features

(a) Frequency

(b) Proportion

(c) Ordered

Bar plots don't work for continuous features

By dividing the range of a variable into intervals, or bins, we can generate histograms
(a) 200 unit intervals

Interval	Count	Density	Prob
$[0,200)$	2	0.0005	0.1
$[200,400)$	2	0.0005	0.1
$[400,600)$	3	0.00075	0.15
$[600,800)$	4	0.001	0.2
$[800,1000)$	3	0.00075	0.15
$[1000,1200)$	1	0.00025	0.05
$[1200,1400)$	2	0.0005	0.1
$[1400,1600)$	1	0.00025	0.05
$[1600,1800)$	1	0.00025	0.05
$[1800,2000)$	1	0.00025	0.02

(b) 500 unit intervals

Interval	Count	Density	Prob
$[0,500)$	6	0.0006	0.3
$[500,1000)$	8	0.0008	0.4
$[1000,1500)$	4	0.0004	0.2
$[1500,2000)$	2	0.0002	0.1

Figure: Frequency and density histograms for the continuous Training Expenses feature from Table $4{ }^{[34]}$.

Box plots are another useful way of visualising continuous variables

Figure: The structure of a box plot.

Figure: A box plot for the Training Expenses feature from the basketball squad dataset in Table $4{ }^{[34]}$.

Summary

(1) Descriptive Statistics

- Descriptive Statistics for Continuous Features
- Descriptive Statistics for Categorical Features
- Populations \& Samples
(2) Data Visualization
- Bar Plots
- Histograms
- Box Plots
(3) Summary

