

page 1

CSC 343 – Operating Systems, Fall 2020, Assignment 3, due November 12

This assignment is DUE By 11:59 PM on Thursday November 12, 2020 via make turnitin on
mcgonagall or acad. The standard 10% per day deduction for late assignments applies.

To get the starting code for the project please follow these steps after logging into acad:

 cd # This goes to your login directory.
 mkdir ./OpSys # should already be there; no error if it says so
 cd ./OpSys
 cp ~parson/OpSys/ContextSchedFall2020.problem.zip ContextSchedFall2020.problem.zip
 unzip ContextSchedFall2020.problem.zip
 cd ./ContextSchedFall2020
 ssh –l YOURLOGIN mcgonagall # -l is the lower-case letter ell
 cd ./OpSys/ContextSchedFall2020

All of your programming and testing must occur on multiprocessor mcgonagall. All other work must occur
within your OpSys/ContextSchedFall2020 directory on mcgonagall.

In this assignment I am supplying a first-come first-served, non-preemptive scheduler in file fcfs.stm. You
can run make testfcfs to test it. I have started drafting the file sjf.stm for the shortest-job first scheduler,
which schedules a thread into the readyq using the thread’s cpu burst time in cpuTicksB4IO, which the
shortest time having the earlier priority in the min-queue (readyq). After you add your code you can run
make testsjf to test it. Finally, you must complete the preemptive round-robin scheduler in rr.stm, which
you can test using make testrr. When everything runs, make sure your name is added at the top of your
source files, and you have added a brief comment for every transition that you change or add. Perform
make clean test one last time, and then make turnitin by the due date deadline. There are notes about the
scheduling algorithms in the handout STM files. We will go over them in class.

SJF is worth 50% of the project grade, and RR is worth the other 50%. I will give partial credit for solutions
with algorithm bugs, but they must be able to compile.

My state diagrams are here:

http://acad.kutztown.edu/~parson/fcfs.jpg
http://acad.kutztown.edu/~parson/sjf.jpg creates the same graph as fcfs.stm.
http://acad.kutztown.edu/~parson/rr.jpg has a transition going from rescheduling to scheduling, bypassing
state waiting (for IO completion), when the thread still has ticks left over from the most recent sample()
call that it has not yet expended. Since fcfs and sjf are always non-preemptive, threads always expend all
sampled()d cpuTicksB4IO as soon they get a CPU; rr, on the other hand, may expend only up to quantum
ticks. Any leftover ticks remaining require going from running -> rescheduling -> scheduling to expend
some more of those ticks.

page 2

Here is what a successful test run looks like. It is FCFS, which is already done and working:

$ make testfcfs

COMPILING fcfs
/bin/bash -c "PYTHONPATH=/home/kutztown.edu/parson/OpSys:.:.. /usr/local/bin/python3.7
/home/kutztown.edu/parson/OpSys/state2codeV17/State2CodeParser.py fcfs.stm fcfs.dot fcfs.py
CSC343Compile CSC343Compile"
COMPILING COMPLETED
SIMULATING (TESTING) fcfs
/bin/bash -c "PYTHONPATH=/home/kutztown.edu/parson/OpSys:.:..
STMLOGDIR=/home/kutztown.edu/parson/tmp time /usr/local/bin/python3.7 fcfs.py 2 4 110000 12345 2"
MSG cmd line: ['fcfs.py', '2', '4', '110000', '12345', '2'], usage USAGE: python THISFILE.py
NUMCONTEXTS NUMFASTIO SIMTIME SEED|None LOGLEVEL

Scheduler exiting at time 103914 within time limit 110000, simulation has finished.
0.15user 0.02system 0:00.30elapsed 58%CPU (0avgtext+0avgdata 10672maxresident)k

page 3

0inputs+960outputs (0major+5137minor)pagefaults 0swaps
/bin/bash -c "PYTHONPATH=/home/kutztown.edu/parson/OpSys:.:.. /usr/local/bin/python3.7
crunchlog.py fcfs.log"

DIFFing fcfs_crunch.py fcfs_crunch.ref
OK: MEAN_running at 15.0% tolerance.
OK: MEAN_ready at 15.0% tolerance.
OK: MEAN_waiting at 15.0% tolerance.
OK: MEAN_TURNAROUNDTIME at 15.0% tolerance.
OK: MAX_running at 15.0% tolerance.
OK: MAX_ready at 15.0% tolerance.
OK: MAX_waiting at 15.0% tolerance.
OK: MAX_TURNAROUNDTIME at 15.0% tolerance.
OK: MIN_running at 15.0% tolerance.
OK: MIN_ready at 15.0% tolerance.
OK: MIN_waiting at 15.0% tolerance.
OK: MIN_TURNAROUNDTIME at 15.0% tolerance.

TESTING COMPLETED

The make testsjf takes similar time to make testfcfs; make testrr takes marginally longer.

Each test run produces a log file (fcfs.log, sjf.log and rr.log).

Automated testing via make clean test is similar to assignment 2. Simulation times in ticks for critical
states of the algorithm are checked for consistency with the expected times, to with a 15% allowable margin
of difference. These are the measures checked for consistency:

cat diffset.py
ContextSchedFall2020/diffset.py --
set of simulation properties to test after
a simulation run. See crunchlog.py

Map the property to be checked against its (TOLERANCE, RAWTOLERANCE),
where TOLERANCE is a percatage as a fraction, and RAWTOLERANCE
is the minimum difference between the simulation value and the
reference value for the property required to trigger an error.
DIFFMAP = {
 'MEAN_running' : (.15, 10),
 'MEAN_ready' : (.15, 10),
 'MEAN_waiting' : (.15, 10),
 'MEAN_TURNAROUNDTIME' : (.15, 10),
 'MAX_running' : (.15, 10),
 'MAX_ready' : (.15, 10),
 'MAX_waiting' : (.15, 10),
 'MAX_TURNAROUNDTIME' : (.15, 10),
 'MIN_running' : (.15, 10),
 'MIN_ready' : (.15, 10),
 'MIN_waiting' : (.15, 10),
 'MIN_TURNAROUNDTIME' : (.15, 10),
}

page 4

Testing simulated cpu-time analysis for class discussion:

fcfs_crunch.ref:MEAN_running=395.9563953488372
rr_crunch.ref:MEAN_running=101.24087591240875
sjf_crunch.ref:MEAN_running=377.4913294797688

fcfs_crunch.ref:MIN_running=1
rr_crunch.ref:MIN_running=1
sjf_crunch.ref:MIN_running=1

fcfs_crunch.ref:MAX_running=1098
rr_crunch.ref:MAX_running=125
sjf_crunch.ref:MAX_running=1098

fcfs_crunch.ref:MEAN_ready=419.953125
rr_crunch.ref:MEAN_ready=78.75062972292191
sjf_crunch.ref:MEAN_ready=264.5652173913044

fcfs_crunch.ref:MIN_ready=2
rr_crunch.ref:MIN_ready=1
sjf_crunch.ref:MIN_ready=3

fcfs_crunch.ref:MAX_ready=2081
rr_crunch.ref:MAX_ready=282
sjf_crunch.ref:MAX_ready=1878

fcfs_crunch.ref:MEAN_waiting=2481.991017964072
rr_crunch.ref:MEAN_waiting=2586.665671641791
sjf_crunch.ref:MEAN_waiting=2544.7261904761904

fcfs_crunch.ref:MIN_waiting=500
rr_crunch.ref:MIN_waiting=500
sjf_crunch.ref:MIN_waiting=500

fcfs_crunch.ref:MAX_waiting=7284
rr_crunch.ref:MAX_waiting=6938
sjf_crunch.ref:MAX_waiting=6775

fcfs_crunch.ref:MEAN_TURNAROUNDTIME=101895.8
rr_crunch.ref:MEAN_TURNAROUNDTIME=102263.7
sjf_crunch.ref:MEAN_TURNAROUNDTIME=102216.0

fcfs_crunch.ref:MIN_TURNAROUNDTIME=100040
rr_crunch.ref:MIN_TURNAROUNDTIME=100211
sjf_crunch.ref:MIN_TURNAROUNDTIME=100092

fcfs_crunch.ref:MAX_TURNAROUNDTIME=103906
rr_crunch.ref:MAX_TURNAROUNDTIME=105252
sjf_crunch.ref:MAX_TURNAROUNDTIME=104397

fcfs_crunch.ref:MEAN_waiting=2481.99101796
sjf_crunch.ref:MEAN_waiting=2544.72619048
rr_crunch.ref:MEAN_waiting=2586.66567164

fcfs_crunch.ref:MIN_waiting=500

page 5

sjf_crunch.ref:MIN_waiting=500
rr_crunch.ref:MIN_waiting=500

fcfs_crunch.ref:MAX_waiting=7284
sjf_crunch.ref:MAX_waiting=6775
rr_crunch.ref:MAX_waiting=6938

fcfs_crunch.ref:MEAN_TURNAROUNDTIME=101895.8
sjf_crunch.ref:MEAN_TURNAROUNDTIME=102216
rr_crunch.ref:MEAN_TURNAROUNDTIME=102263.7

fcfs_crunch.ref:MIN_TURNAROUNDTIME=100040
sjf_crunch.ref:MIN_TURNAROUNDTIME=100092
rr_crunch.ref:MIN_TURNAROUNDTIME=100211

fcfs_crunch.ref:MAX_TURNAROUNDTIME=103906
sjf_crunch.ref:MAX_TURNAROUNDTIME=104397
rr_crunch.ref:MAX_TURNAROUNDTIME=105252

If you get an error at run time with codeTable index like this:

 exec(__codeTable__[21],globals,locals)

You can run decode.py like this:

/usr/bin/python decode.py sjf.py 21

__codeTable__[21] = compile('cpu(cpuTicksB4IO)','nofile','exec'),

That shows you the line of code that blew up during simulation.

