

page 1

CSC 343 – Operating Systems, Fall 2020, Assignment 5, due December 10

This assignment is DUE By 11:59 PM on Thursday December 10, 2020 via make turnitin on
mcgonagall or acad. The standard 10% per day deduction for late assignments applies.

To get the starting code for the project please follow these steps after logging into acad:

 cd # This goes to your login directory.
 mkdir ./OpSys # should already be there; no error if it says so
 cd ./OpSys
 cp ~parson/OpSys/SjfSrtfFall2020.problem.zip SjfSrtfFall2020.problem.zip
 unzip SjfSrtfFall2020.problem.zip
 cd ./SjfSrtfFall2020
 ssh –l YOURLOGIN mcgonagall # -l is the lower-case letter ell
 cd ./OpSys/SjfSrtfFall2020

All of your programming and testing must occur on multiprocessor mcgonagall. All other work must occur
within your OpSys/SjfSrtfFall2020 directory on mcgonagall. Make sure to read and understand the MEAN
versus MEDIAN semester grading plan documented at:
https://faculty.kutztown.edu/parson/fall2020/MeanMedianFall2020.txt .

This assignment consists of coding two enhancements to the sjf.stm, shortest-job first CPU (a.k.a. context)
scheduler of Assignment 3. State machine sjf.stm is an approximate model that uses perfect foreknowledge
of each upcoming CPU burst time by using that actual burst time to schedule threads in the readyQ.

 processor.readyQ.enq(thread, cpuTicksB4IO);

Such foreknowledge is unrealistic. This assignment forms an estimate of the upcoming CPU burst time
from a weighted sum of the most recent CPU burst time (just in the past) and the previous such estimate.
Here is the formula from the textbook chapter on CPU Scheduling to estimate each upcoming burst.

■ Can only estimate the length – should be similar to the previous one
● Then pick thread with shortest predicted next CPU burst

■ Can be done by using the length of previous CPU bursts, using exponential averaging
● tn = actual length of nth CPU burst (our cpuTicksB4IO at time of assigning it from sample(…))
● Tn+1 = predicted value for next CPU burst (I call this variable estimate below)
● α, where 0 <= α <= 1 (I call this variable alpha below)
● Define Tn+1 = α tn + (1 – α) Tn

■ Commonly, α set to ½ (thereby providing equal weight to most recent burst and previous estimate)
■ Preemptive version called shortest-remaining-time-first

The textbook shows this graph of actual CPU burst times (the Manhattan, squared-off time series) versus
the estimate T (the curved time series that lags rapid transitions in actual bursts).

page 2

Actual bursts t (cpuTicksB4IO) in black and pre-estimated bursts T (estimate) in blue

Here are the above variables using variable names from the assignment’s state machines.

■ Can only estimate the length – should be similar to the previous one
● Then pick thread with shortest predicted next CPU burst

■ Can be done by using the length of previous CPU bursts, using exponential averaging
● cpuTicksB4IO = actual length of nth CPU burst as assigned from sample(…)
● estimate = predicted value for next CPU burst
● alpha weight is 0.5 as illustrated by the textbook
● Define estimate = alpha * previous cpuTicksB4IO + (1 – alpha) * previous estimate

■ Commonly, α set to ½ (thereby providing equal weight to most recent burst and previous estimate)
■ Preemptive version called shortest-remaining-time-first
■ We will initialize cpuTicksB4IO and estimate to 125 in these state machines, and alpha to 0.5, thereby

providing a stable starting point for comparisons.

Automated testing via make clean test is similar to previous assignments. I am supply my solutions to
fcfs.stm, sjf.stm, and rr.stm schedulers from Assignment 3.

STEP 1 35% of project: Start with the following copy command on the mcgonagall command line:

 cp sjf.stm sjfEstimate.stm

Edit model sjfEstimate.stm, making the following changes.

1. Add variable estimate initialized to 125, variable alpha initialized to 0.5, and make sure that
cpuTicksB4IO is initialized to 125. These initializations occur where the variables are declared at the top
of the thread state machine, not in transitions.

2. Compute estimate as follows immediately BEFORE each assignment into cpuTicksB4IO from
sample(…). This model predicts the next estimate based on the previous CPU burst time and the previous
estimate, since this algorithm does not unrealistically predict the future.
estimate = round((alpha * cpuTicksB4IO) + ((1.0 - alpha) * estimate));

page 3

3. Use the estimate as the priority argument in each call to processor.readyQ.enq(…), replacing
cpuTicksB4IO from sjf.stm.

4. Update documentation comments in sjfEstimate.stm at the top and wherever you made changes.
5. Running make testsjfEstimate should now pass.

Here is the STM graph for sjfEstimate.stm, identical to sjf.stm’s and fcfs.stm’s graph.
https://kuvapcsitrd01.kutztown.edu/~parson/sjfEstimate.jpg

sjfEstimate.jpg

STEP 2 35% of project: Start with the following copy command on the mcgonagall command line:

 cp rr.stm sjfPreempt.stm

Edit model sjfPreempt.stm, making the following changes. We are starting with rr.stm because like rr.stm,
sjfPreempt.stm is preemptive. It includes rr’s added transition from state rescheduling to scheduling when there
are remaining tickstodefer.

1. Change the name of variable quantum to estimate everywhere it occurs, initialized to 125. Add variable
alpha initialized to 0.5, and make sure that cpuTicksB4IO is initialized to 125. These initializations occur
where the variables are declared at the top of the thread state machine, not in transitions.

2. Change the constructor call processor.readyQ = Queue(…) to make it a priority queue as it is in sjf.stm and
sjfEstimate.stm.

3. Compute estimate (formerly constant quantum) as follows immediately BEFORE each assignment into
cpuTicksB4IO from sample(…). This model predicts the next estimate based on the previous CPU burst
time and the previous estimate, since this algorithm does not unrealistically predict the future.

estimate = round((alpha * cpuTicksB4IO) + ((1.0 - alpha) * estimate));

This is the same formula as in sjfEstimate.stm.
Note that the call to cpu(tickstorun) at the end of transition scheduling -> running uses the tickstorun
computed from the minimum of the upcoming cpuTicksB4IO and the estimate based on the weighted sum
of the previous cpuTicksB4IO and the previous estimate. Using cpu(tickstorun) models preemption.

4. Use the estimate as the priority argument in each call to processor.readyQ.enq(…) as in sjfEstimate.stm.
5. Update documentation comments in sjfPreempt.stm at the top and wherever you made changes.
6. Running make testsjfPreempt should now pass.

page 4

Here is the STM graph for sjfPreempt.stm, identical to rr.stm’s graph.

sjfPreempt.jpg

STEP 3 30% of project: Answer the 3 questions in file README.txt.

After completing the above steps, run make clean test one last time to ensure everything works, then run
make turnitin as before by the assignment deadline.

If you get an error at run time with codeTable index like this:

 exec(__codeTable__[20],globals,locals)

You can run decode.py like this:

$ python decode.py rr_fifopage.py 20

__codeTable__[20] = compile('pcb.victimQueue = Queue(ispriority=False)','nofile','exec'),

