

page 1

CSC 220 Object-Oriented Multimedia Programming, Fall 2020
Dr. Dale E. Parson, Assignment 4, recursive partitioning of 3D space.
This assignment is due via D2L Dropbox Assignment 4 due by 11:59 PM on Thursday December 3.
10% penalty for each day it is late.

The starting point code for RecursiveShape is in the page entitled CSC220Fall2020Recur3D.txt linked to
the course page. Copy & paste it into Processing and Save As CSC220Fall2020Recur3D. Proceed
according to the following instructions.

Recursion is a programming technique in which a function calls itself, either directly, or indirectly through
another function. Graphical programming often makes use of a recursive function like a “cookie cutter”
with parameters that customize the location and scale of the cookie cutter. You will use recursion within
sketch CSC220Fall2020Recur3D to divide the space of one Processing graphical window that is width X
height in size into a number of smaller, adjacent “virtual graphical windows” that typically may maintain
the same width X height aspect ratio, but where the actual width and height have been scaled, and the 0,0
center location has been translated, to fit each of the smaller virtual windows. The next few illustrations
show part of my handout solution to the problem. You will create your own shape according to requirements
appearing later in this document. We will go over my handout code and the concepts of recursion in class.

Base case showing my custom shape from function drawShape with a recursion depth of 0.

page 2

Recursive case with a recursion depth of 1. Each level of recursion subdivides a cuboid region into 8
adjacent rectangular regions, each with ½ the width, ½ the height, and double the layers of the

original “parent” region.

Recursive case with a recursion depth of 2 gives 64 sub-regions, or generally, 8depth sub-regions.

The basic strategy is this:

1. Decide whether it is time to draw the shape, based on a depth parameter to function
drawRecursiveShape in the handout code.

2. If it is time to draw the shape:
a. push(), then rotate() if the rotate parameter to drawRecursiveShape is non-0.
b. Call drawShape() to draw the shape at the current scale, then pop().
c. Increment parameter baseCaseIndex to assign a unique integer ID to each base case call to

drawShape(…).
3. Else (not time to draw the shape due to insufficient depth):

a. For each region to be subdivided from this region (Mine is 8; yours will be something else.)
I. push(), set strokeWeight() and stroke()
II. If rotating the overall group of shapes (isSpaceRotating), do that.

page 3

III. Optionally draw a line from the region center to this sub-region center.
IV. translate() to the center of the sub-region.
V. scale() to the size of the sub-region, relative to the region being divided.
VI. Call drawRecursiveShape recursively to subdivide that sub-region.
VII. pop() and return.

Base case function drawShape() simply draws the shape, using width and height to delimit its size. Its
myShapeIndex parameter is a non-negative, consecutive integer value for each call to drawShape(), used
to ID the call that displays the EasterEgg. We will go over the whole thing in class.

REQUIREMENT 1 (40%) Replace my code in function drawShape() with your own distinct shape, using
a new combination of both 2D and 3D shapes. You can still use the shapes I used, but you must use at least
two other shape-drawing functions. Also, you must nest at least 1 2D shape inside a 3D shape. Your code
should use width and height to help ensure that the shape displays in the currently scaled sub-region.

REQUIREMENT 2 (40%) Change else portion of function drawRecursiveShape so that it subdivides
its width X height X depth region into different sub-regions than mine. Mine divides the region into 4
adjacent, identically sized sub-regions, stacked 2 deep to give 8 overall. The simplest way to satisfy this
requirement would be to subdivide each layer into 9 adjacent, identically sized sub-regions, but you could
also subdivide each layer into 3 adjacent, non-identically sized sub-regions as shown here.

REQUIREMENT 3 (20%) Supply and display your own PImage file (JPG, PNG, etc.) OR custom
PShape construction OR SVG file OR custom formatted text() to replace my EasterEgg.png file. Display
it inside your drawShape(…) function for one of your shapes, using the approach I will discuss on 11/17.
Note that in my drawShape(…) function, the 8 in this line of code depends on the number of shapes
expanded by each recursive call. Yours will most likely be other than 8. Your Easter egg must lie partially
inside and partially outside of its surrounding shape, so that a user can navigate in to see the center of the
egg.

float nodes = pow(8, recursionDepth); // based on 8 shapes per subdivision

Save this sketch as CSC220Fall2020Recur3D.

If you use image files or .svg vector files in your sketch (this is an option open to you), make sure to turn
in those files as well, or turn in the entire sketch directories if you use such files.

