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CSC 558 Data Mining and Predictive Analytics II, Fall 2021 

Dr. Dale E. Parson, Assignment 3, Classification of time series data consisting of four-field MIDI1 

noteon/noteoff messages (Musical Instrument Digital Interface) similar in nature to a time series of 

network packets.2 

 

DUE By 11:59 PM on Thursday November 11, 2021 via D2L Assignment 3. The standard 10% per 

day deduction for late assignments applies. 

 

We will have some on-line work time during class time. 

 

Perform the following steps to set up for this project. 

 

Download https://acad.kutztown.edu/~parson/midi558fall2021.problem.zip onto your machine. 

Unzip that file. 

All of your work uses data in the midi558fall2021 directory. 

 

You will see the following files in this midi558fall2021 directory: 

 

README.txt   Your answers to Q1-Q15 questions go into here, in the required format. 

fall2021concert.arff  The primary handout ARFF file for assignment 3. 

fall2021notenorm.arff  An auxiliary ARFF file to analyze. 

BIGfall2021notenorm.arff Another auxiliary ARFF file to analyze. 

OneNoteAtATime.arff  An edited version of fall2021concert.arff described at STEP H. 

TimeLag1.arff through TimeLag10.arff are derived from OneNoteAtATime.arff for Q11 and later. 

pypardata/   My Python library for generating time-lagged attributes. 

makefiles/   A directory of files used to create the TimeLag ARFF files. 

 

ALL OF YOUR ANSWERS FOR Q1 through Q15 BELOW MUST GO INTO THE README.txt 

file supplied as part of assignment handout directory midi558fall2021. You will lose an automatic 20% of 

the assignment if you do not adhere to this requirement. 

 

BACKGROUND: 

The dataset in fall2021concert.arff consists of 4 movements3 of a generated musical score for backing tracks 

over which I have performed live music on a webcast, with 4 instruments in each movement, where an 

instrument takes the form of a MIDI channel. The MIDI data packets we will analyze contain 4 fields each 

as in the following table. 

MIDI command MIDI channel Packet’s data1 Packet’s data2 

noteon or noteoff 0, 1, 2, or 3 note number range [0,127] notevelocity [0,127] 

Our project uses only two MIDI command types out of many available, noteon for sounding a note, and 

noteoff for silencing one previously sounded. The ARFF files use only noteon, since there is a one-to-one 

correspondence between noteon and noteoff data, varying only by note length (time from noteon until 

 
1 http://midi.teragonaudio.com/  
2 This project derives from research into real-time analysis of MIDI data streams that I did in 2005-2006 
http://faculty.kutztown.edu/parson/pubs/dafx06_dparson_final.pdf 
and work that students and I did in real-time algorithmic music generation in 2009-2010 
http://faculty.kutztown.edu/parson/pubs/ICMC2010DaleParsonScrabbleMidi.pdf . 
3 A movement is an interval of time during which each instrument plays in 1 consistent mode, and they play more-or-less together. 

https://acad.kutztown.edu/~parson/midi558fall2021.problem.zip
http://midi.teragonaudio.com/
http://faculty.kutztown.edu/parson/pubs/dafx06_dparson_final.pdf
http://faculty.kutztown.edu/parson/pubs/ICMC2010DaleParsonScrabbleMidi.pdf
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noteoff), a property that we are not analyzing. A numeric MIDI channel in the range [0,15] maps to an 

instrument in a synthesizer; our design uses only the first four [0,3]. A noteon packet’s data1 field maps to 

a note number in the range [0,127], giving pitch similar to 128 keys on a keyboard. A noteon packet’s 

data2 field maps to a note velocity in the range [0,127], giving volume (amplitude) of the note. 

 

Open fall2021concert.arff in Weka’s Preprocess tab. This dataset is a score for a 4-movement musical 

accompaniment piece that I used in a March 24, 2018 webcast4. My Jython generator that generates this 

score also generates 16 MIDI sequence files (sequences of these MIDI data packets), not included in your 

handout, that I used within a software synthesis framework in the performance. There are 16 MIDI files for 

4 movements X 4 channels. Here is a screen shot of the software synthesis framework I will use during the 

performance, called Ableton Live. The channel-mapped instruments run in 4 vertical columns, and the 4 

movements run in 4 horizontal rows. 

 

 
Here are the attributes in fall2021concert.arff, one per noteon message (a.k.a. data packet). 

 

movement  Tagged numeric movement in which this note sounds in the range [0,3]. 

channel  MIDI instrument (channel) in which this note sounds in the range [0,3]. 

command  MIDI command, always noteon for this dataset. 

notenum  MIDI note pitch in the range [0,127]; notenum % 12 == 0 is a C note. 

velocity  MIDI note volume in the range [0,127]. 

tick   MIDI timing of this note in beats within its movement, starting at 0. 

ttonic   Tagged data identifying the movement/channel’s primary note (“do” in its scale), [0,11]. 

tmode   Tagged data identifying the movement/channel’s mode, i.e., its musical scale. 

 

The attributes described as Tagged are meta-data that, while conceptually part of the score, are not part of 

the per-channel MIDI data streams that we want to analyze. The attributes described as “MIDI” are part of 

those MIDI data streams. 

 
4 http://radio.electro-music.com  

http://radio.electro-music.com/
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MIDI notes do not represent audio data samples as in assignments 1 and 2. They represent commands sent 

to electronic musical instruments. You can think of them as domain-oriented network packets, which is 

what they are. Each MIDI packet in this dataset represents one noteon command. There are a few things 

you need to understand about notes and modes (a.k.a. scales) before beginning analysis. 

 

0 1 2 3 4 5 6 7 8 9 10 11 

C C# / 

Db 

D D# / 

Eb 

E F F# / 

Gb 

G G# / 

Ab 

A A# / 

Bb 

B 

 

There are twelve notes in a Western chromatic scale, after which this sequence repeats at the next higher 

octave. These are the white & black keys on a piano. If a note is divisible by 12 (note MODULO 12 == 0), 

it is a C note, although we don’t care about its name for this assignment. Note number MODULO 12 gives 

its name, and note number / 12 gives its octave. Whereas the doubling of a harmonic frequency in 

assignments 1 and 2 gave the same perceived note at an octave higher, here adding 12 to a note’s number 

gives the same note at an octave higher, i.e., a doubling of its primary harmonic frequency component. 

 

Our primary goal in assignment 3 is to extract the musical mode, also known as its scale, for the composite 

key of a (movement, channel). Different musicians on different channels can play different modes within 

the same temporal movement. We can extract mode directly by mapping from (movement, channel) 

ordered pairs in the data, just like reading a musical score. However, a main goal is to extract musical mode 

from non-tagged attributes, primarily channel and notenum attribute-values. Each instance carries only a 

single notenum, but a mode is composed of multiple notes (actually note intervals) as the following Jython 

data from the project generator illustrates. 

 

# Major modes (major 3rd) 

__IonianMode__ = [0, 2, 4, 5, 7, 9, 11, 12]     # a.k.a. major scale 

__LydianMode__ = [0, 2, 4, 6, 7, 9, 11, 12]     # fourth is sharp 

__MixolydianMode__ = [0, 2, 4, 5, 7, 9, 10, 12]   # seventh is flat 

# Minor modes (minor 3rd) 

__AeolianMode__ = [0, 2, 3, 5, 7, 8, 10, 12]    # natural minor scale 

__DorianMode__ = [0, 2, 3, 5, 7, 9, 10, 12]     # sixth is sharp 

__Phrygian__ = [0, 1, 3, 5, 7, 8, 10, 12]       # 2nd is flat 

# Locrian has Minor third, also known as a diminished mode because of flat 5th 

__LocrianMode__ = [0, 1, 3, 5, 6, 8, 10, 12]        # 2nd is flat, 5th is flat 

# Chromatic is not a mode, it is just all the notes. 

__Chromatic__ = [i for i in range(0, 13) # actual notes are [0, 12] 

The values [0,12] in those 8 lists are intervals between notes in a mode; the lists include 12 as the octave 

partner of the tonic at 0, but otherwise 12 can be considered as 0 with respect to notenum % 12.  However, 

the actual mode in the MIDI data depends both on the tonic note of a movement-channel pair and the 

intervals of other notes in relation to that tonic. For example, if the tonic note is 62, which is the D above 

middle C with a note number of 60 (62 % 12 = 2), then the notes in the Aeolian mode (see above) start at 

the tonic, i.e., [2, 4, 5, 7, 9, 10, 12, 14]; these intervals are normalized to the range [0,11] by using MODULO 

12 (% 12), and offset to show the tonic at the leftmost position. 

 

My Jython generator uses two statistical curves in generating individual notes, the Gaussian5 (a.k.a. 

Normal) curve with the peak at the tonic note, or the uniform6 curve that scatters notes uniformly. It uses 

 
5 http://www.muelaner.com/wp-content/uploads/2013/07/Standard_deviation_diagram.png  
6 https://bgsu.instructure.com/courses/901773/files/32348049/preview?verifier=KafdUjjLOHIHGljYCDzfKONmzorGoVo7uTgoKP7Z  

http://www.muelaner.com/wp-content/uploads/2013/07/Standard_deviation_diagram.png
https://bgsu.instructure.com/courses/901773/files/32348049/preview?verifier=KafdUjjLOHIHGljYCDzfKONmzorGoVo7uTgoKP7Z


 

page 4 

only one of these curves for a given movement-channel of notes. The Gaussian distribution is more 

predictable and sounds more consonant to the listener when used with a consonant mode. 

 

To find the target attribute tmode from only the non-tagged MIDI attributes, we must do the following 

steps. 

1. Find the actual tonic from then MIDI data, as the most frequently occurring interval (normalized 

via %12), in each movement-channel pair. I am guaranteeing that a given channel does not change 

tonic during a movement. We can confirm our investigation to find tonic, temporarily, by 

consulting tagged attribute ttonic. 

2. Translate each notenum in each instance to normalized attribute notenormalized, which is its 

distance MODULO 12 from its tonic of the previous step. This step is similar the normalization of 

the fundamental frequency of assignments 1 and 2 into amplbin1; here we are normalizing the tonic 

for each movement-channel pair into tonic interval (distance) of 0. 

3. Collapse notenormalized attributes from multiple instances across time into multiple time-lagged 

attributes within each instance in order to infer the actual mode. It is not possible with high 

accuracy to infer multiple-interval modes appearing on the previous page with only one interval (in 

notenormalized) worth of data. We need multiple notes that are adjacent in time in order to infer 

the mode being played by analyzing only non-tagged data in the musical data stream. That 

statement is true for human listeners and for our analysis. I am guaranteeing that a given channel 

does not change mode during a movement. 

 

These are the main points you need to know about the application domain. 

 

PLEASE PUT YOUR ANSWERS INTO README.txt as before. Save over top of the original file 

fall2021concert.arff only when you see the instruction SAVE. You can save work-in-progress in other 

files, but please do not turn them in or over-write fall2021concert.arff by accident. Questions Q1 through 

Q15 are worth 6.66% each. 

 

PREP STEP A: Run Weka’s Preprocess filter StringToNominal for first-last to translate string 

attributes, then run filter RemoveUseless and SAVE this file over top of fall2021concert.arff. 

 

Q1. What attributes did RemoveUseless remove and why?  

 

PREP STEP B: 

B.a. Temporarily remove all attributes except movement & ttonic. 

B.b. Temporarily run unsupervised attribute filter NumericToNominal only on movement, inspect in 

Preprocess. 

B.c. Next, temporarily run filter NumericToNominal only on ttonic, inspect in Preprocess. 

B.d. Use a classifier (rule, tree, statistical, or other) to find a 100% Correctly Classified Instances with 

Kappa statistic = 1 and all error measure equal to 0 to find the movement -> ttonic mapping. 

 

Q2. Paste the rule, tree, or other structure here. Identify the classifier. Paste Correctly Classified Instances 

through Root relative squared error as well. 

 

Q3. Find three other rules, trees, formulas, tables, or other structures that give Correctly Classified Instances 

= 100% with Kappa=1 and 0 for the error measures and paste them here. Identify the classifiers. 

 

PREP STEP C: Execute UNDO once to make ttonic numeric while leaving movement as nominal. Run 

LinearRegression & M5P. 
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Q4. Paste their formula/tree and results (correlation coefficient and error measures) here. Interpret their 

formulas in light of Q2 and Q3 classifiers. Do they agree with those previous results? If so or not, how do 

you interpret the formula of LinearRegression and the tree/formula(s) of M5P to agree or disagree with the 

classifiers of Q2 and Q3? 

 

PREP STEP D: Load fall2021concert.arff that you saved after RemoveUseless. Remove attribute ttonic 

and SAVE this file over top of fall2021concert.arff. Now run J48, NaiveBayes, and BayesNet to classify 

tmode as the target attribute. 

 

Q5. Which classifier is the most accurate, the second most accurate, and the third most accurate of these 

three, in terms of kappa? PASTE the classifier's structure (tree, table, or typed copy of the BayesNet's 

graph's tables) AND accuracy/error measures ONLY for the most accurate of the three. If it is BayesNet, 

hitting Alt-Visualize Graph on its Result list panel shows the following graph: 

 

 
BayesNet graph for Q5 

 

Clicking nodes give conditional probability tables, e.g. the following: 

  

 
Unconditional probability of each tmode 

 

 
Conditional probability of movement given that tmode. 
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Here is how BayesNet tables’ joint probabilities interact: 
 
>>> tmode = { 
...     'Ionian' : .348 , 'Mixolydian' : .092 , 'Lydian' : .159, 
...     'Aeolian' : .123, 'Dorian' : .031, 'Phrygian' : .062, 
...     'Locrian' : .062, 'Chromatic' : .123} # These sum to 1 = 100% 
 
>>> movement_given_tmode = { 
...     'Ionian' : [.399, 0, .177, .424],       # These sum to 1 = 100% 
...     'Mixolydian' : [.333, .001, .001, .666], # These sum to 1 = 100% 
...     'Lydian' : [ .484, 0, 0, .515], 
...     'Aeolian' : [0, .999, 0, 0], 
...     'Dorian' : [.002, .994, .003, .002], 
...     'Phrygian' : [.001, .997, .001, .001], 
...     'Locrian' : [.001, .001, .997, .001], 
...     'Chromatic' : [0, 0, .999, 0]} 
 
>>> sum = 0.0 
>>> for movement in range(0,4):         # 0, 1, 2, 3 
...     for mode in tmode.keys(): 
...             jointProbability = tmode[mode] * movement_given_tmode[mode] \ 
...                     [movement] 
...             print("Probability of", movement, "given", mode, 
...                     "=", jointProbability) 
...             sum += jointProbability 
...  
 
 
Probability of 0 given Ionian = 0.138852 
Probability of 0 given Mixolydian = 0.030636 
Probability of 0 given Lydian = 0.076956 
Probability of 0 given Aeolian = 0.0 
Probability of 0 given Dorian = 6.2e-05 
Probability of 0 given Phrygian = 6.2e-05 
Probability of 0 given Locrian = 6.2e-05 
Probability of 0 given Chromatic = 0.0 
Probability of 1 given Ionian = 0.0 
Probability of 1 given Mixolydian = 9.2e-05 
Probability of 1 given Lydian = 0.0 
Probability of 1 given Aeolian = 0.122877 
Probability of 1 given Dorian = 0.030814 
Probability of 1 given Phrygian = 0.061814 
Probability of 1 given Locrian = 6.2e-05 
Probability of 1 given Chromatic = 0.0 
Probability of 2 given Ionian = 0.06159599999999999 
Probability of 2 given Mixolydian = 9.2e-05 
Probability of 2 given Lydian = 0.0 
Probability of 2 given Aeolian = 0.0 
Probability of 2 given Dorian = 9.3e-05 
Probability of 2 given Phrygian = 6.2e-05 
Probability of 2 given Locrian = 0.061814 
Probability of 2 given Chromatic = 0.122877 
Probability of 3 given Ionian = 0.147552 
Probability of 3 given Mixolydian = 0.061272 
Probability of 3 given Lydian = 0.081885 
Probability of 3 given Aeolian = 0.0 
Probability of 3 given Dorian = 6.2e-05 
Probability of 3 given Phrygian = 6.2e-05 
Probability of 3 given Locrian = 6.2e-05 
Probability of 3 given Chromatic = 0.0 
>>> sum 
0.9997180000000001 
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COMMENT 1: Observe the importance of attribute movement in achieving this degree of accuracy. 

Attribute movement is a tagged attribute that is not part of the musical data. Using it to infer tmode is like 

reading the musical score to determine the mode used in each movement. 

 

Now we need to determine the tonic from the note musical data and verify that we achieve the same 

movement -> tonic correlation as in Q2-Q3. 

 

We need to find some “MODULO 12” interval values in Weka. Weka filter NumericTransform with 

java.lang.Math.floorMod does not work because there is no way to pass two arguments from Weka. We 

will use Weka AddExpression filters that incorporate the floor() function to find the integer MODULO. 

Here is an example AddExpression expression and a Python function. 

 

   noteinterval = aN - (floor(aN / 12) * 12)  # AddExpression for Weka attribute aN, N is attribute number 

   # The above line gives “aN % 12”, a.k.a. “aN MODULO 12”. 

 

   >>> def modulo(number, divisor): 

   ...     quotient = floor(number / divisor) # floor discards any fraction 

   ...     result = number - (quotient * divisor) 

   ...     return result 

 

PREP STEP E: Use AddExpression to create a new attribute noteinterval derived from notenum as in: 

notenum MODULO 12, for 12 steps in a scale. This will give a range of values [0,11], with peaks for the 

ttonic values of Q2-Q3. BE CAREFUL NOT TO INCLUDE EXTRA SPACES IN AddExpression’s 

created-attribute name, because Weka includes such spaces in names. Also, BE CAREFUL WITH 

SPELLING! I misspelled partitionedticks as partionedticks in a later step, wasting some time. YOU CAN 

SPOT CHECK SOME ENTRIES BY PERFORMING IN PYTHON 

 notenum % 12  # For various notenum values in Weka’s Edit window 

 

Q6. Correlate movement -> noteinterval, with noteinterval as the target attribute, using temporary 

filtering techniques identical to Q2, i.e. with only movement and noteinterval in the dataset as 

NumericToNominal values. PASTE the resulting classification structure and accuracy/error measures here. 

Does the model (rule, decision tree, or table) agree with your results in Q2? Does the accuracy agree with 

your results in Q2? Explain any differences in accuracy/error measures compared to Q2. Hint: Inspect the 

names of the two attributes used in Q2 versus the names of the two attributes used in Q6. 

 

PREP STEP F: Execute Undo as necessary to get back to the state where you had just created derived 

attribute noteinterval via AddExpression; do NOT remove noteinterval. Use AddExpression to create a 

new attribute tonic that is an identical per-instance copy of the value in movement. Reorder the attributes 

to put the tonic copy of movement immediately after movement in the attribute list, without changing any 

other relative ordering. I have found that the next step will not work if tonic is the last, target attribute. Use 

unsupervised attribute filter MathExpression to over-write attribute tonic (which currently holds a 

movement number) with the per-movement tonic found in step Q2. You will can use a nested ifelse 

ifelse(CONDITION1,RESULT1,ifelse(CONDITION2,RESULT2,RESULT3)) 

expression that is conditional on the movement number to map movement number to its tonic that you 

found in Q2.  
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Weka’s MathExpression pop-up documentation 

 

Here is some poor documentation; we are NOT doing the Math Discretization section, but it does show an 

ifelse example:  

 https://waikato.github.io/weka-wiki/using_the_mathexpression_filter/  

Use MathExpression’s "=" comparator or "<" comparator in a nested ifelse expression to do this mapping. 

MathExpression actually mutates (changes) all attributes by default, so make sure to set its 

ignoreRange ranges to exclude all attributes except tonic. MathExpression uses the symbol A to refer 

to the current attribute being mutated. You do NOT need to supply the attribute’s number, since it is always 

just the current attribute being mutated. 

 

Q7. Show your MathExpression command line here. 

 

Q8. Correlate movement -> tonic, with tonic as the target attribute, using temporary filtering techniques 

similar to Q2, i.e. with only movement and tonic in the dataset as NumericToNominal values. PASTE the 

resulting classification structure and accuracy/error measures here. Does this result agree with your result 

in Q2? Explain any differences in accuracy/error measures compared to Q2. 

 

PREP STEP G: Execute Undo as necessary to get back to the state where you had just configured derived 

attribute tonic via MathExpression. Create a new AddExpression derived attribute notenormalized 

according to the formula: 

   notenormalized = (noteinterval - tonic) MODULO 12 

This attribute should give a Preprocess histogram similar to this one. Weka’s old version bug of not keeping 

track of the proper class attribute may color the following histogram, but the shape and numbers on columns 

should be identical to the following image. 

 

https://waikato.github.io/weka-wiki/using_the_mathexpression_filter/
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Remove notenum and noteinterval, since we now have their normalized derived attributes in tonic and 

notenormalized. Remove velocity since target attribute tmode does not depend on it. 

 

Reorder the remaining 6 attributes so that movement is attribute 1 (a1), channel is attribute 2, and tmode 

is the last, target attribute. Keep the relative order of the other attributes unchanged. SAVE THIS DATA 

as tmp.arff, then re-load tmp.arff, to work around the new Weka bug in tracking the correct class attribute, 

which is now tmode. 

 

Q9. Run the most accurate classifier of Q5 to find whether its accuracy has changed. Record the classifier 

structure and its results here, and explain any difference or lack of difference from Q5. 

 

Q10. Temporarily remove attribute movement and re-run this classifier. Record its classifier structure and 

its accuracy results using the same classifier as Q9. What happens to accuracy, and how does the classifier 

structure change? Relate your answer back to COMMENT 1. 

 

PREP STEP H: Load supplied file OneNoteAtATime.arff into Weka. This ARFF file consists of the 

current dataset with which you have been working with the following edits. I am supplying this to avoid 

going back and forth to the acad machine to run scripts. I restored movement (movement and channel are 

the attributes 1 and 2, and tmode is the last). Next, I used AddExpression to create a new derived attribute 

partitionedticks according to this formula: 

 

 partitionedticks = (movement * 20000) + (channel * 2000) + tick 

 

I did this because there are up to 512 notes per movement-channel pair, and the value in attribute tick re-

starts at 0 at the start of each movement, as necessitated by the music synthesizers. We want to infer the 

tmode without using any other tagged attributes, so we need to separate MIDI data streams into 16 distinct 

virtual-temporal regions, 1 for each movement-channel pair. We want to avoid mingling MIDI musical data 

from different movements together and from different channels within a movement together. I Reordered 

the attributes to put partitionedticks just after attribute tick, restoring tmode as the last attribute, and kept 

the relative order of the other attributes the same. I have supplied this dataset as OneNoteAtATime.arff. 
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Temporarily Remove all but the following 4 attributes. We are removing movement, tick, and 

partitionedticks because they serve as part of the musical score in relating non-note data to tmode. 

 

 
 

Q11. Run the classifier of Q10 and confirm to yourself that the Correctly Classified Instances and Kappa 

are within 10% of their values in Q10. Record these two values as part of your answer for Q11 (tag them 

with BEFORE in README.txt as appears below). Now note the following files that I generated from 

OneNoteAtATime.arff by running Unix command chmod +x ./maketimelag && ./maketimelag 10 

python. This command creates the following 10 files. 

 

TimeLag1.arff  TimeLag2.arff  TimeLag3.arff  TimeLag4.arff 

TimeLag5.arff  TimeLag6.arff  TimeLag7.arff  TimeLag8.arff 

TimeLag9.arff  TimeLag10.arff 

 

For each instance in OneNoteAtATime.arff, this command creates TimeLag1.arff by copying 

notenormalized for each instance’s temporally preceding instance into the subsequent 

notenormalized_lag1 attribute, as temporally ordered by partitionedticks. Load TimeLag1.arff into 

Weka, Reorder to put tmode last, SAVE and RE-LOAD TimeLag1.arff. Remove all but the above 4 

attributes + notenormalized_lag1 (KEEP channel, tonic, notenormalized, notenormalized_lag1, and 

tmode) and rerun the classifier of Q11, and record Correctly Classified Instances and Kappa values with 

AFTER. Did they improve, degrade, or stay the same compared to the BEFORE values? Explain why. 

 

 
 

Classifier? BEFORE 

Correctly Classified Instances        N               N % 

Kappa statistic                          N 

Classifier? AFTER 

Correctly Classified Instances        N               N % 

Kappa statistic                          N 

 

PREP for Q12. The makefile also creates TimeLag2.arff through TimeLag10.arff with additional levels of 

time lagging, i.e., 2-time lags through 10-time lags, from their predecessors. Inspect TimeLag10.arff in 

Weka to see the lagged attributes. Open TimeLag10.arff, Reorder the attributes to put tmode last, SAVE 

and RE-LOAD TimeLag10.arff, and Remove movement, tick, and partitionedticks as before, so that we 

can try to infer tmode from channel-temporally associated note information. Keep these attributes: 
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Q12. From among the classifiers that we have used in previous projects (or pick one that is new to you!), 

run a classifier using 10-fold Cross validation testing that gives at least 98% Correctly Classified Instances 

on this TimeLag10.arff dataset. Tell me the exact classifier you used, including any configuration 

parameter changes. If you can get it to 99.5% using Cross-validation testing, I will award 10 bonus points. 

In addition to identifying the classifier, give the following measures, and state why you think it classifies 

well. Here are two of mine. 

 
Correctly Classified Instances        8220               98.9408 % 

Incorrectly Classified Instances        88                1.0592 % 

Kappa statistic                          0.9869 

Mean absolute error                      0.0034 

Root mean squared error                  0.0465 

Relative absolute error                  1.6624 % 

Root relative squared error             14.6324 % 

=== Confusion Matrix ===  

 

    a    b    c    d    e    f    g    h   <-- classified as 

 2884    2    0    3    0    0    0    1 |    a = Ionian 

    1  757    4    0    0    0    0    6 |    b = Mixolydian 

    0    4 1301    0    0    0    2   15 |    c = Lydian 

    1    0    0 1023    0    0    0    0 |    d = Aeolian 

    0    0    0    0  256    0    0    0 |    e = Dorian 

    0    0    0    0    0  512    0    0 |    f = Phrygian 

    7    0    3    0    0    0  502    0 |    g = Locrian 

    0   24   13    0    2    0    0  985 |    h = Chromatic 

 

Correctly Classified Instances        8221               98.9528 % 

Incorrectly Classified Instances        87                1.0472 % 

Kappa statistic                          0.987  

Mean absolute error                      0.0035 

Root mean squared error                  0.0462 

Relative absolute error                  1.7144 % 

Root relative squared error             14.5592 % 

=== Confusion Matrix === 

    a    b    c    d    e    f    g    h   <-- classified as 

 2884    2    0    3    0    0    0    1 |    a = Ionian 

    1  757    4    0    0    0    0    6 |    b = Mixolydian 

    0    4 1302    0    0    0    1   15 |    c = Lydian 

    1    0    0 1023    0    0    0    0 |    d = Aeolian 
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    0    0    0    0  256    0    0    0 |    e = Dorian 

    0    0    0    0    0  512    0    0 |    f = Phrygian 

    7    0    3    0    0    0  502    0 |    g = Locrian 

    0   24   13    0    2    0    0  985 |    h = Chromatic 

 

Prep for Q13. Load fall2021notenorm.arff into Weka and explore its data using the Preprocess tab and 

Edit window. It consists of only 16 instances, one for each movement-channel pair. The notenormalized0 

through notenormalized11 attributes are simply histogram counters for exactly how many times that 

particular notenormalized value in the range [0,11] appears in that movement-channel. After running 

StringToNominal, SAVE over top of fall2021notenorm.arff. Then try running any classifier you like. It 

should be possible to hit 100% Correctly Classified Instances easily, but it is not. There are only 16 

instances, and the movement-channel pair alone should be enough to correctly classify tmode. Furthermore, 

if I run Simple K-means clustering on Weka’s Cluster tab (K-means is not a classifier – TRY IT!), I get 

exactly the right association of movement-channel pairs to tmode. Below are 4 rows from a 16-cluster K-

means clustering of this dataset. The rows are CL = cluster number, MV = movement, CH = channel, and 
TM = tmode. 

 

CL 0 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

Clustered Instances 

 0       1 (  6%) 

 1       1 (  6%) 

 2       1 (  6%) 

 3       1 (  6%) 

 4       1 (  6%) 

 5       1 (  6%) 

 6       1 (  6%) 

 7       1 (  6%) 

 8       1 (  6%) 

 9       1 (  6%) 

10       1 (  6%) 

11       1 (  6%) 

12       1 (  6%) 

13       1 (  6%) 

14       1 (  6%) 

15       1 (  6%) 

MV 2 0 2 3 2 1 3 1 1 0 3 2 0 3 1 0 

CH 3 0 1 3 2 3 0 0 2 1 1 0 3 2 1 2 

TM C

h

r

o

m

a

t

i

c 

I

o

n

i

a

n 

L

o

c

r

i

a

n 

L

y

d

i

a

n 

C

h

r

o

m

a

t

i

c 

P

h

r

y

g

i

a

n 

I

o

n

i

a

n 

A

e

o

l

i

a

n 

D

o

r

i

a

n 

I

o

n

i

a

n 

I

o

n

i

a

n 

I

o

n

i

a

n 

L

y

d

i

a

n 

M

i

x

o

l

y

d

i

a

n 

A

e

o

l

i

a

n 

M

i

x

o

l

y

d

i

a

n 

 

__movementModeNames__ = [   # Jython tables ordered by movement, channel, that generate the notes 

    ["Ionian", "Ionian", "Mixolydian", "Lydian"], 

    ["Aeolian", "Aeolian", "Dorian", "Phrygian"], 

    # Give the lead instrument Ionia in the dissonant section for added tension. 

    ["Ionian", "Locrian", "Chromatic", "Chromatic"], 

    ["Ionian", "Ionian", "Mixolydian", "Lydian"], 

]   # reprise first movement in fourth movement 

 

Q13. Why does classification work so poorly on this 16-element dataset, even though these attributes are 

100% predictive for tmode? 

 

Q14. Find some combination of classifier (I used one that we previously used) and Classify Test Options 

in Weka that give this result on these 16 instances. Tell me the classifier, the Test Option, and explain the 

reason for the improvement. (HINT: If you can’t find it, investigate file BIGfall2021notenorm.arff, which 

simply repeats each instance in fall2021notenorm.arff 1024 times. HOWEVER, your answer must be for 

fall2021notenorm.arff, NOT BIGfall2021notenorm.arff. 

 

Correctly Classified Instances          16              100      % 
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Incorrectly Classified Instances         0                0      % 

Kappa statistic                          1      

Mean absolute error                      0      

Root mean squared error                  0      

Relative absolute error                  0      % 

Root relative squared error              0      % 

Total Number of Instances               16 

 

Q15. In Weka’s Cluster tab run the SimpleKMeans cluster algorithm with the numClusters parameter set 

to 16 and complete the following rows from the output table. You can paste but ignore the Full Data column 

since it averages discrete integer values across all clusters. Make the lines in README.txt as long as they 

need to be – do not make one row span multiple lines; use a simple paste of Weka’s table text. Does Weka’s 

cluster table match the table of Prep for Q13? 

 

 
 

 

 

 


